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Abstract

Does the adaptation of incumbent firms to new methods of inventing follow similar patterns across industries and inventions?
We investigate this question in the context of the revolutionary scientific advances enabling biotechnology and nanotechnology,
both of which represent inventions of methods of inventing for incumbent firms. We hypothesize that an incumbent firm’s ability
to exploit these new methods of invention depends initially on access to tacit knowledge on how to employ the new methods. Over
time, however, as firms learn and/or the knowledge becomes codified in routine procedures or commercially available equipment,

inventive output is more highly dependent on traditional R&D investments. We empirically test these hypotheses on two longitudinal
samples over the 21-year time period between 1980 and 2000: 80 incumbent pharmaceutical firms generating 15,607 biotechnology
patents, and 249 firms across a diverse set of industries that were granted a total of 3236 nanotechnology patents. We find broad
support for our conjectures.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Research and development (R&D) at atomic, molec-
ular, or macromolecular levels, i.e., nanotechnology, by
allowing the manipulation and creation of new organic
and inorganic materials, processes, and products, pro-
vides enormous technological opportunities in all sectors
of the economy. Such scientific breakthroughs present
both opportunities and challenges to existing firms,

as newly emerging firms face the same opportunities
as incumbents without their organizational rigidities
(Henderson and Clark, 1990; Hill and Rothaermel, 2003;
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Reinganum, 1989; Rothaermel and Hill, 2005; Zucker
and Darby, 1997). This, of course, underlies the Schum-
peterian hypothesis that radical technological change
sets in motion a process of creative destruction by which
new firms, whose technological identities are aligned
with the new technology, can replace incumbent firms’
market position (Schumpeter, 1942).

Prior research in biotechnology has challenged this
view by showing that while new biotechnology enter-
prises played a critical role in the biotechnology
revolution, their emergence did not displace the major
pharmaceutical firms. As discussed by Gans and Stern
(2000) as well as in Gans et al. (2002), over half of the
top 10 pharmaceutical firms had well established mar-

ket positions in the seventies, before the biotechnology
revolution. They show that a well functioning market for
ideas (through licensing, strategic alliances, and acqui-
sitions) allowed a cooperative equilibrium to emerge
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n which biotechnology firms formed alliances with
arger pharmaceutical firms rather than competing in the

arket for downstream products (see also Rothaermel,
000, 2001). For the new biotechnology firms, alliances
ith pharmaceutical companies provided complemen-

ary assets for commercialization of products; and for
he pharmaceutical firms, the new enterprises provided
ritical expertise in new techniques for discovery as
ell as manufacturing and process development, bol-

tering their fledging product pipelines (Galambos and
turchio, 1998; Henderson et al., 1999; Hoang and
othaermel, 2005). Similar arguments can be made for
&D sourcing by pharmaceutical firms through acquisi-

ions of research-intensive small biotech firms (Higgins
nd Rodriguez, 2006). By drawing on the expertise of the
ew biotech enterprises, incumbent firms were able to
dapt to the revolutionary changes in molecular biology
f the 1970s rather than becoming victims of a Schum-
eterian gale of creative destruction (Gans and Stern,
000; Hill and Rothaermel, 2003; Rothaermel and Hill,
005).

Existing firms across a wide variety of industries have
aced similar challenges with the dramatic avenues for
cientific discovery in nanotechnology enabled by the
nvention of the scanning tunneling microscope (STM)
n IBM’s Zürich laboratory in the early 1980s. Although
he sources of the enabling inventions in nanotechnology
nd biotechnology differ, with the latter coming from
niversity labs, both were revolutionary in that they were
ntirely new methods of inventing (Darby and Zucker,
n press; Griliches, 1957), and thus posing substantial
hreats to incumbent firms.

The question we therefore address is whether the
mergence of nanotechnology created a “gale of creative
estruction” or whether incumbent firms have weathered
he storm with similar strategies to those of incumbents
n the biotech revolution? This question is of paramount
mportance as nanotechnology potentially affects many

ore sectors than did the biotechnology revolution.
hile biotechnology allowed the creation of new organic
aterials, nanotech allows the creation of new materials,

oth organic and inorganic. Despite the surge of papers
redicting great economic and social value of nan-
technology, there has been little systematic empirical
esearch on these issues (Roco and Bainbridge, 2001).
otable exceptions are Lemley (2005) and Sampat

2005) which examine patent quality, and Darby and
ucker (in press) which examine patenting, coauthoring

atterns, and entry of new nanotechnology enterprises.
he dearth of rigorous academic research on economic
nd social issues pertaining to nanotechnology motivated
he special issue in which this article is included.
ch Policy 36 (2007) 832–849 833

We examine whether the evolution of existing or
incumbent firm adjustment to nanotechnology is fol-
lowing similar patterns to those in biotechnology.
To empirically test if nanotechnology is following
biotechnology in leveraging R&D alliances and R&D
acquisitions, we use samples of 80 incumbent phar-
maceutical firms attempting to patent in biotechnology
and 249 incumbent firms across different industries that
have been assigned at least one nanotechnology patent
by the U.S. Patent and Trademark Office (PTO) since
1980.

2. Revolutionary inventions: new methods of
inventing

Because the scientific discoveries underlying both
nanotechnology and biotechnology represent inven-
tions of methods of inventing (Darby and Zucker, in
press), one might expect to observe similar develop-
ment patterns in the strategies of incumbent firms when
attempting to build an innovative presence in the new
technologies. Indeed, Darby and Zucker’s analysis of
nanotech publishing, patenting, and the entry of nanotech
start-ups near academic centers of excellence shows
similar patterns to those in their earlier work on the
biotechnology revolution (Darby and Zucker, in press;
Zucker et al., 1998). The argument is that new meth-
ods of inventing create intellectual human capital that is
naturally excludable. The inventors possess tacit knowl-
edge that while often critical to further development is
not easily transferred to others. This knowledge may
well involve memory of avenues for development that
were tried and failed, as well as those that look promis-
ing. This natural excludability provides a window of
opportunity for inventors to earn above normal prof-
its if they choose to form new enterprises to develop
their discovery. Moreover, in the more than two decades
since both the biotech and nanotech enabling inven-
tions, universities have adopted liberal policies regarding
faculty entrepreneurship which have facilitated the for-
mation of new enterprises around university inventions
(Thursby et al., 2001). Such firms are typically more
nimble than larger, established firms and hence better
suited to develop revolutionary inventions (Holmstrom,
1989).

More importantly for our purposes, the significance
of tacit knowledge for further development means that,
even if inventions developed are patented (as was the

case with both recombinant DNA and the STM), other
firms have a disadvantage in exploiting new methods
of inventing. Thus, the ability of incumbent firms to
adopt these new methods depends on close collabora-
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describing automatic sequencing in 1980, it was not
until 1990 that the first patent was filed for an auto-
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tion with inventors. While some existing pharmaceutical
firms have hired scientific stars (as measured by their
number of journal publications and citation impact)
(Rothaermel and Hess, in press), inventors of new tech-
nologies are frequently university faculty, and tend to
start their own enterprises when attempting to commer-
cialize these inventions, while remaining at universities
(Audretsch and Stephan, 1996; Zucker et al., 1998),
rather than taking employment at incumbent firms.
Taken together, this leads to the following hypoth-
esis regarding incumbent adoption of revolutionary
inventions:

H1. When technological change associated with a
revolutionary invention is embodied in human capi-
tal, incumbent firm ability to exploit the invention will
depend on their alliances and/or acquisition of firms with
direct access to this human capital.

Over time, as a result of further development on
the part of original inventors as well as other scientists
and collaborating incumbent firms, knowledge related
to these methods becomes more routine and codified in
commercially available documents or instrumentation.
In the case of both biotechnology and nanotechnology,
firms eventually developed instrumentation that enabled
other firms to more easily and economically employ
the new methods of invention. With codification, nat-
ural excludability diminishes, which leads to our second
hypothesis:

H2. When technological change associated with a rev-
olutionary invention is embodied in physical capital,
incumbent firm ability to exploit the invention depends
on the firm’s expenditure on the capital.

It is important to realize that these hypotheses are
not mutually exclusive. As noted by Darby and Zucker
(in press), the use of commercially available instrumen-
tation for many novel applications may well be more
productive through (if not require) collaboration with
scientists involved in the original invention. If this is
the case, we would expect to find firms attempting to
exploit revolutionary inventions forming alliances or
consummating acquisitions, as well as making substan-
tial changes in equipment purchases.

