

University Technology Transfer: An Introduction to the Special Issue

Abstract—In recent decades, there has been a substantial increase in university patenting, licensing, and research joint ventures with private companies. Technology incubators, science parks, and NSF-sponsored engineering research centers and industry–university cooperative research centers have also become ubiquitous at research universities. This special issue addresses the managerial and policy implications of these trends.

Index Terms—Clusters, research park, startups, technology transfer.

I. INTRODUCTION

IN RECENT decades, there has been a substantial increase in university patenting, licensing, and research joint ventures with private companies. Technology incubators, science parks, and NSF-sponsored engineering research centers and industry–university cooperative research centers have also become ubiquitous at research universities. Growth in these activities can be attributed to legislative changes designed to promote more rapid diffusion of technologies from universities to firms (e.g., the Bayh–Dole Act) and an expansion of public-private partnerships by the federal government (e.g., the U.S. Commerce Department’s Advanced Technology Program and the Small Business Innovation Research Program) and in several states (e.g., Ben Franklin Technology Partners in Pennsylvania).

The rapid increase in university technology transfer has also attracted attention in the academic literature [1], since this trend has important managerial and policy implications. As a result, there have been several papers on university licensing, patenting, and startup formation. This emerging literature is interdisciplinary, with contributions from scholars in many disciplines, such as economics, sociology, political science, public administration, engineering, and in several fields within management, such as strategy, entrepreneurship, human resource management, and technology and innovation management. There is also some international evidence on this phenomenon. Finally, due to the complexity of the issues raised by the rise of technology transfer at universities, many authors have employed qualitative methods to address key research questions. This is entirely appropriate, given the difficulty of measuring and interpreting organizational phenomena.

II. BRIEF LITERATURE REVIEW

Some papers have focused on institutions that facilitate commercialization and entrepreneurship, such as technology transfer offices [2]–[4], science parks [5] and [6], and incubators [7]–[10]. Siegel *et al.* [3] assessed and “explain” the relative productivity of U.S. university technology transfer offices and

reported that organizational practices explain a significant percentage of the variation in relative performance. Thursby and Thursby [2] reported that growth in licensing and patenting by universities reflects an increase in the willingness of professors to patent, not a fundamental shift from basic to applied research.

DiGregorio and Shane [11] concluded that the two key determinants of the rate of formation of university-based startups are faculty quality and the ability of the university and inventor(s) to assume equity in a startup in lieu of licensing royalty fees. The authors also found that a royalty distribution formula that is more favorable to faculty members reduces startup formation, a finding that is confirmed by Markman *et al.* [12]. DiGregorio and Shane [11] attributed this result to the higher opportunity cost associated with launching a new firm, relative to licensing the technology to an existing firm.

Other studies have focused on agents involved in technology transfer, such as academic scientists. These authors assess the antecedents and consequences of faculty involvement in university technology transfer, such as their propensity to patent, disclose inventions, co-author with industry scientists, and form university-based startups. A seminal paper by Jensen and Thursby [13] demonstrated that inventor involvement in university technology transfer potentially attenuates the deleterious effects of informational asymmetries that naturally arise in technological diffusion from universities to firms.

One of the first papers to study the entrepreneurial behavior of individual faculty members was Louis *et al.* [14]. These authors analyzed the propensity of leading life-science faculty at 50 research universities to engage in various aspects of technology transfer, including commercialization. They found that the most important determinant of involvement in technology commercialization was local group norms, while university policies and structures had little effect on this activity.

III. CONTRIBUTIONS TO THIS SPECIAL ISSUE

The papers in this special issue of IEEE Transactions on Engineering Management focus on some unresolved research questions relating to the managerial and policy implications of university technology transfer. They are based on a variety of theoretical perspectives, such as the theory of the firm, institutional theory, resource dependence theory, agency theory, and organization learning perspectives. The authors use alternative levels of analysis (e.g., firm, university, region, and cluster) and a mix of quantitative and qualitative methods.

Gideon Markman, Peter Gianiodis, and Phil Phan analyze a growing phenomenon at American universities: university-based scientists who “bypass” their institution’s licensing office, by privately selling or licensing scientific discoveries that were developed at their institutions. Their theoretical framework is

agency theory. To test their agency-theory-based hypotheses, they collected data from a random sample of approximately 24000 scientists at 54 U.S. universities.

Their empirical results suggest that bypassing or “gray market” activity can be reduced through stronger administrative monitoring of scientists’ activities and the adoption of licensing office practices that are more faculty-friendly. Interestingly, the study also shows that increased bypassing activity is associated with more valuable discoveries and heightened entrepreneurial activities. This result highlights the conundrum found in other studies: that universities emphasizing entrepreneurial startups can actually do better by reducing restrictions over intellectual property flows.

The study by Massimo Colombo and Evila Piva asks an important question: are academic startups different from other types of startups? To answer this question, the authors adopt an inductive approach, based on evidence from four theory-building case studies of Italian academic startups. They also draw on insights from the resource- and competence-based theories of the firm, in order to identify the factors that might differentiate academic startups from nonacademic startups. The authors use these qualitative findings, the results of prior studies, and the aforementioned theoretical frameworks to formulate a set of testable hypotheses relating to knowledge and funding gaps.

