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We study the impact of small firms on innovation in regions where large labs are present. Small firms
generate demand for specialized services that lower entry costs for others. This effect is particularly rel-
evant in the presence of large firms that spawn spin-outs caused by innovations deemed unrelated to the
firm’s overall business. We examine MSA-level patent data during the period 1975–2000 and find that
innovation output is higher in regions where both a sizable population of small firms and large labs
are present. The finding is robust to across-region as well as within-region analysis and the effect is stron-
ger in certain subsamples in a manner that is consistent with our explanation.
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1. Introduction Regional productivity disparities have led to a variety of policies
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in innovation productivity across regions. Silicon Valley and Boston
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a broader cross section of such variation using patent data on US
computers and communications. Even Metropolitan Statistical
Areas (MSAs) of a similar size in terms of the number of local
inventors often differ substantially in terms of their innovation
productivity (number of citation-weighted patented inventions
per inventor). For example, Rochester, NY and Portland, OR had a
similar number of innovators working in the computer and com-
munications industry in 1995, but Portland inventors generated
almost double the number of citation-weighted patents.
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tive regional innovation policymaking requires an understanding of
how the structure of local R&D manpower is related to innovation
productivity.

In this paper, we study how local innovation is affected by the
organization of R&D manpower in that region. For over six decades,
since Schumpeter (1942), innovation scholars have tried to under-
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and innovation (Geroski, 1990; Grossman and Helpman, 1991;
Cohen and Klepper, 1996; Aghion et al., 2005). Other research has
focused on the relationship between innovation and regional indus-
trial diversity, for example, comparing innovative output from cities
focused primarily on one industry (e.g., automobiles) with industri-
ally diverse cities (e.g., electronics, chemicals, and textiles) (see
Jacobs, 1969; Glaeser et al., 1992; Feldman and Audretsch, 1999;
Delgado et al., 2010). Despite this extensive literature, the effect of
R&D labor organization on local innovation has so far attracted little
empirical and theoretical attention. We fill this gap by combining
insights from urban economics and entrepreneurship.2

A number of previous studies provide guidance to our analysis of
the impact of R&D labor organization on regional innovation. First,
Vernon (1960) and Chinitz (1961) argue that an increasing number
of small firms ‘‘thicken’’ local markets for ancillary services and thus
reduce the cost of spin-out formation. Second, Schumpeter (1942)
and Galbraith (1952) suggest that large firms may have an advan-
tage in the production of ideas.3 Third, Cassiman and Ueda (2006)
argue that large firms only commercialize innovations that ‘‘fit’’ with
their established research activities. However, if potentially profit-
able, then spin-outs may commercialize ‘‘misfit’’ inventions that do
not fit with the assets, mandate, or strategy of the parent firm.4

These forces indicate that the manner in which regional R&D
manpower is organized may have an impact on local innovation.
In particular, they suggest that innovation productivity is greater
in MSAs where a sizeable population of small labs is present
together with at least one large lab. This is because spin-out forma-
tion requires the presence of large labs and small firm market
thickness lowers the cost of entry, rendering a spin-out more prof-
itable. This suggests that spin-out formation is enhanced when
numerous small labs and at least one large lab are present. Because
spin-outs allow innovators to commercialize inventions that
would otherwise be abandoned since they are not a good fit with
their employer’s research activities, the number of commercialized
inventions also increases when both types of labs are present.
2 See Cohen (2010) for an excellent survey of the ‘neo-Schumpeterian’ empirical
literature. Our paper also contributes to the literature on spin-out formation. While
this literature has explored the impact of parent firm characteristics on spin-out
performance (Franco and Filson, 2006) and contrasted spin-outs to other entrants
(Chatterji, 2009), our paper is to our knowledge the first to examine the impact of
regional R&D manpower organization on local spin-out formation.

3 This typically arises when the lab can spread R&D fixed costs over a larger
number of innovations (see Cohen and Klepper (1996) for a micro-foundation).
Empirical evidence of such an advantage is provided in Klette (1996); Henderson and
Cockburn (1996); Cockburn and Henderson (2001). Alternatively, scale advantages
may arise from division of labor efficiencies (Arora and Gambardella, 1994) or human
capital complementarities (Jones, 2008).

4 Prominent examples of such spin-outs include: Intel, founded by Andy Grove, Bob
Noyce and others to make a product that Fairchild was unwilling to make; Lotus
Development, founded by Mitch Kapor, that left Digital Equipment Corporation; and
FreeMarket, founded by a General Electric (GE) engineer after GE rejected his initial
proposal. In 2002, the Wall Street Journal reported that in 2001 GE’s researchers
suggested more than 2,000 new products but only five proposals were accepted for
product development (see Cassiman and Ueda (2006) and Klepper and Sleeper (2005)
for additional examples).

5 A number of case studies also provide support for our theory. For example,
consider Portland, OR versus Rochester, NY (lack of small firms) and Atlanta, GA
versus Seattle, WA (lack of large firms) in 1995. In terms of Portland and Rochester,
the number of inventors patenting in the ‘‘computers and communications’’
technology class is very similar in the two cities (roughly 1000 inventors).
Nonetheless, Portland outperforms Rochester, obtaining almost 50% more patents
and about twice the number of citation-weighted patents than Rochester. While both
cities register a similar presence of large labs, the number of small labs is
substantially different: Portland has more than five times the number of small labs
as Rochester. On the other hand, in the ‘‘chemicals’’ technology class, Seattle and
Atlanta have a similar number of small labs (38 and 36, respectively) and also a
similar number of overall inventors (457 and 484, respectively), but only Atlanta has a
large lab (Kimberly Clark). The difference in innovation output: Atlanta has 37% more
citation-weighted patents.
We test these empirical implications using a 26-year panel data-
set at the MSA-technology-year level.5 The data show a substantial
regional innovation premium in MSAs ‘‘diverse’’ in firm-sizes, which
we define as MSAs where numerous small labs coexist with at least
one large lab compared to MSAs of a similar size without many small
labs or a large lab. For example, focusing on between-region varia-
tion, we find that in 1995 ‘‘diverse’’ regions have an average 47%
innovation productivity premium five years later.

The empirical variation we exploit in these regressions is
mostly driven by changes in the population of small labs in regions
where at least one large lab is present. This is because regions with
a sizeable population of small labs typically have large labs as well.
Thus, we interpret a switch to one in the ‘‘diverse’’ indicator as an
increase in the number of small labs where a large lab is present.

We approach the cross-sectional correlations with caution
because firm size composition and regional innovation are surely
endogenous. In other words, although our focus is on whether
and how firm size composition influences region-level innovation,
regional innovation likely influences local firm size composition.
For example, regions that are more innovative, perhaps due to
large companies and/or universities that spend heavily on R&D,
likely generate more new small firms that increase the likelihood
that those regions will be ‘‘diverse’’. In addition, small firms that
are especially innovative are more likely to either grow or attract
large firms into their region, increasing the likelihood that those
regions become diverse. Furthermore, unobserved characteristics
of a region may affect both the local allocation of R&D labor as well
as innovation. For example, a positive shock in the value of tech-
nologies produced in the MSA-class (e.g., regional variation in
expertise in software development for mobile devices at the time
of the arrival of the first iPhone) may lead to an increase both in
the entry of small firms and in the likelihood of innovation and
lead to an upward bias in the OLS estimates. Downward bias is pos-
sible too. For example, successful innovation may induce incum-
bents to deter entry of new firms, making diversity less likely.

Thus, we take a series of steps to reject the null hypothesis that
small firms in the presence of a large lab do not play a role in influ-
encing regional innovation. First, we employ an estimation
approach that controls for MSA-class specific attributes (with
MSA-class fixed effects) and general technology trends (with
class-year effects). When we focus on within-region-technology
class variation over time (1975–2000) and use MSA-technology
fixed effects (our baseline specification), we find that in periods
where at least one large lab and numerous small labs co-exist,
MSAs experience a 17% increase in citation-weighted patent counts
per inventor relative to periods when those MSAs have below this
threshold level of diversity.

In addition, to address the concern that our diversity measure is
simply capturing variation in regional product market competition
that is correlated with innovation, we show that our results are
robust to introducing additional measures of industry rivalry. Sim-
ilarly, our findings are not affected when we control for more
detailed measures of agglomeration, suggesting that diversity is
not simply a proxy for regions with a large number of inventors.

Next, we turn to exploring the mechanism that links firm size
diversity to regional innovation. First, we show that diversity is
associated with a 28% increase in spin-out formation. Second, we
expect that any barrier to spin-out formation will reduce the ben-
eficial effect of firm size diversity. We show that the effect of firm
size diversity on innovation is indeed reduced by the presence of
strong non-compete laws. Third, since spin-out formation is pred-
icated on ideas produced by large labs that are subsequently
deemed unrelated, we expect that regions with large labs that
maintain a narrower focus and thus produce more ‘‘misfit ideas’’
will benefit more from firm size diversity. We show that the effect
of firm size diversity on innovation is indeed higher in regions with



Fig. 1. Variation in Regional Innovation. Note: We do not include the ‘‘Silicon Valley’’ MSA on this scatterplot since doing so would compress the other observations (7869
inventors, 13.95 cites per inventor).
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more narrowly focused large labs. We exploit these mechanism-
related findings to assess the validity of our theory against compet-
ing explanations for the positive association between regional firm
size diversity and innovation. Several alternative theories are con-
sistent with a subset of the correlations we report but none with
the whole set. Our approach is not intended to rule out these alter-
nate explanations, but rather to provide evidence suggesting these
alternatives do not alone drive the estimated correlation and at the
same time reject the null hypothesis that firm size diversity does
not influence regional diversity.

To further support our theory, we show that the increase in inno-
vation generated by diversity has long-lasting effects and is predom-
inantly driven by the patenting activity of small firms. We also show
that the positive correlation between diversity and innovation is
robust to the inclusion of MSA-year effects that capture unobserved
time-varying heterogeneity at the regional level.