Nonetheless, these two hypotheses together suggest
key potential differences between the biotechnology and

nanotechnology revolutions. In particular, as others have
argued in the case of biotechnology (Galambos and
Sturchio, 1998; Henderson et al., 1999), the transition
from random screening to guided drug discovery was
ch Policy 36 (2007) 832–849

difficult and lengthy. The time before instrumentation
for automatic gene sequencing, an enabling technol-
ogy in biotechnology, was commercially available was
almost two decades (Zucker et al., 1998). By con-
trast, the enabling technology in nanotechnology was
the STM, and by 1989 the atomic force microscope
(AFM) was commercially available (Darby and Zucker,
in press). According to our hypotheses, this would sug-
gest that incumbent firms in biotechnology would rely
on alliances and acquisitions much longer than would
incumbent firms in nanotechnology.

2.1. Biotechnology

The scientific discoveries underlying biotechnology,
which allow for the manipulation of the inner struc-
ture of microorganisms like DNA, were accomplished
in the mid-1970s. A research team led by Stanley
Cohen (then a professor at Stanford) and Herbert Boyer
(then a professor at the University of California, San
Francisco) published their scientific breakthrough on
recombinant DNA [rDNA] (Cohen et al., 1973). In 1975,
cell fusion techniques for producing highly purified pro-
teins (monoclonal antibodies) were developed by Cesar
Milstein and Georges Kohler, who later shared the Nobel
Prize for Medicine for this groundbreaking research. In
1976, the first fully-dedicated biotechnology company,
Genentech, was founded by Herbert Boyer and venture
capitalist Robert Swanson.

The year 1980 experienced several watershed events
that mark the beginning of commercialized biotechnol-
ogy (Stuart et al., 1999): (1) the highly successful initial
public offering of Genentech, the first public biotech-
nology company, which set a record for the fastest
increase in stock price at IPO; (2) the passage of the
Bayh–Dole legislation, which made university patenting
of inventions resulting from federally funded research
the rule rather than the exception; (3) the decision that
new life forms can be patented2; (4) the patent protect-
ing the Cohen–Boyer method of recombinant DNA was
granted and assigned to Stanford University (U.S. Patent
4,237,224), which in turn licensed it freely at a nominal
fee.

While Leroy Hood developed protein sequencing
instruments in the 1970s, and published an article
matic DNA sequencer (National Academy Press, 1997).
Nonetheless, once Applied Biosystems (ABI) acquired

2 Diamond v. Chakrabarty 447 U.S. 303 (1980).



Resear

t
c
o

2

t
t
a
m
r
d
l
t

i
a
n
t
n
r
G
t
Z
o
i
N
I
t

m
o

F.T. Rothaermel, M. Thursby /

he exclusive license, this instrumentation was commer-
ially available, and thus diffused rapidly, with thousands
f DNA and protein sequencers sold worldwide.

.2. Nanotechnology

Nanotechnology is seen as a scientific field with great
echnological opportunity and economic potential, with
he hopes are especially high for breakthroughs and
dvances in medicine, manufacturing, high-performance
aterials, information technology, and energy and envi-

onmental technologies. While a commonly agreed upon
efinition of nanotechnology has yet to emerge in the
iterature, we follow the National Nanotechnology Ini-
iative’s (NNI) definition3:

“Nanotechnology is the understanding and control of
matter at dimensions of roughly 1 to 100 nanometers,
where unique phenomena enable novel applications.
The diameter of DNA, our genetic material, is
in the 2.5 nanometer range, while red blood cells
are approximately 2.5 micrometers. Encompassing
nanoscale science, engineering and technology, nan-
otechnology involves imaging, measuring, modeling,
and manipulating matter at this length scale.
At the nanoscale, the physical, chemical, and bio-
logical properties of materials differ in fundamental
and valuable ways from the properties of individual
atoms and molecules or bulk matter. Nanotechnology
R&D is directed toward understanding and creating
improved materials, devices, and systems that exploit
these new properties.”

The scientific and technological breakthroughs driv-
ng the adoption and diffusion of nanotechnology were
ccomplished in the 1980s. The development of the scan-
ing probe microscopy is generally considered one of
he key enabling technological breakthroughs that put
anotechnology at the front lines of physical science
esearch (Jacoby, 2000). In 1981, Gerd Karl Binnig of
ermany and Heinrich Rohrer of Switzerland invented

he scanning tunneling microscope (STM) at IBM’s
ürich Laboratory. The STM provided the first images
f individual atoms on the surfaces of materials. For their

nvention of the STM, Binnig and Rohrer received the
obel Prize in Physics in 1986. While taking a leave from

BM in 1985 to conduct research at Stanford University
ogether with his IBM colleague Christoph Gerber and

3 NNI is a U.S. federal R&D program established to coordinate the
ulti-agency efforts in nanoscale science, engineering, and technol-

gy. See http://www.nano.gov/html/facts/whatIsNano.html.
ch Policy 36 (2007) 832–849 835

Calvin Quate, they developed the atomic force micro-
scope. The AFM was commercially available in 1989
and provided a significant advancement over the STM
because it enabled researchers to conduct microscopic
examinations of materials that did not conduct electric-
ity.

3. Empirical model

There is a long tradition, stemming from Evenson
and Kislev (1975), Griliches (1979, 1984), of estimating
firm inventive output in terms of a knowledge production
function such as:

Y = f (K, V; z) (1)

where Y is a measure of research output, K is a vector
representing the various sources of intellectual human
capital, V is a vector of all other R&D inputs used by
the firm, and z is a vector of parameters. To emphasize
the fact that both K and V are functions of enabling
technological inventions, we can write Y as:

Y = f (K(tech), V(tech); z) (2)

where tech denotes that the technical change of interest
embodied in both human and physical capital. From our
prior discussion, it is clear that K can represent the firm’s
internal capability or knowledge base or the type of tacit
knowledge discussed by Darby and Zucker (in press) that
is accessed by alliances or acquisition of new enterprises.
As well, V represents own employees as well as physical
capital used for R&D, either purchased or rented external
equipment. Examples of the latter would include fees for
use of STM, AFM, or other equipment, such as electron
beam writers, from the universities that are part of the
U.S. National Nanotechnology Infrastructure Network
(NNIN) which provides non-university firms access to
various types of capital-intensive equipment. Thus, as in
Cohen and Levinthal (1989) and Adams (1990), firms
build not only on their own inputs, but also on those they
acquire from the outside—either through spillovers or
explicit market transactions such acquisitions of R&D
firms or through licenses.

In the empirical analysis, we use the number of
(biotech and nanotech) patent applications granted by
application date as our measure of inventive output.
Between 1980 and 2003, the 80 incumbent pharmaceu-
tical firms were granted a total of 15,607 biotechnology
patents; and the 249 firms patenting in nanotechnology

were granted a total of 3236 nanotechnology patents.
Fig. 1 plots the time trends for the total number of
biotech patents granted versus the total number of nan-
otech patents granted, using a logarithmic scale. It is

http://www.nano.gov/html/facts/whatIsNano.html
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for industry idiosyncrasies.
While the pharmaceutical industry has long been

one of the most R&D intensive ones, the commer-
Fig. 1. Annual number of biotech patents and nanotech patents granted
(logarithmic scale).

interesting to note that the shape and slope of the func-
tions seem to approximate one another, perhaps with
the nanotech patenting trend being somewhat steeper.
Moreover, if we lag the nanotech patenting time series
by 4 years, it correlates at r = 0.95 with the biotechnol-
ogy patenting time series. This could be the basis for the
speculation that nanotech patenting might follow a sim-
ilar trend as, if not an even a more accelerated one than
biotechnology patenting.

While it is natural to think of patents as a useful
measure of inventive output, they are clearly only one
possible measure. They are less indicative of the value
to a firm of inventive output than are market-related mea-
sures. Certainly in the case of nanotechnology, however,
it can be argued that using market-based measures of
research productivity is premature given the early stage
of nanotechnology product development.