The paper by Dennis Leyden, Al Link, and Don Siegel is an analysis of the determinants of firm-level decisions to locate on a university research park. Research parks are a potentially important mechanism for university technology transfer and regional economic development. Unfortunately, there has been little theoretical or empirical evidence on decisions to locate on such a facility.

The authors fill this gap by using the economic theory of clubs [15] to model the decision to locate on a university research park. They conceptualize membership in the park as an invitation from the “club” (i.e., the research park) for the firm to join the park. A key empirical implication of the theoretical model is that firms conducting “higher quality” research are more likely to locate on a university research park, because this will enhance the company’s ability to absorb new knowledge. An empirical test of this hypothesis was conducted, using Compustat data on the population of U.S. public companies that perform R&D. The findings indicate that firms locating on university research parks are indeed more research active than are observationally equivalent firms and also tend to more diversified, suggesting that these companies are potentially exploiting economies of scale in R&D.

Frank Rothaermel and David Ku use the knowledge production framework to assess the determinants of differential innovation performance in medical device clusters in the USA. The authors conjecture that cluster innovative performance is related to its endowment of financial, intellectual, and human capital. They test this hypothesis using comprehensive and detailed longitudinal data for the complete population of U.S. medical device clusters; and find strong support for the notion of spatial heterogeneity in cluster innovative performance. A key result is that research universities play an important role

in this process. That is because these institutions constitute a source of knowledge spillovers via the transfer of human capital, which occurs mainly through students. It appears that when students are placed with these firms, they disseminate *tacit* knowledge within a cluster, which turns out to be a critical ingredient for innovative performance in a regional technology cluster.

In conclusion, the studies in this special issue shed new light on managerial and policy issues surrounding university technology transfer. Specifically, the papers reveal that a variety of theoretical perspectives and methods can be useful in explaining the behavior and performance of agents and institutions engaged in university technology transfer. Such heterogeneity is critical, given that the key stakeholders (i.e., academic scientists, university administrators, corporate managers, and entrepreneurs) have heterogeneous goals and objectives, as well as different norms, standards, and values. For instance, academics are primarily motivated by recognition within the scientific community, which requires that they quickly disseminate and publish their findings. This form of disclosure conflicts with goal of firms and entrepreneurs to maintain proprietary control over knowledge in order to maximize the financial return on investment in knowledge.

There also appear some severe bottlenecks in university technology transfer. A critical problem, from the perspective of the university, is that many faculty members are not disclosing their inventions. This implies that universities could be losing revenue because faculty are taking technologies “out of the back door,” in order to avoid the university bureaucracy. Although universities are having difficulties managing and commercializing their intellectual property portfolios, they are making important economic contributions to their local regions, as suggested by papers on science parks and the medical device industry, respectively.

The papers in the special issue also highlight new research questions on this important topic. In terms of removing bottlenecks to effectiveness in university technology transfer, it would be useful to explore the role of nonpecuniary incentives, especially those relating to promotion and tenure policies at universities. These factors are clearly important determinants of the propensity of faculty members to engage in these activities. Finally, additional research is needed on the formulation and implementation of the strategic dimension of university technology transfer. A first step would be to develop a taxonomy of such strategies, which could then be mapped into indicators of performance. Given the importance of the human dimension revealed in these studies, the role of leadership in university technology transfer should also be examined.

ALBERT N. LINK, *Guest Editor*

Department of Economics

University of North Carolina at Greensboro
Greensboro, NC 27402 USA

FRANK T. ROTHARMEL, *Guest Editor*
 College of Management
 Georgia Institute of Technology
 Atlanta, GA 30308-1149 USA

DONALD S. SIEGEL, *Guest Editor*
 A. Gary Anderson Graduate School of Management
 University of California, Riverside
 Riverside, CA 92521 USA