To further address endogeneity, we show that this result is
robust to using lagged income tax rates, which vary at the state
level, as an instrument for regional firm size diversity. High income
tax rates induce entry since they increase the effective income of
an owner relative to an employee (Cullen and Gordon, 2007;
Poterba, 1989) and thus may affect subsequent regional firm size
diversity. We use an eight year lag between the income tax rate,
which we exploit as an instrument, and innovation outcomes.
Because in most technology fields the speed of technology
advances renders patents obsolete during such a long time window
(Caballero and Jaffe, 2002), we expect such lagged taxes to be cor-
related with current diversity levels but exogenous to current
innovation decisions. Finally, and in addition, we show that the
main result is robust to: (1) disaggregating the firm size diversity
measure into separate measures for large and small labs, (2) focus-
ing on a smaller sample of just large MSAs, (3) focusing on a smal-
ler sample that drops California MSAs, (4) applying different
measures of diversity with different cutoffs for large and small
firms, and (5) an alternate measure of diversity that uses County
Business Patterns Census data rather than patent data.
2. Theoretical framework

The idea that large labs may have an advantage in the produc-
tion of ideas goes back to Schumpeter (1942) and Galbraith (1952).
Several justifications for a positive effect of firm size on innovative
activity have been offered in the literature (see Cohen (2010) for a
survey). First, large labs can spread the R&D fixed costs over a lar-
ger number of innovations. Second, large firms may be able to bet-
ter exploit complementarities between R&D and other non-
manufacturing activities (e.g., finance or marketing). Third, in the
presence of capital market imperfections, large firms may have
an advantage in financing risky R&D projects using internally-gen-
erated funds. Finally, large firms may reduce the risk associated
with the prospective returns to innovation through diversification.

Nevertheless, large labs may not exploit all the ideas that are
produced inside their boundaries, and employees may consider
leaving their employer and commercializing the innovation
through a spin-out. This may occur because the limited commer-
cialization capacity of large firms may induce them to focus only
on innovations that narrowly fit their established commercial
activities (Christensen, 1997; Cassiman and Ueda, 2006). Imperfect
intellectual property protection may also induce scientists to leave
large labs without revealing the ideas generated in previous
employment (Anton and Yao, 1995; Gans et al., 2002). Finally, dis-
agreement among members of management teams may be more
likely in large labs, which may prompt dissidents to leave
(Klepper and Thompson, 2010).

The tension between advantages in idea production and
disadvantages in idea exploitation is consistent with the mixed
empirical evidence on the relationship between firm size and
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R&D productivity. The results in Klette (1996); Henderson and
Cockburn (1996); Cockburn and Henderson (2001) indicate an
advantage in innovation activities for large firms. At the same time,
a variety of other studies show that innovative output may
increase proportionally or less than proportionately than firm size
(Cohen, 2010).

This trade-off also suggests that large labs have an ambiguous
impact on regional innovation. If large labs develop only few ideas
that ‘‘fit’’ with their established research trajectories and if it is dif-
ficult for employees to leave their employer to commercialize
‘‘misfit’’ inventions, then the presence of large labs may not gener-
ate any premium in regional innovation. However, when spin-out
formation is not too costly, the commercialization of ‘‘misfit’’ ideas
may generate a positive association between the presence of large
labs and regional innovation.

Since Vernon (1960) and Chinitz (1961), the urban economics
literature has argued that spin-outs are facilitated in geographic
areas characterized by the presence of a large number of small
firms. The idea is that a sizable mass of small firms will ‘‘thicken’’
local markets for ancillary services and thus reduce entry costs.
Helsley and Strange (2002) provide a micro-foundation for this
idea, developing a model where a large number of small labs gen-
erate a dense network of input suppliers that facilitates spin-out
formation. Natural candidates for industry specific ancillary ser-
vices are early-stage capital (angel investors and venture capitalist
tend to focus on specific industries) as well as specialized real
estate, legal, and financial services. The effect also may be driven
by industry-specific intermediate products that large firms can
produce in-house but small firms cannot (Helsley and Strange,
2002). An alternative mechanism is suggested by Glaeser and
Kerr (2009), who argue that, in the presence of small firms, an area
develops a culture of entrepreneurship that induces employees of
large firms to leave their employer and start their own firms.

The above discussion suggests that large and small firms are
complementary and that regional innovation may be enhanced
when they coexist. Intuitively, the presence of large firms increases
the number of ideas generated in the region and the expected
number of spin-outs. At the same time, a large pool of small firms
lowers the cost of entry for spin-outs and thus allows ideas that are
not a good fit for a large firm to be commercialized.

In the appendix, we present a mathematical formalization of
this argument. We develop a theoretical framework where an
MSA is endowed with scientists who are divided into large and
small labs. Large labs have the capability to commercialize more
than one innovation, but small labs do not (only one). We assume
that the probability of a large lab discovery increases with the
number of scientists employed and that ideas differ in their ‘‘fit’’
with the large lab. Large lab scientists negotiate with their labs
about the destiny of their discoveries and may commercialize the
innovation outside the lab by opening a new small lab (spin-out)
at a cost that is decreasing in the presence of other small labs in
the MSA. We show that regional innovation is maximized in
‘‘diverse’’ MSAs, which we define as MSAs having at least one large
lab and a number of small labs above a threshold.
7 This classification scheme includes: chemicals, computers and communications,
3. Data

We focus on two units of analysis. First, we study cross-region var-
iation and use MSA-technology class as our unit of analysis (e.g.,
Rochester, NY – chemicals). Then, we turn our attention to within-
region variation and use MSA-class-year as our unit of analysis.

In constructing our sample, we begin with the set of 268 MSAs
defined in 1999 by the US Office of Management and Budget6 and
6 http://www.census.gov/population/estimates/metro-city/99mfips.txt.
the set of six one-digit technology classes described in Hall et al.
(2001).7 This generates 1608 MSA-class observations. We then
construct our panel dataset, which includes 26 years (1975–2000)
and thus contains 41,808 MSA-class-year observations.

Patent data from the United States Patent and Trademark Office
(USPTO) offer the only practical innovation measures available for
large-scale studies by providing detailed information both on
regional patenting activity and on the affiliation and location of
patenting inventors in a region. Nonetheless, certain qualification
should be kept in mind. First, not all inventions are patented, but
the innovation literature has shown that technologies with greater
impact on social welfare and economic growth are more likely to
be patented (Pakes and Griliches, 1980; Griliches, 1990). Second,
the coding of location, affiliation, and identity of the inventors is
likely to generate random measurement error in our constructs.
The associated attenuation bias will cause us to underestimate
the impact of diversity on innovation, so our estimates are conser-
vative in this sense. We measure innovative activity, our main
dependent variable, using a citation-weighted count of US patents:

Weighted Patentsjkt+5: The forward citation weighted sum of
distinct patents with primary technology classification k and appli-
cation year t þ 5, where at least one inventor is located in MSA j.

We use inventor address information to assign a patent to an
MSA, exploiting the US National Geospatial-Intelligence Agency
dataset to match cities and townships to counties and ultimately
MSAs. If a patent has at least one inventor from a particular MSA,
then we increment the counter for that MSA by one. Thus, a patent
with three inventors located in three different MSAs increments
the patent counter for each of those MSAs by one. However, if all
three inventors are located in the same MSA, then the counter
for that MSA is only incremented by one.8

We construct this measure using all patents applied for (and
subsequently granted) between 1975 and 2000, with at least one
inventor with a US address. We exclude patents that cannot be
attributed to an MSA (due to incomplete address information or
a location outside an MSA) and patents assigned to universities
and hospitals. The USPTO is the original source of our patent data.
We complement these data with classification data from the NBER
(technology classification, assignee name).

Patent citations identify prior knowledge upon which a patent
builds, and prior literature (starting with Pakes and Griliches
(1980)) has often employed the number of forward-citations
received by a patent as an indirect measure of patent value.

We also consider an unweighted patent count as an additional
innovation metric:

Patentsjkt+5: The number of distinct patents with primary tech-
nology classification k and application year t þ 5 where at least one
inventor is located in MSA j.

Our second dependent variable is a measure of spin-out forma-
tion, which we use in the latter part of our analysis when we turn
our attention to the mechanism through which firm size diversity
influences innovation output. We define a spin-out as a particular
type of lab. We define a lab in MSA j, technology class k, in year t as
follows. First, we take all assignees who, within a five-year window
(year t and the four preceding years), apply for at least one (even-
tually granted) patent in technology class k. Second, using this list
of assignees, we identify labs in MSA-class jk if there are at least
three different inventors located in MSA j who are named in class
k patents of that assignee during the five-year window. Thus, if a
firm has operations (i.e., R&D labs or facilities) in n different
MSA-classes, our procedure will treat it as n distinct entities. We
drugs and medical, electrical and electronic, mechanical, and other.
8 Results are robust to constructing this variable using only data from the first

inventor.

http://www.census.gov/population/estimates/metro-city/99mfips.txt


Table 1
Summary statistics; N = 41,808.

Variables Mean Median Std. dev. Min Max

Weighted patentsjkt+5 465.72 33 2556.94 0 161,861
Patentsjkt+5 27.73 3 118.42 0 6,436
Diverse 0.01 0 0.08 0 1
LargeLab 0.11 0 0.32 0 1
# Small labs 6.43 1 23.37 0 995
# Inventors 91.16 5 411.66 0 23,689
# LargeLab Inventors 33.62 0 199.81 0 11,725
# Labs 8.08 1 29.76 0 1318
Herf 0.27 0 0.38 0 1
Spin-out 0.08 0 0.26 0 1
# Spin-outs 0.18 0 1.80 0 158
High enforce 0.27 0 0.44 0 1
No enforce 0.21 0 0.41 0 1
Large lab focus 0.06 0 0.23 0 1

Table 2
Summary statistics; N = 1870.

Variables Mean Median Std. dev. Min Max

Weighted patentst+5 6680.68 4166.0 10093.74 418.00 161,861
Patentst+5 381.71 268.0 413.65 72.00 6,436
Diverse 0.16 0.0 0.36 0.00 1
LargeLab 0.96 1.0 0.20 0.00 1
# Small labs 83.03 63.0 73.10 2.00 995
# Inventors 1347.22 905.0 1425.11 472.00 23,689
# LargeLab Inventors 574.62 366.5 747.89 0.00 11,725
# Labs 105.08 80.0 94.01 2.00 1,318
Herf 0.15 0.1 0.16 0.01 1
Spin-out 0.57 1.0 0.50 0.00 1
# Spin-outs 2.35 1.0 5.62 0.00 111
High enforce 0.24 0.0 0.43 0.00 1
No enforce 0.30 0.0 0.46 0.00 1
Large lab focus 0.45 0.0 0.50 0.00 1

Table 3
Variation in diversity (year of the switch).