4. Research methodology

4.1. Sample

We drew two longitudinal samples of incumbent
firms to assess the effects of R&D expenditure on tradi-
tional inputs, internal knowledge capital, and intellectual
capital acquired outside the boundaries of the firm on
patenting in biotech and nanotech, respectively. As noted
above, one sample contains 80 incumbent pharmaceu-
tical companies attempting to adapt to biotechnology,
while the second sample contains 249 incumbent firms
across a different set of industries that have been assigned
at least one nanotech-related patent by the U.S. PTO

since 1980. Moreover, all firms in the nanotech sample
are public enterprises. This additional filter was nec-
essary in obtaining financial data. Thus, the nanotech
sample is defined by incumbent firms that are public and
ch Policy 36 (2007) 832–849

that are assigned at least one nanotech-related patent.
Taken together, the sample firms are large incumbent
firms that are attempting to patent in new technology.
Indicative of their large size is that the average incum-
bent firm active in biotechnology had average annual
(inflation-adjusted) revenues of over U.S.$ 13 billion,
while the average incumbent firm in nanotech had aver-
age annual (inflation-adjusted) revenues of over U.S.$
10 billion.

4.1.1. Biotechnology
To assess incumbent firms’ patenting behavior in

biotech we drew a sample of global pharmaceutical com-
panies. Incumbent pharmaceutical firms are the firms
that were in existence prior to the emergence of biotech-
nology. These companies are generally large enterprises
with a focus on proprietary drug discovery and devel-
opment like Ajinomoto (Japan), Hoffmann-La Roche
(Switzerland), or Pfizer (U.S.). The scientific break-
throughs in biotechnology described above represent a
radical process innovation for incumbent pharmaceutical
firms in the way new drugs are discovered and devel-
oped (Stuart et al., 1999; Rothaermel, 2000). In addition,
incumbent pharmaceutical firms face tremendous pres-
sures to innovate, as illustrated by the following trends
(Higgins and Rodriguez, 2006): total R&D expenditures
have grown from U.S.$ 6.8 billion in 1990 to U.S.$ 21.3
billion in 2000 (17% of sales); new drug development
costs have increased from U.S.$ 231 million to U.S.$
802 million between 1990 and 2000, and average sales
per patented drug has fallen from U.S.$ 457 million in
1990 to U.S.$ 337 million in 2001.4

The pharmaceutical companies in this study focus on
human in vivo therapeutics. This segment of the biotech-
nology industry comprises incumbent pharmaceutical
companies that engage in research, development, and
commercialization of biotechnology therapeutics that
are placed inside the human body (in vivo), as opposed to
in vitro therapeutics, which are used outside the human
body. While biotechnology affects many different indus-
tries, the industry focus on biotechnology in vivo human
therapeutics is reflective of its economic importance and
potential, its regulatory environment, and consumer mar-
ket. Focusing on human therapeutics enabled us to create
a homogenous sample, while at the same time controlling
cialization of biotechnology is also characterized by

4 All data in constant 1999 U.S. dollars.
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are mainly company questionnaires, but also include
news releases, annual reports, SEC and FDA filings,
journals, and investment reports, among others. Recom-
F.T. Rothaermel, M. Thursby /

ubstantial acquisitions of biotechnology firms and
lliances between pharmaceutical companies, biotech-
ology firms, and research universities as well as
on-profit research organizations like the National Insti-
utes of Health. In their study of the pharmaceutical
ndustry, Higgins and Rodriguez (2006) find evidence for
he importance of sourcing R&D through acquisitions of
iotechnology firms. Hagedoorn (2002) shows that the
evel of interfirm cooperation is highest in the biotech-
harmaceutical industry among all high-tech sectors.
hese facts – the emergence of biotechnology as a rad-

cal process innovation for incumbent pharmaceutical
rms, high levels of R&D intensity, significant technol-
gy sourcing through acquisitions and alliances, and that
hree decades have elapsed since the path-breaking sci-
ntific breakthroughs were first accomplished – make the
harmaceutical industry an ideal setting in which to test
he knowledge production function explicated above.

To draw this sample, we relied on numerous sources
ocumenting the global pharmaceutical biotechnology
ndustry (in alphabetical order): BioScan (annual vol-
mes), Burrill & Company Life Sciences Annual Industry
eports, Compustat, Datastream (Thomson Financial),
rnst & Young’s Annual Biotech Industry Reports, FIS
ergent, Osiris, Recombinant Capital, Scrip’s Year-

ooks on the Global Pharmaceutical Industry, SIC
istings, among others. We identified all pharmaceu-
ical companies active as of 1980 and followed them
hrough 2003. While the sample frame spans a 24-year
ime period, to overcome a right censoring introduced
hrough a, on the average, 3-year time lag between
atent application date and patent grant date (Darby and
ucker, in press), we ended the time series underlying

his study in 2000. The sample frame for the biotech sam-
le, therefore, consists of 1680 firm-year observations
80 firms × 21 years).

To overcome a survivor bias, we tracked each firm’s
ife history in a detailed “family tree” linking all firms
n existence at the end of our study period back to their
arious ancestors in 1980. This enabled us to explic-
tly control for horizontal mergers by pharmaceutical
rms in the sample. For example, Pharmacia merged
ith Upjohn in 1995. Here, we tracked each firm indi-
idually until 1995, after which we merged the data for
oth firms, and created a dummy variable (1 = horizontal
erger), indicating that these two firms had become one
rm from 1995 onwards.

It is important to note that the pharmaceutical industry

s characterized by significant concentration where a few
ozen firms dominate the market for proprietary drugs.
hile tracking detailed pharmaceutical sales is difficult,

ecause firms generally do not report sales differenti-
ch Policy 36 (2007) 832–849 837

ated by industrial sector, the sample firms capture the
vast majority of all pharmaceutical sales worldwide. In
particular, we were able to track the detailed pharmaceu-
tical sales of 35 non-diversified companies in the sample.
These 35 focused pharmaceutical companies represent
only 44% of the sample, but accounted for 69% of the
total sales for pharmaceuticals at the end of our study
period (IMS Health, 2003). We are fairly confident that
the remaining 45 firms account for a minimum 20% of
pharmaceutical sales, given the oligopolistic structure of
this industry. These data suggest that the sample drawn
is indeed representative of the global pharmaceutical
industry.

4.1.2. Nanotechnology
Since nanotechnology affects many different pro-

cesses and products across a fairly diverse set of
industries, we were in need of a different approach to
identify a sample of incumbent firms. The only feasi-
ble option was, at this early point in nanotechnology
commercialization, to include all public firms that were
assigned at least one patent in nanotechnology by the
U.S. Patent and Trademark Office since 1980 (see also
Sampat, 2005). This search process yielded a sample of
249 incumbent firms, with a sampling frame of 5229
firm-year observations (249 firms × 21 years). To over-
come a potential survivor bias, we applied the same
procedure for horizontal mergers within the nanotech
sample as described above when discussing the biotech
sample.5 Similarly, we obtained patent data until the end
of 2003, but to overcome a right truncation effect, we
ended the study period in 2000.

4.2. Data

We used the following sources to construct the
two longitudinal panel datasets: We obtained firm’s
R&D expenditures (as well as all other financial data)
from Compustat and Datastream. Alliance data for the
biotechnology industry were drawn from BioScan and
Recombinant Capital. BioScan, which is published by
American Health Consultants, is a publicly available
industry directory that provides data about the worldwide
biotechnology industry. The sources for the BioScan data
binant Capital is a life science industry consulting firm

5 A total of 17 firms were active simultaneously in biotech and
nanotech patenting.
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that provides detailed descriptions of alliances in the
pharmaceutical biotechnology industry. The sources of
Recombinant Capital alliance data are comprised of
SEC and FDA filings, press releases, industry confer-
ences, and industry contacts, among others. BioScan and
Recombinant Capital appear to be the two most com-
prehensive publicly available data sources documenting
alliance activity in the biotechnology industry. Both
sources are fairly consistent and accurate in reporting
alliances (their inter-source reliability was greater than
0.90). Alliance data for the nanotech sample was drawn
from the SDC Platinum database, published by Thom-
son Financial. We also used this source to track R&D
acquisitions by both the incumbent firms in the biotech
and nanotech samples.