REFERENCES

- [1] F. T. Rothaermel, S. Agung, and L. Jiang, "University entrepreneurship: A taxonomy of the literature," *Ind. Corp. Change*, vol. 16, pp. 691–791, Aug. 2007.
- [2] J. G. Thursby and M. C. Thursby, "Who is selling the ivory tower? Sources of growth in university licensing," *Manage. Sci.*, vol. 48, pp. 90–104, Jan. 2002.
- [3] D. Siegel, D. Waldman, and A. N. Link, "Assessing the impact of organizational practices on the productivity of university technology transfer offices: An exploratory study," *Res. Policy*, vol. 32, no. 1, pp. 27–48, Jan. 2003.
- [4] W. Chapple, A. Lockett, D. S. Siegel, and M. Wright, "Assessing the relative performance of university technology transfer offices in the U.K.: Parametric and non-parametric evidence," *Res. Policy*, vol. 34, no. 3, pp. 369–384, May 2005.
- [5] D. S. Siegel, P. Westhead, and M. Wright, "Assessing the impact of science parks on the research productivity of firms: exploratory evidence from the United Kingdom," *Int. J. Ind. Org.*, vol. 21, pp. 1357–1369, 2003.
- [6] A. N. Link and J. T. Scott, "U.S. university research parks," *J. Prod. Anal.*, vol. 25, pp. 43–55, Jan. 2006.
- [7] S. Mian, "Assessing value-added contribution of university technology business incubators to tenant firms," *Res. Policy*, vol. 25, pp. 325–335, 1996.
- [8] M. G. Colombo and M. Delmastro, "How effective are technology incubators? Evidence from Italy," *Res. Policy*, vol. 31, pp. 1103–1122, 2002.
- [9] F. T. Rothaermel and M. C. Thursby, "University-incubator firm knowledge flows: Assessing their impact on incubator firm performance," *Res. Policy*, vol. 34, pp. 305–320, Apr. 2005.
- [10] F. T. Rothaermel and M. C. Thursby, "Incubator firm failure or graduation? the role of university linkages," *Res. Policy*, vol. 34, pp. 1076–1090, Sep. 2005.
- [11] D. Di Gregorio and S. Shane, "Why do some universities generate more start-ups than others?," *Res. Policy*, vol. 32, pp. 209–227, Feb. 2003.
- [12] G. Markman, P. Phan, D. Balkin, and P. Gianioudis, "Entrepreneurship and university-based technology transfer," *J. Bus. Venturing*, vol. 20, pp. 241–263, 2005.
- [13] R. Jensen and M. C. Thursby, "Proofs and prototypes for sale: The licensing of university inventions," *Amer. Econom. Rev.*, vol. 91, no. 1, pp. 240–259, 2001.
- [14] K. S. Louis, D. Blumenthal, M. E. Gluck, and M. A. Stoto, "Entrepreneurs in academe: An exploration of behaviors among life scientists," *Admin. Sci. Q.*, vol. 34, pp. 110–131, 1989.
- [15] T. Sandler and J. T. Tschorhart, "The economic theory of clubs: An evaluation survey," *J. Econom. Literature*, vol. 18, pp. 1481–1521, 1980.

Albert N. Link received the Ph.D. degree in economics from Tulane University, New Orleans, LA, in 1976.

He is currently a Professor of economics at the University of North Carolina, Greensboro. His current research interests include innovation and technology policy, entrepreneurship, and technology transfer strategies. He is also the Editor-in-Chief of the *Journal of Technology Transfer*, and serves as an advisor on science and technology to a number of US and international government agencies.

Frank T. Rothaermel received the M.A. degree in economics from the University of Duisburg, Duisburg, Germany, in 1993, the MBA degree in strategic management from Brigham Young University, Provo, UT, in 1995, and the Ph.D. degree in strategic management from the University of Washington, Washington, in 1999.

He is currently an Associate Professor in the College of Management, Georgia Institute of Technology. His current research interests include strategy in high-tech industries and engineering/university entrepreneurship. He is the author or coauthor of several papers published in the *American Economic Review*, *The Review of Economics and Statistics*, *Economic Journal*, *Academy of Management Journal*, *Academy of Management Review*, *IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT*, *Organization Science*, *Research Policy*, *Strategic Management Journal*, etc. His research has been funded by external grants from the Kauffman Foundation, NSF, Sloan Foundation, and others. He is currently serving on the Editorial Boards of the *Academy of Management Journal*, *Academy of Management Review*, *Strategic Management Journal*, and *Strategic Organization*.

Dr. Rothaermel has received several awards for his research, including the Academy of Management William H. Newman Award, the Strategic Management Society Conference Best Paper Prize, and the National Science Foundation (NSF) CAREER Award. *BusinessWeek* recently named Frank as one of the Georgia Tech's Prominent Faculty in their national survey of business schools. He is an Alfred P. Sloan Industry Studies Fellow, with an emphasis on the pharmaceutical biotechnology industry.

Donald S. Siegel received the Bachelor's degree in economics in 1981, and the Master's and Doctoral degrees in business economics in 1988, from Columbia University, New York.

He is a Professor and Associate Dean of the A. Gary Anderson Graduate School of Management, University of California, Riverside. He is the author or coauthor of several papers published in the *American Economic Review*, *The Review of Economics and Statistics*, *Economic Journal*, *Academy of Management Journal*, *Academy of Management Review*, IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, *Research Policy*, *Strategic Management Journal*, etc. He is a Co-Editor of the *Journal of Technology Transfer*. He is an Associate Editor of the *Journal of Business Venturing* and the *Journal of Productivity Analysis*, and serves on the Editorial Boards of the *Journal of Management Studies*, *Academy of Management Perspectives*, *Academy of Management Learning & Education*, *Corporate Governance: An International Review*, and *Strategic Entrepreneurship Journal*.

Prof. Siegel is the President of the Technology Transfer Society and a member of the Advisory Committee to the Secretary of Commerce on "Measuring Innovation in the 21st Century Economy."