MSA Chemical Computers Drugs Electronics Mechanical Other

Boston 1993 1995 1994 1992 1996 1996
Chicago 1996 2000 1979 1978
Dallas 1999
Detroit 1994
LA 1998 1995 1995 1993 1978 1980
NYC 1976 1995 1989 1987 1978 1977
Philadelphia 1996 1998
San Diego 2000 1998
San Francisco 1990 1989 1992 1987 1995 1994
Seattle 2000
DC 1998
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thus compute the number of patents attributed to such ‘‘labs’’ in
any given year by aggregating by (standardized) assignee name,
location, and application date.

We define a spin-out as a new lab in MSA-class jk if among the
patents applied for during the first year of lab activity we identify
at least one inventor who previously patented in one of the large
labs in MSA jk.9 We construct the following variable to measure
spin-out formation:

log (Spin-Outsjkt): Logarithm of one plus the count of spin-outs
in year t MSA-class jk.

Finally, our main explanatory variable is a measure of diversity.
We construct this variable by first identifying the distribution of
lab sizes in each technology class k and year t. By construction,
lab size has a lower bound of three (each lab has at least three
inventors). Across the various class-years, the median size is about
five inventors, the 75th percentile is about nine inventors, and the
97th percentile is roughly 54 inventors. We use this distribution to
define large and small labs. A large lab is a lab where the number of
inventors is above the 97th percentile in the technology class-year
distribution. We define a lab as small if the number of inventors is
below the 75th percentile. We arbitrarily choose the size thresh-
olds for large and small labs (97th and 75th percentile), but we
perform robustness checks in the Appendix.

Diversejkt: Dummy variable equal to one if in year t MSA-class
jk has at least one active large lab and at least 139 active small labs.

The number of small labs (139) corresponds to the 99th percen-
tile of the distribution of the number of small labs across the entire
sample. Also, for this cut-off, we perform a number of robustness
checks in Appendix. This measure intends to capture MSAs where
both large labs and many small labs coexist. Notice that the diverse
dummy is distinct from a count of the number of labs because it
considers lab sizes. It is also distinct from traditional concentration
measures (Herfindahl or share of top four labs) because intermedi-
ate values of these measures may emerge both with and without
diversity.10

Table 1 presents descriptive statistics for the main variables.
The average MSA-class has approximately 91 inventors and eight
labs. On average, the inventors of an MSA-class apply for about
28 patents per year, and these patents receive roughly 466 forward
citations. The distributions of these variables are highly skewed.
The median MSA-class in our sample has only one lab and five
inventors who apply for three patents per year and receive 33 cites.

The diverse dummy equals one for about 1% of the sample. The
small fraction of diverse observations is mostly due to the fact that
a large number of MSA-classes do not have enough inventors to
display a positive diversity measure. In Table 2 we focus on
MSA-class-years that are ‘‘at risk’’ of becoming diverse.11 The
diverse dummy equals one for roughly 16% of this smaller sample.
On average, these MSA-classes have approximately 105 labs and
1348 inventors, who apply for about 381 patents per year that
receive roughly 6681 forward citations.

Table 3 illustrates the variation in diversity status that will be
exploited in our empirical analysis. We observe a switch in diver-
sity status for 36 of the 149 MSA-classes that are at risk of becom-
ing diverse during the sample period. The first MSA-class to
9 Results are robust to the exclusion of spin-outs that share the same name of large
labs in other MSA-classes jk.

10 To see this, consider the following example. MSA A has four identical labs, each
employing a quarter of the local inventors. MSA B has one lab employing half of the
local inventors as well as a very large number of small labs. In MSA A, the Herfindahl
index is equal to 1/4, and in MSA B the Herfindahl index is also (approximately) 1/4.
However, MSA B has large firm–small firm coexistence, while MSA A does not.

11 The lab size distribution is bounded below by three (by definition each lab has at
least three inventors), and across the various classes-years the 97th percentile is
roughly 54 inventors. Therefore, our constructed cut-off is equal to 3 � 139 + 54 = 471
inventors.
become diverse is New York (in the chemical technology area) in
1976, although switches occur throughout the entire sample
period. Eleven unique MSAs experience a switch in at least one
technology class, and all technology classes experience at least four
switches.
4. Methodology

Our main econometric model focuses on the relationship
between count-based measures of innovative activity Yjktþ5 in
MSA-class jk in period t þ 5 and the indicator for firm size diversity
Diversejkt in MSA-class jk in period t. We typically model the con-
ditional expectation of innovative activity as:

E½Yjktþ5� ¼ expðaDiversejkt þ xjktbþ cjk þ ktkÞ ð1Þ

where xjkt is a vector of control variables, cjk is an MSA-class specific
idiosyncratic effect, and ktk is a vector of technology class time-



Table 4
Diversity and innovation (cross-section).

(1) (2) (3) (4)
Sample: Full, 1995 Full, 1995 Full, 1995 Full, 1995
Dependent variable: Weighted Weighted Weighted

Patentsjkt=2000 Patentsjkt=2000 Patentsjkt=2000 Patentsjkt=2000

Diversejkt=1995 3.762⁄⁄⁄ 0.406⁄⁄ 0.382⁄⁄ 0.296⁄⁄⁄

(0.333) (0.185) (0.165) (0.106)
logInventorsjkt=1995 0.937⁄⁄⁄ 0.891⁄⁄⁄ 0.861⁄⁄⁄

(0.050) (0.027) (0.017)
Constant 6.005⁄⁄⁄ 1.841⁄⁄⁄ 1.348⁄⁄⁄ �0.328⁄⁄⁄

(0.140) (0.284) (0.140) (0.109)
Class FE U U

Observations 1608 1608 1608 1608
log likelihood �1260012.43 �303371.15 �168774.27 �12157.30

Notes: Observations are at the MSAj-classk level. All specifications are Poisson regressions estimated by maximum likelihood. Weighted patents is the forward citation
weighted sum of distinct patents with primary technology classification k and application year t + 5, where at least one inventor is located in MSA j. The main independent
variable, diverse, equals 1 if MSA j in class k in 1995 has at least one large lab and more than 139 active small labs, and 0 otherwise. logInventors is the log of the number of
distinct active inventors in MSA j, class k in 1995.
Robust standard errors clustered at the MSA-class level in parentheses.
�p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.

13 We re-estimate the effect of diversity on regional innovation exploring different
time lags for the cite-weighted patent counts. The increase in innovation becomes
statistically significant in the year that follows the switch and its effect appears stable
over time. The effect persists during the ten years that follow the switch.

14 In our model, for simplicity, we assume that all innovations have the same quality
and differ only in their fit with the existing research activity. Introducing quality
heterogeneity would still generate the prediction that diversity is associated with an
increase both in quality (total number of cites) and in the number of patents. Whether
the effect is stronger on quality-adjusted patents than on the number of patents will
depend on the correlation between the quality and the fit parameters.

15 We obtain similar positive correlations in: (1) panel regressions in which we use
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period effects. Notice that all the dependent variables are lagged
five periods to account for simultaneity concerns.

Eq. (1) uses the log-link formulation due to the non-negative
and highly skewed nature of our count-based dependent variables.
Following Wooldridge (1999), we adopt the Poisson quasi maxi-
mum-likelihood estimation that yields consistent estimates as long
as the conditional mean is correctly specified. We cluster the stan-
dard errors to allow for arbitrary heteroskedasticity and
autocorrelation.

When x in Eq. (1) includes measures of the number of inventors
working in the MSA-class, a indicates whether MSA-classes with a
diverse configuration receive more citation-weighted patents per
inventor; therefore, it is a measure of MSA-class productivity.

5. Results

5.1. Firm size diversity and innovation

5.1.1. Across–region variation
Table 4 contains our first set of results, which show a robust

positive association between firm size diversity and innovation in
cross-section regressions. We estimate all models in Table 4 using
Poisson, with robust standard errors clustered at the MSA-class
level to account for over-dispersion. In Columns (1)–(3), the depen-
dent variable is the citation-weighted patent count or, equiva-
lently, the total forward citation count for issued patents applied
for by all inventors in the MSA-class in year t þ 5.

Column (1), focusing on year 1995, shows a large positive cor-
relation between size diversity and innovation. In Column (2), we
include a control for the number of inventors in the MSA-class.
The positive coefficient on diverse now indicates that diverse MSAs
obtain more innovation per inventor. In Column (3), we show that
the correlation is similar when we control for technology effects.
Exponentiation of the coefficient in Column (3) implies that diverse
MSA-classes have a 47% innovation premium over non-diverse
MSA-classes.12 In Column (4), we show a similar positive correlation
measuring innovation with un-weighted patent counts.

5.1.2. Within–region variation
Focusing on year 1995, the cross-section regressions reported in

Table 4 indicate a positive association between diversity and inno-
vation. Column (1) of Table 5 confirms this result in a pooled cross
12 This follows because e0:382 � 1 ¼ 0:47.
section that exploits the entire sample period. While this correla-
tion is consistent with our theory, the result may be due to unob-
served MSA-class heterogeneity that is correlated with diversity
and innovation. Moreover, the previous regressions include MSA-
classes that do not have enough inventors to display a positive
diversity measure. To address these concerns, in Column (2) we
move to a fixed-effects Poisson estimator (Hausman et al., 1984)
with MSA-class fixed effects and technology class-year effects
and drop all the MSA-classes that are too small to be diverse. This
specification isolates the within MSA-class co-variation of diversity
and innovation. The estimated coefficient implies an increase in
the citation-weighted patent count of about 17% in periods, where
MSAs are diverse.

Column (3) shows that the qualitative and quantitative results
are robust to introducing additional controls, including the Herfin-
dahl concentration index for the labs in the MSA-class and the
number of active labs. This confirms that the diversity measure is
not simply capturing lab concentration or fragmentation. In Col-
umns (4) and (5), we show that results are similar in the larger
dataset that includes small MSA-classes. The magnitude and statis-
tical significance of the coefficients are similar with longer or
shorter lag structures.13 Finally, in Column (6), we look at
unweighted patent counts. We still find a positive and significant
correlation between diversity and innovation, but the magnitude
of the effect drops to less than 9%, suggesting that diversity has a
greater impact on the quality-adjusted measure than on the number
of patents.14 Overall, the results in Table 5 document a strong posi-
tive association between diversity and innovation. Results are also
robust to introducing MSA-year effects (coefficient = 0.089 and p-
value <0.05).15
the 36 two-digit categories defined by Hall et al. (2001) as the level of technology
disaggregation and (2) regressions in which the dependent variable does not include
cites obtained by large labs.