Patent data were obtained from the U.S. Patent
and Trademark Office (PTO), an agency of the U.S.
Department of Commerce, as well as from the NBER
patent database (for a description of the NBER database
see Hall et al., 2001) and Delphion research corpo-
ration. The latter two data sources are directly based
on U.S. PTO data, but allow for some more effi-
cient searches using specific computer algorithms. We
obtained detailed annual data on the complete popula-
tion of all biotechnology patents assigned to the global
pharmaceutical companies in the sample. The U.S. PTO
compiled these data based on the complete set of biotech-
nology patents.6 Since there are no defined nanotech
patent classes as of this writing, nanotech patents were
obtained through following the procedure outlined in
Huang et al. (2003). This technique was also applied
by Sampat (2005). Huang et al. (2003) identified a
set of unique keywords pertaining to nanotechnology
to define nanotech-related patents.7 We searched the
universe of patents and identified nanotech patents as

the patents that contained any of the nanotechnology
keywords.

6 The dataset contains all biotechnology patents as identified by the
U.S. PTO in the following patent classes: 424 [Drug, bio-affecting and
body treating compositions (different sub-classes)], 435 [Chemistry:
Molecular biology and microbiology], 436 [Chemistry: Analytical
and immunological testing], 514 [Drug, bio-affecting and body treat-
ing compositions (different sub-classes)], 530 [Chemistry: Natural
resins or derivatives; peptides or proteins; lignins or reaction products
thereof], 536 [Organic compounds], 800 [Multicellular living organ-
isms and unmodified parts thereof and related processes], 930 [Peptide
or protein sequence], PLT [plants].

7 The keywords are: atomic force microscopy, atomistic simulation,
biomotor, molecular device, molecular electronics, molecular model-
ing, molecular motor, molecular sensor, molecular simulation, nano%,
quantum computing, quantum dot%, quantum effect%, scanning tun-
neling microscop%, self assembl%, selfassembl%.
ch Policy 36 (2007) 832–849

4.3. Measures

4.3.1. Dependent variable
Patents represent inventions in a specific technolog-

ical field because they are only granted for processes
or products that are novel, non-obvious and industrially
useful as judged by an individual possessing profi-
cient knowledge in the relevant technical area (Acs
and Audretsch, 1989). Patent applications granted and
recorded by application year is our proxy for research
output (Y), and thus is the dependent variable of this
study. In particular, the dependent variable is the number
of patent applications granted to a firm.

We record the patent application date rather than the
granting date to more accurately proxy the time of inven-
tion. It is important to note here that the U.S. PTO only
records application dates when patents are granted. Thus,
all patents recorded by application date are patents that
were also granted. Patent data were collected until the
end of 2003 to overcome right censoring. Moreover,
the patent application date is a fairly good time proxy
for when the invention occurred. Darby and Zucker (in
press) estimate that the time lag between the date of a
completed invention and the patent application date is
no more than 2–3 months.

The reliability of patent count data has been estab-
lished empirically, because prior research has shown that
patent count data are highly correlated with citation-
weighted patent measures, thus proxying the same
underlying theoretical construct (Hagedoorn and Cloodt,
2003; Stuart, 2000). For example, the bivariate correla-
tion between patent counts and citation-weighted patents
has been shown to be above 0.77 (p < 0.001) in the phar-
maceutical industry (Hagedoorn and Cloodt, 2003), and
above 0.80 (p < 0.001) in the semiconductor industry
(Stuart, 2000), indicating some generalizability of this
assertion.

To assess incumbent firms’ patenting performance in
biotechnology, we used the annual number of biotech-
nology patent applications granted to the firm as the
dependent variable (Yb = research output in biotech).
Likewise, to assess incumbent firms’ patenting perfor-
mance in nanotechnology, we used the annual number
of nanotechnology patent applications granted to the firm
as the dependent variable (Yn = research output in nan-
otech).

4.3.2. Independent variables

4.3.2.1. Lagged patents. Lagged patents (biotech and
nanotech, respectively) is one proxy for the intellec-
tual human capital internal to the firm. We lagged total
patents by one time period, and included it as right-hand
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the primary SIC code was 2834 (pharmaceutical prepa-
rations) for 57% of the sample. In total, the 80 firms in
the biotech sample were spread over 13 different primary
SIC codes.9

8 We thank an anonymous reviewer for emphasizing this possibility.
9 The distribution of SIC codes is as follows: SIC 2834 (pharmaceu-

tical preparations) 51 firms; SIC 2800 (chemicals and allied products)
6 firms; SIC 2820 plastic materials, synthetic resin/rubber, cellulose
F.T. Rothaermel, M. Thursby /

ide variable. This allows us to control for a potential
pecification bias that can arise from unobserved hetero-
eneity (Jacobson, 1990).

.3.2.2. R&D acquisitions. One way the firm can gain
ccess to external intellectual human capital is through
&D acquisitions. We proxied this by annual counts of

he firm’s R&D acquisitions. These are (vertical) acqui-
itions of small research-intensive (nanotech or biotech)
rms that are based on the new technology, rather

han horizontal mergers among sample firms, which we
xplicitly control for. R&D acquisitions can be reason-
bly seen as an attempt to internalize tacit knowledge
Higgins and Rodriguez, 2006). Over the study period,
e tracked a total of 1671 acquisitions. These split into
70 nanotech acquisitions (46%) of new nanotech firms
nd 901 biotech acquisitions (54%) of new biotech firms.

.3.2.3. R&D alliances. A second way the firm can gain
ccess to external intellectual human capital is through
&D alliances. We proxied this by annual counts of the
rm’s R&D alliances. We tracked a total of 4353 R&D
lliances, and analyzed the content of each alliance.
hese alliances split into 590 nanotech R&D alliances

14%) and 3763 biotech R&D alliances (86%).

.3.2.4. R&D expenditures. We proxied incumbent
rms’ investments in all other R&D inputs by their R&D
xpenditures. We preferred to use R&D expenditures,
n combination with an explicit control for firm rev-
nues, over creating a R&D intensity measure (R&D
xpenditures/Revenues), because it allows for a more
traightforward interpretation of the results, which is
ore difficult in ratios.
To purify the R&D data from expenditures devoted to

urchase external technology through acquisitions, for
xample, we adjusted the gross R&D expenditures as
eported by the firms through subtracting their in-process
&D expenditures. In process R&D expenditures are
efined by Compustat as the “the portion of R&D consid-
red to be ‘purchased’ and written off immediately upon
cquisition if the R&D items are deemed not to have
n alternative use. This item includes purchased tech-
ology [through acquisitions].” While this enhances the
ccuracy of the measure, it is not perfect, because it does
till contain expenditures for R&D licenses. Since the in-
rocess R&D expenditures for R&D acquisitions did not
mount, on average, to more than 1.5% (nanotech sam-

le) and to no more than 2.6% (biotech sample) of total
&D expenditures, we expect the expenditures for R&D

icenses to be even smaller, and thus should not introduce
systematic bias in our estimates. Nonetheless, we are
ch Policy 36 (2007) 832–849 839

unable to account for the R&D expenditures devoted to
licenses, because firms do not record them separately.
In addition, all financial data used in our analysis are
inflation-adjusted in constant 2003 U.S. dollars.

4.3.2.5. Time indicator. Since the study period from
1980 to 2000 covers 21 years of observation, it is
likely that the effect of different knowledge sources
may change over time.8 This is relevant for our anal-
ysis in part because biotech and nanotech are at different
stages in their respective development, with biotechnol-
ogy approximately a decade ahead of nanotechnology
due to the earlier invention of the enabling technologies.

To empirically assess this possibility, we created a
time indicator (δt) to test for a structural break in the
univariate time series of biotech and nanotech patent-
ing (Vogelsang, 1997; Rothaermel, 2001). We split the
time series in half, taking 1990 as the midpoint, which is
justified by the fact that key advances in commercially
available instrumentation in both biotech and nanotech
occurred immediately prior to this date, as explicated
above. This variable takes on the value of 0 before 1990,
and 1 afterwards. The null hypothesis states that δt = 0,
meaning biotech and nanotech patenting, respectively,
Yb and Yn, are governed by a deterministically trending
process without an observable shift in the deterministic
time trend. The research hypothesis states that δt �= 0,
implying that patenting performance is trend stationary,
with a time break in the deterministic trend function. We
included the time indicator (δt) as a direct effect as well
as a moderator of the key variables of interest (R&D
acquisitions, R&D alliances, and R&D expenditures).

4.3.3. Control variables
4.3.3.1. Standard Industry Classification (SIC) codes.
To control for industry effects, we included indicator
variables for the most frequent four-digit Standard Indus-
try Classification codes. In the biotechnology sample,
(no glass) 2 firms; SIC 2821 (plastic materials, synthetic resins and
non-vulcan elastomers) 2 firms; and 1 firm each in the following SIC
codes: SIC 2060 (sugar and confectionery products); SIC 2090 (mis-
cellaneous food preparations and kindred products); SIC 2200 (textile
mill products); SIC 2221 (broadwoven fabric mills, man made fiber



Resear

4.3.3.3. Revenues. We controlled for the firms’ annual
revenues (constant 2003 U.S. dollars in MM). As indi-
840 F.T. Rothaermel, M. Thursby /

In the nanotech sample, the primary SIC code was
2834 (pharmaceutical preparations) for 7% of the sam-
ple, SIC 2911 (petroleum refining) for 4% of the sample,
and SIC 3674 (semiconductors and related devices) for
6% of the sample. These were the most frequent SIC
codes in the nanotech sample; firms with the primary
SIC code in industries other than the three mentioned
were so few that we were unable to include them in the

regression analysis due to the lack of variance for these
less frequent SIC codes. In total the 249 nanotech firms
spread over 114 different primary SIC codes.10

and silk); SIC 2840 (soap, detergents, cleaning preparations, perfumes,
cosmetics); 2844 (perfumes, cosmetics and other toilet preparations);
SIC 2870 (agricultural chemicals); SIC 2911 (petroleum refining); SIC
5090 (wholesale-miscellaneous durable goods); and for 10 firms a
primary SIC code was not specified.
10 The distribution of SIC codes is as follows: SIC 2834 (pharma-

ceutical preparations) 17 firms; SIC 3674 (semiconductors and related
products) 16 firms; SIC 2911 (petroleum refining) 9 firms; SIC 3826
(laboratory analytical instruments) 7 firms; SIC 2810 (industrial inor-
ganic chemicals) 6 firms; SIC 3841 (surgical and medical instruments
and apparatus) 6 firms; SIC 3845 (electromedical and electrotherapeu-
tic apparatus) 6 firms; SIC 2821 (plastic materials, synthetic resins and
non-vulcan elastomers 5 firms; SIC 3572 (computer storage devices) 5
firms; SIC 3812 (search, detection, navigation, guidance, aeronautical
systems) 5 firms; SIC 2670 (converted paper and paperboard prod-
ucts (no containers/boxes) 4 firms; SIC 2844 (perfumes, cosmetics and
other toilet preparations) 4 firms; SIC 2860 (industrial organic chemi-
cals) 4 firms; SIC 3559 (special industry machinery) 4 firms; SIC 3577
(computer peripheral equipment) 4 firms; SIC 3640 (electric lighting
and wiring equipment) 4 firms; SIC 3690 (miscellaneous electrical
machinery, equipment and supplies) 4 firms; SIC 3714 (motor vehicle
parts and accessories) 4 firms; SIC 2800 (chemicals and allied prod-
ucts) 3 firms; SIC 2835 (in vitro and in vivo diagnostic substances)
3 firms; SIC 2836 (biological products, no diagnostic substances) 3
firms; SIC 2840 (soap, detergents, cleaning preparations, perfumes,
cosmetics) 3 firms; SIC 2890 (miscellaneous chemical products) 3
firms; SIC 3570 (computer and office equipment) 3 firms; SIC 3570
(electronic computers) 3 firms; SIC 3663 (radio and TV broadcasting
and communications equipment) 3 firms; SIC 3728 (aircraft parts and
auxiliary equipment) 3 firms; SIC 3861 (photographic equipment and
supplies) 3 firms; SIC 8731 (services-commercial physical and biolog-
ical research) 3 firms; SIC 2000 (food and kindred products) 2 firms;
SIC 2111 (cigarettes) 2 firms; SIC 2621 (paper mills) 2 firms; SICC
2820 (plastic material, synthetic resin/rubber, cellulose, no glass) 2
firms; SIC 3290 (abrasive, asbestos and miscellaneous non-metallic
mineral products) 2 firms; SIC 3350 (rolling drawing and extruding
of non-ferrous metals) 2 firms; SIC 3523 (farm machinery and equip-
ment) 2 firms; SIC 3540 (metalworking machinery and equipment)
2 firms; SIC 3612 (power, distribution and specialty transformers) 2
firms; SIC 3661 (telephone and telegraph apparatus) 2 firms; SIC 3670
(electronic components and accessories) 2 firms; SIC 3679 (electronic
components) 2 firms; SIC (motor vehicles and passenger car bodies)
2 firms; SIC 3828 (instruments for measuring and testing of electric-
ity and electric signals) 2 firms; SIC 3842 (orthopedic, prosthetic and
surgical appliances and supplies) 2 firms; SIC 9997 (industrial con-
glomerates) 2 firms; and 1 firm each in the following SIC codes: SIC
ch Policy 36 (2007) 832–849

4.3.3.2. Firm merged. As detailed above when dis-
cussing the sample construction, we explicitly controlled
for horizontal mergers among the sample firms through
the inclusion of an indicator variable (1 = firm merged).
cated above, this control variable is especially pertinent
because we include R&D expenditures as one of the key
independent variables.

1311 (crude petroleum and natural gas); SIC 1600 (heavy construc-
tion other than building construction – contractors); SIC 2040 (grain
mill products); SIC 2070 (fats and oils); SIC 2080 (beverages); SIC
2082 (malt beverages); SIC 2400 (lumber and wood products, no fur-
niture); SIC 2531 (public building and related furniture); SIC 2600
(papers and allied products); SIC 2631 (paperboard mills); SIC 2750
(commercial printing); SIC 2761 (manifold business forms); SIC 2842
(specialty cleaning, polishing and sanitation preparations); SIC 2851
(paints, varnishes, lacquers, enamels and allied products); SIC 2870
(agricultural chemicals); SIC 2891 (adhesives and sealants); SIC 3011
(tires and inner tubes); SIC 3021 (rubber and plastic footwear); SIC
3089 (plastic products); SIC 3100 (leather and leather products); SIC
3211 (flat glass); SIC 3220 (glass and glassware, pressed or blown);
SIC 3221 (glass containers); SIC 3231 (glass products, made of pur-
chased glass); SIC 3250 (structural clay products); SIC 3312 (steel
works, blast furnaces and rolling mills, [Coke Ovens]); SIC 3411
(metal cans); SIC 3420 (cutlery, handtools and general hardware);
SIC 3452 (bolts, nuts, screws, rivets and washers); SIC 3510 (engines
and turbines); SIC 3531 (construction machinery and equipment); SIC
3533 (oil and gas field machinery and equipment); SIC 3555 (print-
ing trades machinery and equipment); SIC 3561 (pumps and pumping
equipment); SIC 3562 (ball and roller bearings); SIC 3564 (industrial
and commercial fans and blowers and air purifying equipment); SIC
3576 (computer communications equipment); SIC 3578 (calculating
and accounting machines [no electronic computers]); SIC 3579 (office
machines); SIC 3580 (refrigeration and service industry machinery);
SIC 3585 (air-conditioning and warm air heating equipment and com-
mercial and industrial refrigeration equipment); SIC 3613 (switchgear
and switchboard apparatus); SIC 3620 (electrical industrial appara-
tus); SIC 3621 (motors and generators); SIC 3651 (household audio
and video equipment); SIC 3669 (communications equipment); SIC
3672 (printed circuit boards); SIC 3678 (electronic connectors); SIC
3695 (magnetic and optical recording media); SIC 3720 (aircraft and
parts); SIC 3721 (aircraft); SIC 3724 (aircraft engines and engine
parts); SIC 3730 (ship and boat building and repairing); SIC 3760
(guided missiles and space vehicles and parts); SIC 3822 (auto controls
for regulating residential and commercial environments); SIC 3823
(industrial instruments for measurement, display, and control); SIC
3843 (dental equipment and supplies); SIC 3851 (ophthalmic goods);
SIC 3949 (sporting and athletic goods); SIC 3950 (pens, pencils and
other artists’ materials); SIC 4813 (telephone communications [no
radiotelephone]); SIC 5040 (wholesale-professional and commercial
equipment and supplies); SIC 5160 (wholesale-chemicals and allied
products); SIC 7011 (hotels and motels); SIC 7200 (services-personal
services); SIC 7370 (services-computer programming, data process-
ing, etc.); SIC 7373 (services-computer integrated systems design);
SIC 8711 (services-engineering services).
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and enables us to include covariates that tend to be
F.T. Rothaermel, M. Thursby /

.3.3.4. Total assets. We controlled for the firms’ size
hrough the inclusion of their total assets (constant 2003
.S. dollars in MM).