Table 5
Diversity and innovation.

(1) (2) (3) (4) (5) (6)
Sample: Full At-risk At-risk Full Full Full
Dependent variable: Weighted Weighted Weighted Weighted Weighted

Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

Diversejkt 0.309⁄⁄⁄ 0.161⁄⁄⁄ 0.137⁄⁄⁄ 0.146⁄⁄ 0.127⁄⁄ 0.085⁄⁄

(0.116) (0.053) (0.050) (0.063) (0.058) (0.043)
logInventorsjkt 0.911⁄⁄⁄ 0.644⁄⁄⁄ 0.518⁄⁄⁄ 0.293⁄⁄⁄ 0.200⁄⁄⁄ 0.334⁄⁄⁄

(0.014) (0.077) (0.097) (0.034) (0.054) (0.040)
logNumLabsjkt 0.187 0.205⁄⁄⁄ 0.061

(0.138) (0.071) (0.052)
Herfjkt �0.763 �0.074 �0.108⁄⁄⁄

(0.563) (0.052) (0.035)
Year X class FE U U U U U U

MSA X class FE U U U U U

Observations 41,808 1,864 1,864 41,262 41,262 41,444
Num. Groups 140.00 140.00 1587.00 1587.00 1594.00
Log likelihood �3781751.18 �143844.93 �140280.30 �1345383.49 �1332410.79 �120051.25

Notes: Observations are at the MSAj-classk-yeart level. All specifications are estimated with Poisson with Fixed Effects Quasi maximum likelihood (QML). Weighted patents is
the forward citation weighted sum of distinct patents with primary technology classification k and application year t + 5 where at least one inventor is located in MSA j. The
main independent variable, diverse, equals 1 if MSA j in class k in year t has at least one large lab and more than 139 active small labs, and 0 otherwise. logInventors is the log of
the number of distinct active inventors in MSA j, class k in year t, logNumLabs is the log of the number of distinct active labs in MSA j, class k in year t, and Herf is the Herfindahl
concentration index for labs in MSA j, class k in year t. Column 3 and 4 only includes MSA-class-years that have enough inventors to be at-risk of displaying a positive diversity
measure.
Robust standard errors clustered at the MSA-class level in parentheses.
�p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.
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The diversity dummy is a natural empirical construct to assess
the correlation between innovation and diversity predicted by our
theoretical model. In Appendix B, we show this correlation is pres-
ent in regressions with both direct effects and interaction
(Table B.2), confirming that an innovation premium is associated
with the co-existence of large and small labs and that the presence
of only large or small labs does not drive these results.

5.2. Mechanism

5.2.1. Firm size diversity and spin-out formation
The previous analysis illustrates a positive and robust effect of

firm size diversity on innovation. Our theoretical framework indi-
cates that the main channel through which diversity affects inno-
vation is spin-out formation. This is consistent with previous
literature indicating that spin-out innovation is superior to those
of other entrants (Agarwal et al., 2004; Franco and Filson, 2006;
Chatterji, 2009).16 To assess the importance of this mechanism, in
Table 6 we investigate the relationship between diversity and
spin-out formation.

Because spin-outs form in only 4% of the MSA-class observa-
tions, our preferred specification is an OLS regression with MSA-
class fixed effects, technology class-year effects, and a dummy
variable for instances with no spin-outs. The dependent variable
is the logarithm of one plus the number of spin-outs.17

The coefficient in Column (1) implies a 39% increase in the num-
ber of spin-outs when an MSA-class becomes diverse, controlling
for the number of inventors in large labs and a dummy variable
in instances of no spin-outs. In Column (2), we introduce additional
controls for the total number of inventors in the MSA-class. In this
specification, the estimated diversity coefficient implies a 30%
16 Our data confirms this. For example, in 1995, spin-out patents receive 30% more
citations than patents by other new entrants (average across all technology classes
and MSAs).

17 The conditional maximum likelihood estimation of the Poisson model drops MSA-
classes in which the dependent variable is zero for the entire time period. This is
equivalent to dropping about 84% of our data. With Poisson estimations in this
smaller sample, we obtain a positive but statistically insignificant correlation
between diversity and number of spin-outs.
increase in spin-outs. Columns (3) and (4) confirm the result in
the full sample that includes small MSA-classes. The estimates
from these models show that diversity is associated with a 105%
increase in spin-out formation. The difference in elasticities is
due to a substantial difference in the number of spin-outs between
the two samples.18

Overall, the results in Table 6 provide direct evidence of a posi-
tive correlation between diversity and spin-out formation that is
consistent with our theoretical framework. It is important to notice
that these regressions exploit a restrictive measure of spin-outs
that relies only on patent data and requires inventors to patent
both in large and new small labs. To provide additional support
to the idea that spin-outs are the main mechanism through which
diversity affects innovation, in the next sub-sections we present
further indirect evidence consistent with our theory.
5.2.2. Firm size diversity and non-compete agreements
Because in our theoretical framework the main channel through

which diversity increases innovation is spin-out formation, an
additional implication of our theory is that when spin-outs cannot
be formed, the beneficial effect of diversity disappears and a single
large lab maximizes innovation. This result suggests the correla-
tion between innovation and size diversity is likely to be smaller
in settings with substantial impediments to spin-out formation.
To explore this idea empirically, we interact diverse with the extent
to which MSAs are located in states where non-compete agree-
ments are strongly enforced. If high enforcement of non-compete
laws prevents spin-out formation, then we expect the organization
of the local R&D labor market to have no impact on innovation.

To construct a non-compete enforcement index, we follow
Garmaise (2011) and construct a measure based on the twelve
enforcement dimensions studied by Malsberger (2004). The index
assigns one point to each dimension in which the jurisdiction law
exceeds a given threshold; its value varies from zero to 12.
18 Nonetheless, the absolute magnitude of the diversity effect is similar in the two
samples. OLS estimates show that diversity is associated with an increase in the
number of spin-outs of 2.02 in the small sample and with an increase of 6.31 spin-
outs in the full sample with overlapping confidence intervals.



Table 6
Diversity and spin-out formation.

(1) (2) (3) (4)
Sample: At-risk At-risk Full Full
Estimation: OLS OLS OLS OLS
Dependent variable: log Spin-outsjkt log Spin-outsjkt log Spin-outsjkt log Spin-outsjkt

Diversejkt 0.329⁄⁄⁄ 0.266⁄⁄⁄ 0.718⁄⁄⁄ 0.717⁄⁄⁄

(0.071) (0.069) (0.104) (0.104)
logInventorsLargejkt 0.017 �0.034⁄⁄ 0.010⁄⁄⁄ 0.009⁄⁄⁄

(0.023) (0.016) (0.002) (0.002)
No Spin-Out Dummy �0.963⁄⁄⁄ �0.952⁄⁄⁄ �1.026⁄⁄⁄ �1.026⁄⁄⁄

(0.028) (0.028) (0.015) (0.015)
logInventorsjkt 0.507⁄⁄⁄ 0.004⁄⁄⁄

(0.141) (0.001)
Year X class FE U U U U

MSA X class FE U U U U

Observations 1,873 1,873 41,808 41,808
Num. groups 149.00 149.00 1608.00 1608.00

R2 0.74 0.75 0.74 0.74

Notes: The dependent variable, log Spin-outsjkt is the logarithm of one plus the count of spin-outs in MSA j, class k in year t.
Robust standard errors clustered at the MSA-class level in parentheses.
�p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.

Table 7
Innovation and non-compete clauses.

(1) (2) (3) (4)
Sample: At-risk At-risk Full Full
Dependent variable: Weighted Weighted Weighted Weighted

Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

Diversejkt 0.189⁄⁄⁄ 0.168⁄⁄⁄ 0.175⁄⁄ 0.157⁄⁄

(0.064) (0.061) (0.072) (0.066)
Diversejkt X high enforcej �0.152⁄ �0.174⁄⁄ �0.194⁄⁄ �0.206⁄⁄⁄

(0.091) (0.082) (0.084) (0.079)
logInventorsjkt 0.630⁄⁄⁄ 0.475⁄⁄⁄ 0.291⁄⁄⁄ 0.197⁄⁄⁄

(0.078) (0.101) (0.034) (0.054)
logNumLabsjkt 0.227 0.209⁄⁄⁄

(0.139) (0.070)
Herfjkt �0.730 �0.073

(0.546) (0.052)
Year X class FE U U U U

MSA X class FE U U U U

Observations 1,864 1,864 41,262 41,262
Num. groups 140.00 140.00 1587.00 1587.00
Log likelihood �142174.66 �138097.89 �1342338.58 �1328971.60

Notes: All specifications are estimated by Poisson with Fixed Effects QML. The variable high enforce is equal to 1 if MSA j is in a high-enforcement
state in year t. A state is high-enforcement if it has a value of 5 or greater on the 13-point scale (0–12) based on Garmaise (2011). This variable is
time-invariant during our sample period, and so its effect is identified through the interaction with the time-varying variable diverse.
Robust standard errors clustered at the MSA-class level in parentheses.
⁄ p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.
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The original index constructed by Garmaise (2011) covers the
period 1992–2005. We extend the time period from 1975 to
1992 by collecting information on changes in non-compete laws.
The only change we identify for the period 1975–1992 occurs in
Michigan in 1985.19 Using this extended dataset, we construct a
dummy variable, high enforce, that equals one when the index value
is greater than or equal to six.20

We present regressions in which the diversity dummy is inter-
acted with the high enforcement dummy in Table 7. As expected,
19 Prior to 1985, Michigan outlawed non-compete agreements, but in 1985 it passed
legislation that enforced them. In the Garmaise (2011) data, the score for Michigan is
five. We assign an index equal to zero before 1985 and an index of five after 1985.

20 Following Stuart and Sorenson (2003) and Marx et al. (2010), we also generate a
state-level indicator variable with a value of one if the state generally precludes,
through statute or precedents, the enforcement of non-compete covenants. Also, with
this measure, the results strongly support the predictions of the model.
we find negative and significant coefficients on the interaction
terms, indicating that the effect of diversity is reduced by the pres-
ence of strong non-compete laws. The results are robust to intro-
ducing additional controls and to using the full sample that
includes small MSAs.21

In interpreting these results, it is important to notice that the
effect of non-compete clauses will depend on the relationship
between fit and competition. Low fit between an innovation and
the existing lab activity does not imply an absence of competition
between the spin-out and the large lab. Christensen (1997) pro-
vides a series of examples of companies not adopting new technol-
ogies because of opportunity costs (e.g., low initial profit margins
21 We cannot estimate the direct effect of highenforce on innovation because the
dummy is constant for all states over the entire sample period and thus collinear with
the MSA-class fixed effects. In non-reported regressions, we also find that the
mediating effect of non-compete enforcement holds in spin-out regressions.
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or low attractiveness to the company’s best customers) and even-
tually suffering from competing with these new technologies. If
ideas that do not fit also have a competitive effect on large labs,
then the innovation premium generated by diversity is lower when
non-compete agreements are strongly enforced.