.3.3.5. Firm nationality. We attempted to control for
nstitutional and cultural difference by coding for the
ationality of each pharma firm based on the location
f its headquarters. One indicator variable takes on the
alue of 1 if the firm is headquarted in the U.S. (U.S.
irm), the other indicator variable takes on the value of 1

f the firm is headquartered in Europe (European Firm),
ith an Asian location as the reference category. It is
oteworthy that the two samples vary quite significantly
ith respect to their degree of internationalization. The
iotech sample is much more globalized: 26% of the
rms are U.S. based, 39% of the firms are European,
nd 35% are Asian. The nanotech sample is primarily
U.S. sample with 94% of the firms, while only 3% of

he firms are either European or Asian. The latter is not
urprising, since we sampled on firms that were granted
t least one nanotech patent by the U.S. PTO. While the
iotech sample is global in nature, the nanotech sam-
le is predominantly a U.S. one. This may be less of a
oncern, however, since the majority of research in nan-
tech (54%), as proxied by high impact scientific articles,
akes place in the U.S., while the European countries
ontribute about 19% to nanotech research (Darby and
ucker, in press).

.4. Estimation procedures

The underlying datasets are longitudinal panels, fol-
owing the same set of firms over time. The advantages
f panel data include allowing the researcher to control
or the initial values of the dependent variable, recognize
ime lags, enhance statistical power through the investi-
ation of a larger sample size, and reducing the threat of
ollinearity among independent variables, which in turn
mprove the econometric estimates (Hsiao, 2003).

The dependent variable of this study, firm patenting,
s a non-negative, integer count variable. Non-negative,
nteger count variables violate one of the main assump-
ions of the classical linear regression model, as this
ependent variable cannot be normally distributed.
or such data, count models provide an econometric

mprovement over the classical linear (OLS) regres-
ion models. The Poisson estimation is the simplest but
ost restricted count data model, because it assumes
quity between the conditional mean and variance.
ocial science data, however, generally exhibit a greater
ariance than mean, and are thus characterized by
ver-dispersion. The over-dispersion in the patenting
ch Policy 36 (2007) 832–849 841

variables are highlighted by the fact that the coefficient of
variation (standard deviation/mean) ranges between 2.1
(for biotech patenting) and 4.7 (for nanotech patenting),
implying that the patenting rates differ by 210–470%
from the averages across the two different samples.

The negative binomial estimation is an extension of
the Poisson model and allows for the variance to differ
from the mean and hence can handle over-dispersion. In
addition, negative binomial regression accounts for an
omitted variable bias, while simultaneously estimating
heterogeneity (Cameron and Trivedi, 1986; Hausman et
al., 1984). We conducted a test for over-dispersion that
revealed that a negative binomial estimation provides a
significantly better fit for the data than the more restric-
tive Poisson model (Gourieroux et al., 1984). A negative
binomial regression analysis also represents a more con-
servative estimation procedure. We applied the following
random-effects negative binomial model:

Pr(nit = Y ) =
∫ ∞

0

1

nit

e−λit λnit
it f (λit) dλit (3)

where

λit = eβ0+β1KYit−1+β2Kacqit
+β3Kallit +β4Rit+βitZit+εit (4)

thus

log λit = β0 + β1KYit−1 + β2Kacqit
+ β3Kallit

+ β4Rit + βitZit + εit (5)

where nit is a non-negative integer count variable captur-
ing each incumbent firm’s i annual patenting in year t, Y,
and thus Pr(nit = Y) indicates the probability that incum-
bent firm i receives n patents applied for in year t. The
independent variables denote the following constructs:

• KYit−1 denotes prior knowledge stock in terms of
patents lagged by 1 year;

• Kacqit
is a count number of R&D acquisitions con-

summated in each year;
• Kallit is a count number of R&D alliances entered in

each year;
• Rit represents annual R&D expenditures net of in-

process R&D devoted to acquisitions;
• Zit is a vector of control variables.

The application of a random-effects negative bino-
mial estimation addresses concerns of heterogeneity,
time invariant, such as the firm’s primary SIC code and
national origin (Hsiao, 2003).11 Further, to interpret the

11 The results are robust to fixed effects estimation.
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results in a meaningful manner and to reduce potential
collinearity, we standardized all independent variables
before entering them into the various regression models
(Cohen et al., 2003). This procedure allows us to com-
pare beta coefficients directly, and thus improves the
robustness of the analysis without degrading the qual-
ity of the data. To overcome a potential simultaneity
bias we lagged the key independent variables (R&D
acquisitions, R&D alliances, R&D expenditures) and
other time variant control variables (firm revenues and
total assets) by 1 year. Prior research provides evidence
for the notion that lagging R&D expenditures by one
time period appears to be the appropriate specification
of a time lag when estimating patenting (Hall et al.,
1986).

Recall that our estimation technique is a negative
binomial regression, and thus a non-linear, exponen-
tial estimation technique as explicated in Eq. (3) above.
Therefore, to interpret the reported beta coefficients
in a meaningful manner, one needs to exponentiate
the respective beta value [exp(β) or eβ] to obtain the
incidence rate ratio (IRR), holding all other variables
constant (see Long, 1997: 228–229; for a recent appli-
cation see Ichino and Maggi, 2000).12 To enhance the
interpretability of the results, we display incident rate
ratios instead of beta values. An IRR of greater than
1 increases the probability that firm i will be assigned
the expected number of (biotech or nanotech) patents,
whereas an IRR of less than one is reflective of a reduced
probability.

Since the time series under investigation is a lengthy
one of 21 years, it is likely that the relative importance
of different inputs (e.g., intellectual human capital and
physical capital) changes over time. Given the dates of
the Hood patent and the year the AFM became commer-
cially available, we used, as discussed above, the year
1990 as a time indicator to empirically assess whether
such changes of relative impact factors took place. To
do so, we estimated a fully specified model including
a time indicator in addition to interactions of the time
indicator with R&D acquisitions, R&D alliances, and
R&D expenses over the entire study period (1980–2000)
for both the biotech and nanotech samples. This esti-
mation procedure allows us to compare different stages
in the development of biotechnology and nanotechnol-

ogy in the sense that the scientific discoveries underlying
biotech preceded nanotech by about a decade.

12 A negative beta value translates into an incidence rate ratio of less
than 1, while a positive beta value translates into an incidence rate ratio
of greater than 1.
ch Policy 36 (2007) 832–849

5. Results

Table 1 presents descriptive statistics as well as com-
parative mean t-tests for the variables in this study across
both samples. What the data in this table reveal is that,
while incumbent firms in both samples face new methods
of inventing with biotechnology and nanotechnology,
respectively, the firms in both samples differ signifi-
cantly along the dimensions considered in this study.
On average, the incumbent pharma firms produce a
larger number of biotechnology patents (8.87) than the
incumbents that patent in nanotechnology (0.54), which
appears to be a function of different stages in the tech-
nology life cycle. During the 1980–1990 decade, the
average number of biotech patents generated per year
was 3.97, while the average number of biotech patents
generated per year in the second decade (1990–2000)
was 10.97, a statistically significant increase of about
275% (p < 0.001). Similarly, the average number of nan-
otech patents generated per year during the 1980–1990
decade was 0.25, while the average number of nanotech
patents generated in the second decade (1990–2000)
was 0.68, a statistically significant increase of 272%
(p < 0.001).