5.2.3. Firm size diversity and large lab focus
We expect spin-outs to be formed to commercialize ideas that

are not a good fit with the main research activity of a large lab. This
implies that diversity has a larger impact on innovation the greater
the number of misfit ideas. Empirically, this suggests an additional
test to highlight the role of spin-outs as an important mechanism
linking R&D market structure and innovation: diversity should
have a differential impact on innovation depending on the likeli-
hood that ideas fit in large lab research trajectories. We expect
MSA diversity to have a greater impact on innovation when large
labs follow narrow research trajectories and thus their ideas are
more likely to be misfits. Similarly, when large labs follow broad
research strategies, few spin-outs will be formed and the presence
of small labs will be less beneficial to MSA innovation.

To construct a measure of narrowness for large lab research tra-
jectories, for each large lab we compute the share of patents
accounted for by the top four classes (C4 index) based on its patent-
ing activity across three-digit technology classes (the 426 different
USPTO n-classes) in a four-year window. For MSA-class-year cells
with multiple large labs, we construct the mean value of the index
for the labs in the cell. We generate an indicator variable, large lab
focus, that equals one when the MSA-class-year C4 index is above
the median relative to other MSAs within that class-year.

As an example of the variation in the data, consider chemical
patenting activity in St. Louis, MO and San Diego, CA in 1994.
Our data indicate the presence of only one large lab in both MSAs.
For the St. Louis lab, the top four three-digit technology classes
account for only 37% of its patenting, and the corresponding
MSA-class large lab focus indicator is equal to zero. For the San
Diego lab, the C4 index is approximately 85% and large lab focus
is equal to one for this MSA-class.

In Table 8, we interact this variable with the diversity measure.
Column (1) shows that the effect of diversity is stronger in MSA-
classes where large labs follow narrow research trajectories. Col-
umn (2) show that the correlation is robust to the inclusion of
additional controls. Columns (3) and (4) show that results are sim-
ilar in the larger sample that includes small MSAs.22
23 We also collect information on population across the different MSAs in 1995 from
6. Alternative explanations and robustness checks

There are many reasons why co-existence of large and small
firms may be associated with an increase in innovation. We first
assess several such reasons in light of their consistency with the
empirical correlations and provide additional results that help us
rule out alternative theories that might be consistent with a subset,
but not the whole set, of the correlations we report. We then
describe a variety of additional extensions and robustness checks
for interested readers in Appendix B.

6.1. Product market competition

Aghion et al. (2005) develop a theoretical model in which an
increase in the intensity of competition may strengthen or reduce
the incentives to innovate depending on whether firms compete
neck-and-neck or whether there is a leader and a laggard. In their
model, the steady state distribution of technology gaps generates
22 In non-reported regressions, we find that results are both quantitatively and
qualitatively similar when we exclude large lab patents from our dependent variable.
an inverted-U shape relationship between innovation and compe-
tition. Empirical evidence of this non-linear inverted-U relation-
ship was originally documented by Scherer (1967) and replicated
by Levin et al. (1985) and Aghion et al. (2005).

In light of these studies, concern remains that firm size diversity
may simply capture intermediate levels of product market rivalry.
This is because the co-existence of large and small firms generates
a market structure that is likely to be associated with lower com-
petitive rivalry than environments with only small firms. At the
same time, diversity may generate greater competition than mar-
ket structures with only a few large firms. Notice that an important
difference between the studies documenting an inverted-U rela-
tionship and our setting is that we conduct our analysis at the
MSA-technology class level and not at the industry level. We
expect most of the labs in our sample, especially the largest labs
in diverse MSAs, to compete industry-wide at the national and
international levels. Therefore, we do not expect industry-wide
product prices to be substantially affected by the local lab struc-
ture. Moreover, the theoretical framework of Aghion et al. (2005)
focuses on a duopoly and has no predictions on spin-out formation.
The inverted-U shape theory is also difficult to reconcile with our
findings that diversity has a greater impact when non-compete
agreements are not strongly enforced and when large labs operate
in few technology areas. As a further robustness check, in Column
(1) of Appendix Table B.3, we introduce the square term for the
Herfindahl concentration index. We control for polynomial terms
of the Herfindahl index to capture any non-linear effect between
regional market concentration and innovation. If the diversity
dummy is simply capturing intermediate values of concentration,
introducing such polynomial terms should substantially reduce
the correlation between diversity and innovation. Instead, we find
that results are very similar when we introduce the square of the
concentration index. In non-reported regressions we obtain similar
results with higher-order polynomials.
6.2. Agglomeration economies

Firm size diversity may be correlated with agglomeration econ-
omies that increase innovation productivity of labs in the MSA-
class (Ellison et al., 2010). In all our regressions, we control for
the number of inventors working in the MSA-class, but this linear
control can be inadequate if agglomeration economies arise only
for very large MSAs.

Notice that if only agglomeration generates the diversity pre-
mium, then it is not clear why its impact is greater when non-com-
pete agreements are not strongly enforced and when large labs
operate in few technology areas. Nonetheless, to further address
this concern, in Column (2) of Table B.3, we introduce polynomial
controls for the number of inventors in the MSA-class and the total
number of inventors in the MSA. If the diversity dummy is only
capturing agglomeration economies at the MSA or MSA-class level,
introducing these polynomial terms should substantially reduce
the correlation between diversity and innovation. Instead, we find
that results are very similar when we introduce the square terms.

In unreported regressions, we obtain similar results using
higher-degree polynomials. Results are also robust to controlling
more flexibly for the number of MSA inventors by introducing a
dummy for each decile of the distribution, and there is essentially
no change in the diversity coefficient in regressions that exploit the
sample of large MSAs.23
the US Census. Adding this control to the cross-section regressions does not affect our
estimates (coefficient = 0.396 with p-value <0.05). Results also show that our baseline
panel regression is robust to the inclusion of MSA-year effects that flexibly capture
agglomeration forces varying at the MSA level.



Table 8
Innovation, large lab focus and diversity.

(1) (2) (3) (4)
Sample: At-risk At-risk Full Full
Dependent variable: Weighted Weighted Weighted Weighted

Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

Diversejkt 0.118⁄⁄ 0.105⁄ 0.077 0.071
(0.060) (0.055) (0.062) (0.059)

large lab focusjkt �0.028 �0.020 �0.007 0.005
(0.030) (0.029) (0.031) (0.029)

Diversejkt X large lab focusjkt 0.096⁄⁄ 0.077⁄⁄ 0.146⁄⁄⁄ 0.121⁄⁄

(0.041) (0.039) (0.055) (0.050)
logInventorsjkt 0.613⁄⁄⁄ 0.507⁄⁄⁄ 0.284⁄⁄⁄ 0.190⁄⁄⁄

(0.070) (0.095) (0.032) (0.051)
LargeLabjkt 0.052 0.047 0.019 0.029

(0.069) (0.066) (0.037) (0.035)
logNumLabsjkt 0.164 0.203⁄⁄⁄

(0.133) (0.066)
Herfjkt �0.733 �0.070

(0.579) (0.051)
Year X class FE U U U U

MSA X class FE U U U U

Observations 1,864 1,864 41,262 41,262
Num. Groups 140.00 140.00 1587.00 1587.00
Log likelihood �142142.56 �139157.24 �1339608.32 �1327459.97

Notes: All specifications are estimated by Poisson with Fixed Effects QML. The variable large lab focus is equal to 1 if the C4 concentration ratio of the patenting activity across
three-digit technology classes of the large labs in MSA j, class k in year t is above the median value. This measure captures MSAs whose large labs patent in more focused
(narrow) technology areas.
Robust standard errors clustered at the MSA-class in parentheses.
⁄ p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.
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6.3. Large lab demand for innovation and licensees

Another competing explanation is that the role of large labs as
consumers of small lab innovations drives the correlation between
diversity and innovation. In other words, large labs generate a
demand for technologies that induces entry by small firms and
increases innovative output. Alternatively, the correlation may be
driven by the role of small labs as licensees of large lab innovations
that do not fit with large lab commercialization strategies.

While we expect these forces to have an impact on MSA innova-
tion (Agrawal and Cockburn, 2003), alone these alternative theo-
ries cannot explain the entire set of correlations that we observe
in the data. In particular, they are difficult to reconcile with the
strong association between diversity and spin-out formation and
with the finding that the effect of diversity is weaker when non-
compete agreements are strongly enforced. Finally, we should
expect large labs to boost innovation demand more strongly when
they operate in a variety of technology areas, which is the opposite
of what we find in our data.
6.4. Strategic patenting

Ziedonis (2004); Lanjouw and Schankerman (2004); and Noel
and Schankerman (2006) show that firms tend to expand their pat-
ent portfolios in response to potential hold-up problems generated
by ‘‘thickets’’ in the market for technologies. If regional firm size
diversity is associated with patent thickets, then the increase in
innovation that we register may be due to the presence of overlap-
ping and fragmented patent rights and not by the interplay of large
and small firm externalities.

Previous studies, however, have documented the strategic
patenting effect at the technology level and not at the regional
level. Because our regressions include technology class time trends,
they control for variation in ‘‘thickets’’ over time. Moreover, the
defensive patenting explanation would suggest an increase in the
number of patents but a decline in the quality of the patents in
the presence of regional diversity, which is the opposite of what
we find in our data. Finally, strategic patenting is hard to reconcile
with greater spin-out formation (in the same technology) and with
the stronger impact of diversity of innovation when non-compete
agreements are not enforced.
6.5. Innovation affects lab structure

There is the concern that the correlation between diversity and
innovation is due to changes in innovation outcomes rather than
driven by changes in lab structure. In other words, ‘‘reverse causal-
ity’’ may take place if potential future innovation generates expan-
sion of large labs and entry of small labs.