About 57% of the incumbent firms patenting in
biotechnology are in pharmaceutical preparations (SIC
2834) as their primary industry, while only 7% of the
sample firms patenting in nanotech are in SIC 2834.
Seven percent of the sample firms in the pharma sam-
ple underwent a horizontal merger, while only 2% of
the incumbents in nanotech merged horizontally. The
incumbent firms patenting in biotechnology have greater
revenues, greater assets, and spend more on R&D than
incumbents patenting in nanotechnology. As mentioned
above, the biotech sample is international (39% EU, 26%
US, 45% Asian, mostly Japanese), while nanotech sam-
ple is, through the way it was drawn, primarily U.S.
(94%). Finally, the incumbent firms patenting in biotech-
nology use a higher number of R&D acquisitions (0.51)
and R&D alliances (2.32) than the incumbent firms
patenting in nanotech (0.13 and 0.12, respectively).

Table 2 depicts the regression results for biotech sam-
ple. Model 1 tests for the effect of time during the entire
study period (1980–2000). The results show that the
direct effect for the time indicator (year 1990) is statisti-
cally significant (p < 0.001). In addition, the interaction
between R&D alliances and the time indicator as well as
the interaction between R&D expenditures and the time

indicator are each positive and statistically significant
(p < 0.05 and p < 0.001, respectively). Taken together,
these results imply that the effect of different mecha-
nisms to source new knowledge on biotech patenting
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Table 1
Comparison of biotech and nanotech samples

Patents SIC 2834 Firm merged Revenues ($MM) Assets ($MM)a EU US R&D
acquisitions

R&D
alliances

R&D expenditures
($MM)a

Biotech
Mean 8.87 0.57 0.07 13,293.26 13,782.03 0.39 0.26 0.51 2.32 711.33
S.D. 18.81 0.49 0.26 21,851.39 17,291.54 0.49 0.44 1.65 6.16 899.92
Min 0 0 0 3.13 7.93 0 0 0 0 0.01
Max 204 1 1 209,980.30 179,263.70 1 1 30 120 7,131.00

Nanotech
Mean 0.54 0.07 0.02 10,027.77 11,764.32 0.03 0.94 0.13 0.12 452.79
S.D. 2.53 0.25 0.13 21,740.45 36,437.74 0.18 0.25 0.60 0.67 1,060.42
Min 0.00 0 0 0 1.11 0 0 0 0 0
Max 57.00 1 1 199,659.60 647,486.00 1 1 17 19 10,437.22

Mean difference
t-Stat. 18.52 42.88 8.54 4.82 2.72 31.30 −63.92 9.52 14.37 8.45
Sig. level 0.001 0.001 0.001 0.001 0.01 0.001 0.001 0.001 0.001 0.001

Bio patents SIC 2834 Bio Merged bio Revenues bio Assets bio EU bio US bio Bio Acq Bio All R&D Exp bio
> > > > > > < > > >

Nano patents SIC 2834 Nano Nano merged Revenues nano Assets nano EU nano US nano Nano acq Nano all R&D Exp nano

a Constant 2003 US dollars.
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Table 2
Regression results—biotech sample

Model 1 (biotech patents, 1980–2000)

IRR S.E.

SIC 2834 1.0868 0.0921
Firm merged 1.2953**** 0.0546
EU firm 0.6365**** 0.0768
US firm 0.9088 0.0981
Total assets 0.6998**** 0.0662
Revenues 1.2875**** 0.0919
Lagged biotech patents 1.0129**** 0.0014
Time indicator 2.2183**** 0.2311
R&D acquisitions 0.9807 0.0325
R&D alliances 0.9734 0.0328
R&D expenditures 0.9738 0.0777
R&D acquisitions × time indicator 0.9905 0.0263
R&D alliances × time indicator 1.0648** 0.0326
R&D expenditures × time indicator 1.2560**** 0.0881

Chi square 454.88***

Log likelihood −2098.94

Model 2 (biotech patents, 1980–1990) Model 3 (biotech patents, 1990–2000)

IRR S.E. IRR S.E.

SIC 2834 1.0655 0.2362 1.0411 0.0986
Firm merged 1.0116 0.1283 1.3547**** 0.0627
EU firm 0.8413 0.3050 0.6147**** 0.0756
US firm 0.7456 0.2329 0.8513* 0.0959
Total assets 0.7035* 0.1760 1.1134 0.2075
Revenues 1.0518 0.0744 0.7804 0.1907
Lagged biotech patents 1.0433**** 0.0042 1.0123**** 0.0016
R&D acquisitions 1.0169 0.0569 0.9794 0.0390
R&D alliances 1.0965** 0.0478 0.9801 0.0344
R&D expenditures 1.4116 0.4438 1.1915** 0.0907

Chi square 145.02**** 160.69****

Log likelihood −589.59 −1598.52

* p < 0.10.

** p < 0.05.

*** p < 0.01.
****p < 0.001.

has changed significantly over the 21-year time period,
endorsing a time split of the sample in 1990.

This was done in Model 2 (1980–1990) and Model 3
(1990–2000). These models allow us to illuminate more
precisely how the effects of the different knowledge
mechanisms have changed over time. In both models,
describing the earlier decade (1980–1990) and the later
period (1990–2000), the lagged number of biotechnol-
ogy patents is, as expected, positive and significant, with
a factor change of 4.33 and 1.23%, respectively. This

provides a baseline estimation on which we can assess
the effects of the other knowledge sourcing mechanisms
in a conservative fashion, above and beyond the given
biotechnology patent stock held by each firm.
In the earlier decade (1980–1990), an incumbent
pharmaceutical firm’s R&D alliances were a statisti-
cally significant predictor of biotechnology patenting
(p < 0.05), with a factor change of 9.65%. This implies
that each time the number of R&D alliances a
pharmaceutical firm entered with providers of the
new biotechnology increases by one standard devia-
tion, the expected number of biotechnology patents
granted to the incumbent firm increases by 9.65%.
Noteworthy is that that neither an incumbent firm’s

R&D acquisitions of new biotechnology ventures nor
its R&D expenditures were significant in predicting
biotechnology patenting in the early period (1980–
1990).
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These results change, however, in the later period
1990–2000). Here, we find that R&D alliances are no
onger significant in predicting biotechnology patenting.
ather, an incumbent pharmaceutical firm’s R&D expen-
itures are now a significant predictor of biotechnology
atenting (p < 0.05), with a factor change of 19.15%.
his implies that each time an incumbent pharmaceuti-

al firm increases its R&D expenditures by one standard
eviation, the expected number of biotechnology patents
ncreases by almost 20%. An incumbent firm’s R&D
cquisitions remain, as in the early period, not signifi-

able 3
egression results—nanotech sample

Model

IRR

IC 2834 0.9262
IC 2911 0.7805
IC 3674 0.7501
irm merged 0.9931
U firm 0.9529
S firm 1.0828
otal assets 0.9610
evenues 1.2779
agged nanotech patents 1.0703
ime indicator 1.9657
&D acquisitions 0.9928
&D alliances 1.0110
&D expenditures 1.0002
&D acquisitions × time indicator 1.0787
&D alliances × time indicator 1.0048
&D expenditures × time indicator 0.8281

hi square
og likelihood

Model 5 (nanotech patents, 1980–1990)

IRR S.E.

IC 2834 0.6096 0.2402
IC 2911 1.0069 0.6230
IC 3674 0.6399 0.2643
irm merged 0.9638 0.0412
U firm 0.9167 0.1589
S firm 1.1787 0.1584
otal assets 0.9402 0.0823
evenues 1.2649* 0.1995
agged nanotech patents 1.0918*** 0.0354
&D acquisitions 0.9149** 0.0441
&D alliances 1.0978 0.1065
&D expenditures 1.0003*** 0.0001

hi square 76.26****

og likelihood −1022.82

* p < 0.10.
** p < 0.05.
** p < 0.01.
***p < 0.001.
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cant in predicting biotechnology patenting by incumbent
pharmaceutical companies.

The results for the control variables also change over
the two decades. In the early time period (1980–1990),
firm size, proxied by total assets, was a relative liability
in generating biotechnology patents when compared to
smaller firms. In the later time period (1990–2000), we

find that firms that merged horizontally during this time
period, increased their number of expected biotechnol-
ogy patents by 35%, on average. It is also interesting to
note that both the U.S. (−15%) and the European firms

4 (nanotech patents, 1980–2000)

S.E.

0.2635
0.3322
0.1685
0.0263
0.0985
0.0985
0.0504

** 0.1414
**** 0.0066
**** 0.1561

0.0188
0.0120

**** 0.0001
**** 0.0193

0.0142
**** 0.0292

569.92****

−2583.97

Model 6 (nanotech patents, 1990–2000)

IRR S.E.

1.1533 0.4076
1.2982 0.6982
0.9010 0.2326
0.9895 0.0334
0.9523 0.1128
1.0485 0.1117
1.2574*** 0.1078
0.9904 0.1715
1.0740**** 0.0075
1.0156 0.0191
1.0093 0.0116
1.0001* 0.0001

259.63****

−1724.66
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(−39%) pharmaceutical firms are laggards in biotech-
nology patenting when compared to their Japanese
counterparts. This could possibly be explained by the
relatively late entry of the Japanese into the pharmaceu-
tical industry (Thomas, 2003), implying a lower level of
inertia in regards to patenting in biotechnology.

Table 3 depicts the regression results for nanotech
sample. Model 4 tests for the effect of time during the
entire study period (1980–2000). The results show that
the direct effect for the time indicator (year 1990) is
statistically significant (p < 0.001). In addition, the inter-
action between R&D acquisitions and the time indicator
as well as the interaction between R&D expenditures and
the time indicator are each positive and statistically sig-
nificant (both at p < 0.001). Taken together, these results
imply that the effect of different mechanisms to source
new knowledge on nanotech patenting has changed sig-
nificantly over the 21-year time period, endorsing a time
split of the sample in 1990.

Model 5 depicts nanotech patenting between 1980
and 1990, while Model 6 shows the results for predicting
nanotech patenting during the 1990–2000 time period.
Parallel to the biotech sample, in Model 5 describing
the early decade (1980–1990), and in Model 6 depict-
ing the later period (1990–2000), the coefficient of the
lagged number of nanotechnology patents is positive
and significant, with a factor change of 9.18 and 7.40%,
respectively.

In the earlier decade (1980–1990), an incumbent
pharmaceutical firm’s R&D expenditures were a sig-
nificant positive predictor of biotechnology patenting
(p < 0.01), but with a relatively small factor change
of 0.03%. Moreover, R&D acquisitions are found to
exert a statistically significant negative effect on nan-
otechnology patenting (p < 0.05), with a factor change
of −8.51%. This implies that any time the number of
R&D acquisitions is increased by one standard deviation,
the expected number of nanotech patents is reduced by
approximately 8.5%. In contrast to the significant effect
of R&D alliances on biotechnology patenting, the results
in Model 5 reveal that R&D alliances are not statistically
significant in predicting nanotech patenting.

As in the earlier period, R&D expenditures remain
a significant predictor of nanotechnology patenting in
the later period (1990–2000), albeit only marginally at
p < 0.10. Moreover, the factor change remains rather
small with 0.01%. Noteworthy is also that neither R&D
alliances nor R&D acquisitions are a statistically signifi-

cant predictor of nanotech patenting by incumbent firms
in this later time period.

The results of the control variables reveal that firms
with greater revenues in the earlier period (1980–1990)
ch Policy 36 (2007) 832–849

tend to generate more nanotech patents, with an impact
factor of about 26.5%. In the later period (1990–2000),
incumbent firms that are larger in terms of total assets
tend to obtain more nanotechnology patents. The factor
change for total assets is about 26%.

6. Conclusion

We examined herein the extent to which the nanotech-
nology and biotechnology revolutions to date exhibit
similar evolutionary patterns. Our focus has been on
incumbent firm adjustment rather than newly emerg-
ing firms, and we framed the question in the context of
two hypotheses that stem from the Zucker et al. (1998)
explanation of natural excludability associated with rev-
olutionary inventions. In particular, we hypothesized that
an incumbent firm’s ability to exploit new methods of
invention depends initially on access to tacit knowl-
edge about how to employ the new methods, but over
time, as firms learn and/or the knowledge becomes cod-
ified (in routine procedures or commercially available
equipment) inventive output is more highly dependent
on traditional R&D investments.

Thus, while one might expect similar evolutionary
patterns because both biotechnology and nanotechnol-
ogy represent new methods of inventing, the period of
natural excludability might well have been longer in
biotechnology than nanotechnology. Roughly 20 years
elapsed between initial enabling discoveries in biotech-
nology and the first patent on an automatic DNA
sequencer. By contrast, it was only a decade after the
STM that the AFM was commercially available. We
argued that given this difference, biotechnology patent-
ing might rely on external intellectual capital over a
longer time period than would nanotech patenting. When
testing this hypothesis on a sample of pharmaceuti-
cal firms attempting to innovate within biotechnology,
we find that patenting in biotechnology is explained
not only by a firm’s knowledge stock in terms of past
biotech patenting, but also through knowledge gained
from outside the boundaries of the firm, especially
R&D alliances. This finding lends partial support for
Hypothesis 1, in which we suggested that when techno-
logical change associated with a revolutionary invention
is embodied in human capital, incumbent firm ability to
exploit the invention will depend on their alliances and/or
acquisition of firms with direct access to this human
capital.
Notable in predicting biotechnology patenting was
the difference in results in the early and later periods
considered. In the early period in biotech (1980–1990),
R&D alliances are significant, but not in the later period
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1990–2000), where R&D expenditures become sig-
ificant. Biotech was first focused on (external) R&D
lliances, and now on internal R&D expenditures, since
utomatic gene sequencing is available. By contrast, in
anotech, R&D expenditures are significant in both peri-
ds, but the magnitude of effect is very small. In the early
eriod (1980–1990), R&D acquisitions actually reduce
he expected number of patents. This may well reflect the
ritical role of equipment such STM and AFM early on.
hese findings lend support for Hypothesis 2, in which
e posited that when technological change associated
ith a revolutionary invention is embodied in physical

apital, incumbent firm ability to exploit the invention
epends on the firm’s R&D expenditure.

We need to caution, however, that the differential find-
ng between biotechnology and nanotechnology may be

reflection of the different degrees of maturity in the
wo technology life cycles. This may also explain the
ifferences in the incumbent firms active in biotech and
anotech patenting revealed above. These firm differ-
nces may well be endogenous to the respective stage
f each technology in their respective life cycle. While
anotech appears to be catching up fast with biotech, it is
onetheless a younger technological breakthrough, thus
xternal knowledge stocks might become more impor-
ant in future stages of development and maturity. While
rms have been actively patenting during the last two
ecades, the properties of materials at the nanoscale
re only beginning to be understood. Further, enabling
nventions beyond the STM and AFM, such as quan-
um dots and carbon nanotubes, which were not patented
ntil the mid-1990s, may well initiate new evolutionary
atterns.

Should future research, however, find that the results
resented herein are not materially influenced by the
aturity of the underlying technology, one can specu-

ate that knowledge is just more distributed in biotech
Powell et al., 2005), and that nanotech is more based on
arge-scale internal efforts (capital-intensive instrumen-
ation, etc.) that the large firms that make up our sample
an more easily afford through greater R&D expendi-
ures than resource-constraint technology start-ups.

It should also be noted that our results depend to some
xtent on the key phrases that we used to construct our
anotechnology sample following Huang et al. (2003).
s new discoveries open up new avenues for research,

ppropriate key phrases may change, and new algorithms
or identification of firms are emerging with efforts such

s Nanobank (http://www.nanobank.org).

Also, while our coarse-grained measure of R&D
lliances did indeed show differential effects on research
roductivity in biotech versus nanotech, future research
ch Policy 36 (2007) 832–849 847

should track patent citations or faculty involvement to
capture knowledge flows from universities more accu-
rately (Bozeman and Mangematin, 2004; Bozeman and
Corley, 2004; Catherine et al., 2004; Rothaermel and
Thursby, 2005a,b). Due to the early stage of both biotech
and nanotech, we relied on simple patent counts, which
tend to correlate highly with patent quality (Hagedoorn
and Cloodt, 2003). Nonetheless, future research should
consider proxying research productivity by the under-
lying quality of the patents (Henderson and Cockburn,
1996). Finally, prior research has shown how large phar-
maceutical firms have attempted to build new capabilities
in biotechnology through the recruitment of employees
with new skills and tacit knowledge based on biotechnol-
ogy (Lacetera et al., 2004; Rothaermel and Hess, in press;
Zucker and Darby, 1997). Thus, future research could
attempt to further investigate the recruitment of intellec-
tual human capital as opposed to access by alliances or
acquisition.
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