To address this concern, throughout our empirical analysis we
use a five-year lag for the control variables. The IV regressions pre-
sented in Table 9 also address this concern by exploiting exoge-
nous variation in MSA-class diversity. Finally, note that if an
innovation shapes the lab configuration, then we must explain
why its impact is greater when non-compete agreements are not
strongly enforced and when large labs operate in few technology
areas, neither of which are obvious.
6.6. Instrumental variable: lagged income tax rates

In Table 5, we introduce MSA-class fixed effects to control for
time-invariant heterogeneity affecting both local R&D market
structure and innovation. To identify the causal effect of diversity
on innovation, we also need to address the potential bias arising
from the correlation between time variant unobservable heteroge-
neity and firm size diversity. This correlation can arise in a variety
of ways. A positive shock in the value of the technologies produced
in the MSA-class may lead to an increase both in the entry of small
firms and in the likelihood of innovation. Similarly, capital market
shocks (e.g., the dotcom boom in the late 1990s) may facilitate



Table 9
Innovation and lagged income tax IV.

(1) (2) (3) (4)
Sample: At-risk At-risk At-risk At-risk
Estimation: OLS OLS First

stage
2SLS

Dependent
variable:

log
Weighted

log
Weighted

log
Weighted

Patentsjkt+5 Patentsjkt+5 Diversejkt Patentsjkt+5

Diversejkt 0.182⁄⁄⁄ 0.161⁄⁄⁄ 0.700⁄⁄

(0.049) (0.042) (0.346)
logInventorsjkt 0.505⁄⁄⁄ 0.353⁄⁄⁄ 0.216⁄ 0.230⁄⁄

(0.109) (0.124) (0.111) (0.116)
IncomeTaxjt 0.056⁄⁄⁄ 0.014 0.034⁄⁄⁄

(0.016) (0.021) (0.012)
CorpTaxjt �0.024⁄ �0.000 �0.023

(0.013) (0.024) (0.017)
IncomeTaxjt�3 0.057⁄⁄

(0.024)
Year X class FE U U U U

MSA X class FE U U U U

Observations 1835 1606 1606 1597
Num. groups 149.00 149.00 149.00 140.00
First stage F-

statistic
17.52

R2 0.94 0.94 0.41 0.93

Notes: Column 1 replicates the specification estimated in Table 3, Column 4 with
OLS. This specification serves as a baseline for results when estimated with linear
least squares. Column 2 introduces two controls. IncomeTaxjt is the personal income
tax in year t in MSA j’s state and CorpTaxjt is the corporate income tax in year t in
MSA j’s state. Column 3 presents the first stage regression with diverse as the
dependent variable. IncomeTaxjt�3 is the personal income tax in year t � 3 in MSA j’s
state. Column 4 presents 2SLS results with diverse instrumented by IncomeTaxt-3.
Block (state-level) bootstrapped standard errors in parentheses.
⁄ p < 0:10.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.

24 The IV generates exogenous variation in the presence of small firms that is only
one side of regional diversity. In our data, most of the variation in diversity is driven
by variation in the presence of small labs in regions where large labs are present.

25 This data set contains income tax rates by year and state for an additional $1000
of income for a representative household (with $500,000 of wage income split evenly
between husband and wife).

26 For the period 1978–1998, our data indicate 253 changes in state-level income
tax. About half of the changes (128 events) are tax hikes and with an average increase
of 0.82 percentage points. For the tax cuts (125 events), the average reduction is 1.01%
points.

27 We obtain very similar estimates with a five-year lag for income taxes. Similarly,
including taxes in both year t � 3 and year t � 5 as instruments leads to similar
results. Results are qualitatively similar with the logarithm of the tax variables.
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expansion of large firms and the entry of new firms as well as
increase the overall investment in R&D. Human capital shocks
(e.g., an increase in the H1B visa cap) may also lead to an inflow
of scientists in the MSA that may cause a change in both lab struc-
tures and innovation. Similarly, local productivity shocks due to
availability of information and communication technologies
(Agrawal and Goldfarb, 2008; Bloom et al., 2012) may impact both
the organization of R&D labor and innovation. Finally, successful
innovation may lead empire-building CEOs to engage in takeovers
and eliminate small firms from the MSA-class.

To address these endogeneity concerns, we need an instrumen-
tal variable that affects firm size diversity but does not directly
affect innovation. We exploit variation in income tax rates over
the sample period as an instrument for diversity. Many papers
have documented a positive relationship between income tax rates
and self-employment (among others, see Long, 1982; Poterba,
1989; Bruce, 2000; Gentry et al., 2004; Cullen and Gordon, 2007).
A common explanation for this finding is that self-employment
offers tax-sheltering opportunities through the deduction of cer-
tain types of expenses (Cullen and Gordon, 2007). This idea is also
discussed in Lerner (2012), who argues that economists have
widely accepted the idea that high income tax rates spur corporate
employees to found companies.

If high income taxes induce some scientists to establish their
own small labs, then we should expect income taxes to be posi-
tively correlated with diversity. Additionally, as long as states do
not change income taxes in response to innovation shocks, we
should expect variation in income tax rates to be uncorrelated with
unobservable heterogeneity affecting innovation. Nonetheless, a
possible problem with this instrument is that high income tax
rates may also affect spin-out formation, thus complicating the
interpretation of the estimates. To address this concern, we control
for both contemporaneous personal income and corporate tax
rates exploiting the lagged (3 years) personal income tax rates as
an instrument. Intuitively, we expect income tax rates in year
t � 3 to be correlated with market structure (diversity) in year t
because of their effect on past entry decisions. At the same time,
because we control for current personal income and corporate
taxes, we expect lagged income taxes to be uncorrelated with the
current decision to form a spin-out and with innovation in year
t þ 5.24

Following Galasso et al. (2013), we obtain information on state
and federal income and capital gain taxes from the NBER Taxsim
database described in Feenberg and Coutts (1993).25 Our main
tax variable is the combined (state plus federal) tax rate that a rep-
resentative household faces in a specific MSA in a given year. Appen-
dix Table B.1 illustrates the variation of income tax rates averaged
across states for five-year time periods. There is a substantial decline
in tax rates in the late 1980s and an increase in the early 1990s. The
differences between the lowest and highest also suggest variation
across US states.26

We present estimates of the instrumental variable regressions
in Table 9. Following Bertrand et al. (2004), we block bootstrap
the standard errors at the state level to account for serially corre-
lated unobserved state shocks. Column (1) reports the baseline
OLS estimates with diversity non-instrumented. The coefficient
on the diversity dummy implies a 20% increase in innovation that
is very similar to the effect estimated with the baseline Poisson
model. Column (2) introduces controls for personal income and
corporate taxes. The magnitude of the diversity coefficient dimin-
ishes slightly to 0.161 but remains highly significant. Column (3)
presents coefficients of the first-stage regression indicating that
lagged income taxes are positively associated with diversity. The
estimated impact of taxes on diversity is large: a 10% point
increase (e.g., moving from a 40% rate to a 50% rate) in lagged
income tax rates increases the probability of being diverse by
approximately 50%. This is not surprising given that previous liter-
ature has documented a substantial impact of taxes on entrepre-
neurship (e.g., Cullen and Gordon, 2007 find that a five
percentage point income tax cut leads to a 40% fall in entrepre-
neurial risk taking). The regression shows that current income
and corporate taxes are not correlated with diversity. In unre-
ported regressions, we also find no statistically significant correla-
tion between spin-out formation and lagged income taxes (p-
value = 0.34). Together, these results suggest that lagged income
taxes may serve as a valid instrument for diversity. Column (4)
reports the second-stage estimates with the diversity dummy
instrumented by lagged income taxes. Qualitatively, we find that
diversity is still positively associated with innovation. The coeffi-
cient of diversity is more than three times greater than the one
in the OLS estimate, but the standard error is also larger and the
two confidence intervals overlap.27 In unreported regressions, we
also find that instrumenting diversity with lagged income taxes
has a quantitatively and qualitatively similar impact on spin-out
formation.
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While most of the previous literature studying the impact of
taxes on entrepreneurship focuses only on income tax rates, it is
plausible that the effect of income taxes on entry depends on
non-income taxes that new firms are required to pay. To this
end, in unreported regressions we control for capital gains tax
rates. Because reductions in capital gain taxes may be associated
with other pro-business policies that affect innovation, we include
this variable on both stages of the IV regressions. We find that
results are robust to the inclusion of capital gains taxes. The coef-
ficient on diversity is still about three times larger than the one in
the OLS estimates, suggesting that endogeneity generates a down-
ward bias.28 Results are similar if we introduce additional controls,
such as the number of labs in the MSA-class, lagged corporate tax
rates, gross state product per capita, or the Herfindhal index.
6.6.1. Additional robustness checks
We conduct a number of additional empirical exercises to doc-

ument the robustness of our main empirical results to alternative
specifications and measurement strategies.

First, Appendix Table B.2 provides evidence supporting the cor-
relation between diversity and innovation in a series of regressions
that distinguish between the direct effect of the presence of a large
lab, the presence of numerous small labs, and their interaction.
Columns (1) and (2) show that the presence of a large lab has no
significant impact on innovation, whereas the presence of numer-
ous small labs is associated with a greater number of cites per
inventor. Columns (3) and (4) show that the two direct effects
are not significant once we introduce the interaction between the
two variables (the diversity dummy). These results confirm that
the co-existence of at least one large lab and numerous small labs
boosts innovation, not the presence of only one of these two
factors.

Concern remains that California MSAs, accounting for a large
fraction of our switches in diversity, drive the results. In Column
(3) of Appendix Table B.3, we show that we obtain similar results
using the smaller sample of non-California MSAs.29

We also examine the technology specificity of the small firm
externality. Specifically, we look at whether the diversity effect is
driven by the presence of numerous small firms in the same
MSA-class of a large lab compared to the presence of many small
labs in the same MSA of a large lab (irrespective of class). Column
(4) of Appendix Table B.3 exploits a diversity measure that uses a
small firm number cutoff at the MSA level rather than the MSA-
class level. The correlation between this alternative diversity mea-
sure and innovation is small and not statistically significant, sug-
gesting that externalities tend to be technology-specific.30

We use patent data to construct the diversity measure, which
may be associated with measurement error. To address this con-
cern, we use an alternative diversity measure based on County
Business Patterns Census data that reports detailed information
on firm size across US MSAs. Because these data are available only
for a sub-period of our panel, we focus on 1995 and construct a
dummy (diversecbp) that equals one if the MSA-class has at least
one establishment with more than 1000 employees and a number
28 In the first stage, we notice that capital gains taxes have a negative impact on
diversity. This is intuitive because high capital gain taxes reduce the profits that can
be made by selling firm assets and shares and therefore reduce self-employment
incentives. Moreover, high capital gain taxes may reduce the supply of venture
capital, which in turn will reduce entry of new firms.

29 To conduct this exercise, we rescale the diversity measure using the distributions
of large lab size and of small firms in this new sample.

30 We also examine whether MSA-classes with numerous small firms benefit from
the existence of large labs operating in the same technology area but located in
different MSAs in the same state. We find that this is not the case: co-existence of
large and small labs is associated with an innovation premium only if large and small
labs are located in the same MSA-class.
of establishments with 5–49 employees above the 99th percentile.
Column (5) of Table B.3 shows that results are robust to using this
alternative diversity measure.31

In Appendix Table B.4, we show that results are similar if we
employ different measures of diversity. We start by changing the
definition of a large lab, moving its cutoff to the 98th and 99th per-
centile of the size distribution. We also alter the definition of a
small lab, from exploiting all the labs below the 75th percentile
to using labs in the 50th–75th range and the 50th–97th range.
Results are similar if we reduce the threshold level of small labs
in the diversity measure by 20% and 30% (from 139 to 111 and
97, respectively).

In unreported regressions, we also alter the definition of the
large MSA sample. In the previous tables, we use the entire sample
and MSA-class years where the number of inventors is above 471
(the minimum required to have diversity). Results are robust to
considering MSA-classes that have more than 471 inventors for
the entire sample period or to having an MSA-class entering the
sample when it passes the 471 threshold. Finally, results are robust
to dropping technology class 6 (Miscellaneous).
7. Conclusion

Our results suggest that the way in which R&D labor is orga-
nized in a region is associated with its dynamism and growth, at
least insofar as this is captured by rates of patenting. Our findings
point to a potentially important role for market structure in driving
the performance of local innovation economies. Like Aghion et al.
(2005) but on a different dimension (R&D labor market rather than
product market), we find that extreme structures are not optimal
for innovation.

The implications for policy makers and managers are subtle.
The returns to particular regional innovation policies (e.g., attract-
ing ‘‘anchor tenants’’ or cultivating entrepreneurial ventures) are
state dependent. In other words, our results suggest that there is
no universal ‘‘best’’ policy, but rather the optimal policy depends
on the organizational structure of R&D labor in a region at a given
point in time. In simplistic terms, a region with large firms but few
young entrepreneurial firms may benefit more from policies
designed to cultivate new ventures rather than to attract more
large firms, whereas regions without local large firms may benefit
most from attracting those.32 Our results also suggest that manag-
ers at large firms may benefit from taking into account the structure
of local R&D manpower because it has important effects both on the
mobility of R&D employees and on the innovative performance of
firms. For example, in regions with many young entrepreneurial ven-
tures, employee retention may require more attention. Also, firms
that are located in regions that are more diverse have a greater
potential for inventions to be commercialized outside the firm. That
has both positive and negative implications for managers. On the
positive side, managers have more options for commercialization
but on the negative side it may be more costly to keep inventions
inside the firm.

Following an approach that is common in the empirical litera-
ture on the determination of industries’ innovative activity
(Aghion et al., 2005; Bloom et al., 2010; Cohen, 2010), we examine
the interplay between firm size diversity and innovation by
31 We obtain similar results using spin-outs as the dependent variable. There is no
change in the diversity coefficient if we control for the Census measure of the number
of employees in the MSA-class.

32 An additional implication of our results is that policies focused on facilitating
spin-out formation (e.g., amending non-compete enforcement laws) also may have a
beneficial effect on regional innovation. It remains for future research to study how
different policies may interact with the organization of R&D labor organization and
affect regional innovation.
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performing comparative statics in the regional organization of R&D
labor. Because innovation and regional lab structure are mutually
endogenous, our empirical analysis exploits fixed effects, lagged
dependent variables, and instrumental variables to identify the
impact of diversity on innovation. We leave for future research
an analysis of the impact of innovation on R&D labor structure,
wages, and their evolution over time.

Our results also point to additional opportunities and chal-
lenges for further research. While our characterization of market
structure is richer than one-dimensional measures such as the Her-
findahl index or concentration ratios, it still represents only a first
step. We note that even on the somewhat easier turf of the product
market, decades of empirical research have yet to establish robust
relationships between traditional measures of market structure
and outcomes such as price–cost margins. Furthermore, while we
distinguish between incumbents’ and entrants’ contributions to
overall innovation activity, this represents only initial progress
towards understanding the impact of local innovation market
structure on the intensive versus extensive margin of innovation
by different types of firms.

Finally, our empirical analysis is sparing in its use of explana-
tory variables and also relies heavily on only one noisy measure
of innovative output, patents. We would prefer to capture other
factors that potentially directly affect innovation performance,
such as Glaeser-type ‘‘amenities’’, rather than through fixed effects.
Linking the types of patent statistics used here to other sources,
such as demographics or data on the production economy, may
help with external validation as well as provide the basis for a
richer investigation of local innovation markets.
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33 This is equivalent to assuming an innovation production function that is
quadratic in lab size, i.e. the expected number of innovations in a lab of size Sj is
S2

j =D. We impose this functional form for tractability but results hold under milder
assumptions on the magnitude of the scale economies. In particular, diversity strictly
maximizes innovation if large lab scientists discover an innovation with probability
xSj=Dþ ð1� xÞ=D for any x > 0. Moreover, diversity weakly maximizes innovation
even if there are no scale economies (i.e. when x ¼ 0).

34 A possible micro-foundation of this cost can be provided building on the model of
Helsley and Strange (2002) where a large number of small labs generates a dense
network of input suppliers that facilitates spin-out formation. An alternative
interpretation for kðNÞ is that in the presence of small firms, the MSA develops a
culture of entrepreneurship that induces employees of large labs to leave their
employer and start their own firms (Glaeser and Kerr, 2009).

35 Empirically, this implies that greater commercialization may not be associated
with greater patenting (because orphan ideas may also be patented) but is likely to be
associated with greater citation-weighted patent counts (because orphan ideas do not
generate new research trajectories).
Appendix A. Theoretical model

Consider an MSA with T scientists divided into J large labs and N
small labs. A small lab employs only one scientist and cannot com-
mercialize multiple innovations. Large labs employ at least two sci-
entists and have the capability to commercialize more than one
innovation. Moreover, each large lab j has an existing research
activity that generates profits kj. We indicate as Sj > 1 the number
of scientists working in large lab j and denote with SL ¼

PJ
i¼1Sj the

total number of scientists working in large labs. Notice that T ¼
SL þ N.

We assume there are economies of scale in innovation: each
small lab discovers an innovation with probability 1=D, and each
scientist in a large lab of size Sj discovers an innovation with prob-
ability Sj=D with D P T.33

If commercialized in a small lab, an innovation generates profits
equal to p with 1 P p > 0. For a large lab, the profits from the
commercialization of an innovation discovered internally are equal
to pþ a. The parameter a 2 R captures the ‘‘fit’’ of the innovation
with the existing research activity of the lab (Cassiman and
Ueda, 2006). A positive value for a may arise because of scale or
scope economies. Conversely, a negative value for a indicates the
existence of coordination costs between the innovation and the
existing research activity. Alternatively, a < 0 may indicate the
opportunity cost of deploying resources from the existing research
activity. Notice that an innovation is profitable for a large lab j if
the profits from commercialization ðpþ aþ kjÞ exceed those with-
out commercialization ðkjÞ, i.e., when pþ a > 0.

A scientist working in a large lab can implement the discovered
innovation outside the lab by opening a new small lab (spin-out).
The cost of opening a new lab is equal to kðNÞ with
kð0Þ > 1; k0ðNÞ < 0, and limN!1 kðNÞ ¼ 0. The entry cost is decreas-
ing in N because the presence of other small labs generates a posi-
tive externality.34

The timing of the game is as follows. In the first period, innova-
tions are discovered. In the second period, large lab scientists nego-
tiate with their labs about the destiny of their innovations. The
possible strategies are: (i) internal commercialization (with profits
pþ aþ kj), (ii) spin-out formation (with profits p� kðNÞ), and (iii)
non-commercialization (with profits kj). In the third period, spin-
outs are formed and ideas are commercialized.

Commercializing an innovation (internally or through a spin-
out) may require the development of subsequent technologies nec-
essary to extract profits from the idea. If this occurs, commercial-
ized innovations generate new research trajectories. Conversely,
the non-commercialization strategy produces orphan ideas that
do not generate follow-on research.35

To solve the bargaining problem at period 2, we assume that the
lab makes a take-it-or-leave-it offer to the scientist.

Proposition 1. Established small labs commercialize internal inno-
vations with p P 0. Large labs commercialize internal innovations
with pþ a P 0 and a P �kðNÞ. A spin-out is formed if p P kðNÞ and
a 6 �kðNÞ.
Proof. In a small lab, it is efficient to commercialize an innovation
if p P 0. To avoid spin-out formation, large labs need to offer the
scientist p� kðNÞ. This implies that spin-outs are formed if
pþ a� ðp� kðNÞÞ 6 0 or a 6 �kðNÞ. h

In equilibrium, when the cost of establishing a spin-out is large,
scientists do not find it profitable to form a spin-out and thus the
large lab commercializes the innovations if the fit with the estab-



Table B.1
Income tax rates.

Period Mean Std. dev Min. Max.

1977–1979 52.80 2.26 50 59.9
1980–1984 56.68 1.95 50 56.9
1985–1989 42.02 9.67 28 56.25
1990–1994 38.27 5.46 28 48.15
1995–1999 44.03 1.84 40.79 46.89
2000–2005 40.99 2.63 36.05 46.28
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lished business is high enough. When the cost of forming a spin-
out is low (k 6 p), then inventors form spin-outs to commercialize
innovations that are not a good fit with the existing research
activity.

We assume that a is distributed with a continuous and differen-
tiable cumulative distribution FðaÞ. Under this assumption, a spin-
out is formed with a positive probability as long as p P kðNÞ that is
satisfied if N P N, where N is defined as p� kðNÞ ¼ 0. Therefore, an
innovation of a large lab scientist will generate a spin-out with
probability:

Prðspin� outÞ ¼
F �kðNÞð Þ if N P N

0 if N < N

�
Similarly, an innovation discovered in a large lab is commercialized
(either internally or through spin-outs) with probability:

PrðComm: from LargeÞ ¼
1 if N P N

1� Fð�pÞ if N < N

�
whereas each scientist in a small lab discovers an innovation with
probability 1=D. Because in large lab j each scientist discovers an
innovation with probability Sj=D, the expected number of innova-
tions in lab j is S2

j =D. Exploiting these results, we obtain the follow-
ing proposition.

Proposition 2. The expected number of spin-outs, NS, is maximized
in the presence of one large lab and N P N. If T is large enough, then
the expected number of commercialized innovations, NI, is maximized
in the presence of one large lab and N small labs.
36 For simplicity, we do not consider: (i) cannibalization and complementarity
effects between the innovations developed by the spin-outs and those commercial-
ized by the large lab and (ii) imperfect IP protection. In a previous draft of the paper,
we showed it possible to obtain similar results in a model with cannibalization,
complementarity, and imperfect IP protection as in Gans and Stern (2000) and in a
model where spin-outs are formed because of disagreements between large lab
scientists as in Klepper and Thompson (2010). Intuitively, as long as the IP regime
allows spin-outs to be profitable, the presence of local externalities encourages spin-
Proof. We denote with NS the expected number of spin-outs in the
MSA.

NS ¼
XJ

j¼1

S2
j

D
Prðspin� outÞ ¼

S2
L
D HSF �kðNÞð Þ if N P N

0 if N < N

(
ð2Þ

where HS ¼
PJ

j¼1 Sj=SL
� �2 is the Herfindahl concentration index of

large labs. Differentiation of (2) shows that NS is maximized when
HS ¼ 1, which implies that at most one large lab will be present.
Because there are no spin-outs if N < N, the number of small labs
that maximizes spin-out formation is the largest between N and
N�, where we define N� as

N� ¼ arg max
N

uðNÞ

where uðNÞ � ðT�NÞ2
D Fð�kðNÞÞ. We now consider the total innovation

activity in the MSA. The total number of commercialized innova-
tions is:

NI ¼
XJ

j¼1

S2
j

D
PrðComm: from LargeÞ þ N

D

¼
S2

L
D HS þ N

D if N P N

S2
L
D HSð1� Fð�pÞÞ þ N

D if N < N

8><>:
ð3Þ

NI increases in HS so it is maximized when HS ¼ 1. Consider
now the case in which N < N. Evaluated at HS ¼ 1, NI has the
following functional form:

gðNÞ ¼ ðT � NÞ2

D
ð1� Fð�pÞÞ þ N

D

that is decreasing in N for T large enough. When N P N and HS ¼ 1,
NI can be written as:

zðNÞ ¼ ðT � NÞ2

D
þ N

D

that is also decreasing in N. It is easy to see that zðNÞ > g Nð Þ, so
innovation is maximized with diversity if zðNÞ > gð0Þ, which we
can rewrite as:

ðT � NÞ2 þ N > T2ð1� Fð�pÞÞ

or

T TFð�pÞ � 2N½ � > �N2 � N

that is satisfied for T large enough. h

Proposition 2 indicates that the presence of large and small labs
are complementary forces affecting both innovation and spin-out
formation. Intuitively, a greater concentration among large labs
increases the number of ideas generated and the expected number
of spin-outs. A larger pool of existing small labs facilitates the for-
mation of spin-outs and thus allow ideas that are not a ‘‘good fit’’
for a large lab to be commercialized. There is a positive interaction
between the two effects. A large number of small labs has no effect
on spin-out formation in the absence of large labs. At the same
time, an increase in large lab concentration generates a greater
number of spin-outs in the presence of small lab externalities.36

Let us label an MSA as diverse if there are N P N small labs and
only one large lab. By showing that spin-out formation and the
number of commercialized innovations are maximized with
diverse MSA configurations, Proposition 2 implies that any non-
diverse MSA configuration is dominated by at least one diverse
configuration in terms of spin-out formation or innovation.

A.1. Comparison of diverse and non-diverse MSAs

Take an arbitrary ‘‘diverse’’ MSA with N P N small labs and one
large lab of size ðT � NÞ. We first show that this configuration gen-
erates more commercialized ideas than any non-diverse MSA with
N < N. Notice that when N < N, we maximize the amount of com-
mercialized ideas by allocating all scientists to a single large lab:
T2ð1� Fð�pÞÞ=D. This amount of commercialized ideas is lower
than the one in the diverse MSA if:

ðT � NÞ2 þ N > T2ð1� Fð�pÞÞ

that is satisfied for T large enough. Consider now a non-diverse MSA
with N P N and multiple large labs, each of a size not exceeding
T � N. Among all these MSAs, we maximize the amount of commer-
cialized innovation by allocating ðT � N � 1Þ to one large lab,
ðN � NÞ scientists to a second large lab, and N scientists to small
labs. The amount of commercialized ideas of this MSA is lower than
the one in the diverse MSA if:
out formation (formal proofs available upon request).



Table B.2
Innovation and diversity – robustness with levels.

(1) (2) (3) (4)
Sample: Full Full Full Full
Estimation: QML QML QML QML
Dependent variable: Weighted Weighted Weighted Weighted

Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

largelabjkt �0.002 0.012 0.031
(0.039) (0.035) (0.032)

Smallthreshjkt 0.146⁄⁄ �0.080 �0.064
(0.064) (0.068) (0.067)

largelabjkt � Smallthreshjkt
a 0.227⁄⁄⁄ 0.193⁄⁄

(0.083) (0.077)
logInventorsjkt 0.288⁄⁄⁄ 0.292⁄⁄⁄ 0.290⁄⁄⁄ 0.191⁄⁄⁄

(0.034) (0.034) (0.033) (0.051)
logNumLabsjkt 0.211⁄⁄⁄

(0.070)
herfjkt �0.063

(0.051)
Year X class FE U U U U

MSA X class FE U U U U

Observations 41,262 41,262 41,262 41,262
Num. groups 1587 1587 1587 1587
Log likelihood �1356561.51 �1346174.30 �1346108.58 �1333246.93

Notes: Robust Standard errors clustered at MSA-class in parentheses.
a This interaction is the same as our diversity measures, diversejkt.
� p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.
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Table B.3
Additional robustness checks I.

(1) (2) (3) (4) (5)
Sample: Full Full No californiaa Full Full, 1995
Dependent variable: Weighted Weighted Weighted Weighted Weighted

Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt=2000

Diversejkt 0.123⁄⁄ 0.119⁄⁄ 0.095⁄⁄⁄

(0.057) (0.052) (0.035)
Diversemsajt 0.031

(0.042)
Diversecbpjkt=1995 0.279⁄⁄⁄

(0.099)
logInventorsjkt 0.225⁄⁄⁄ 0.192⁄⁄⁄ 0.250⁄⁄⁄ 0.286⁄⁄⁄ 0.916⁄⁄⁄

(0.054) (0.058) (0.039) (0.034) (0.043)
logNumLabsjkt 0.177⁄⁄

(0.071)
herfjkt �0.496⁄⁄⁄

(0.18)

herf2
jkt

0.407⁄⁄

(0.162)

logInventors2
jkt

�0.010⁄

(0.006)
logMSAInventorsjt 0.182⁄⁄⁄

(0.052)

logMSAInventors2
jt

0.018⁄⁄⁄

(0.006)
Year X class FE U U U U

MSA X class FE U U U U

Class FE U

Observations 41,262 41,262 38,792 41,262 1,608
Num. groups 1587.00 1587.00 1492.00 1587.00
Log likelihood �1331011.70 �1290636.07 �1193672.34 �1356126.58 �172699.85

Notes: Diversecbpt corresponds to a diversity measure constructed with data from the Census County Business Patterns dataset (1995). logMSAInventorst corresponds to the log
of inventors in MSA j across all classes k.
Robust standard errors clustered at the MSA-class in parentheses.

a We construct diverse in this specification using the rescaled distribution of firms outside California.
⁄ p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.



Table B.4
Additional robustness checks II.

(1) (2) (3) (4) (5) (6)
Sample: Full Full Full Full Full Full
Diverse definition: LargeLabs LargeLabs Small Labs Small Labs # Small Labs # Small Labs

>98th p >99th p 50th–75th p 50th–97th p >111 >97
Dependent variable: Weighted Weighted Weighted Weighted Weighted Weighted

Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

Diversejkt 0.147⁄⁄ 0.134⁄⁄ 0.140⁄⁄ 0.135⁄⁄ 0.116⁄ 0.110⁄

(0.064) (0.068) (0.058) (0.061) (0.062) (0.058)
logInventorsjkt 0.292⁄⁄⁄ 0.292⁄⁄⁄ 0.291⁄⁄⁄ 0.291⁄⁄⁄ 0.291⁄⁄⁄ 0.290⁄⁄⁄

(0.034) (0.034) (0.034) (0.034) (0.034) (0.034)
Year X class FE U U U U U U

MSA X class FE U U U U U U

Observations 41,262 41,262 41,262 41,262 41,262 41,262
Num. groups 1587.00 1587.00 1587.00 1587.00 1587.00 1587.00
Log likelihood �1346082.01 �1348483.79 �1346467.99 �1347062.73 �1348758.11 �1349537.11

Notes: Robust standard errors clustered at MSA-class in parentheses.
⁄ p < 0:1.
⁄⁄ p < 0:05.
⁄⁄⁄ p < 0:01.
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ðT � NÞ2 þ N > ðT � N � 1Þ2 þ ðN � NÞ2 þ N

2ðT � NÞ > ðN � NÞ2 � ðN � NÞ þ 1

that is satisfied when T is large enough. This shows that the diverse
MSA dominates all the non-diverse MSAs with N P N and multiple
large labs, each of a size not exceeding T � N.

We now consider spin-out formation. Because no spin-out takes
place if N < N, the diverse MSA generates more spin-outs than all
the non-diverse MSA with N < N. Consider now a non-diverse
MSA with eN 2 ½N;N� small labs and multiple large labs, each of a
size not exceeding T � N. The MSA generates the maximum
amount of spin-outs when we allocate ðT � N � 1Þ scientists to
one large lab and ðN � eNÞ scientists to a second large lab. This con-
figuration will generate less spin-outs than a diverse MSA if

ðT � NÞ2Fð�kðNÞÞP ½ðT � N � 1Þ2 þ ðN � eNÞ2�Fð�kðeNÞ
that is satisfied for T large enough because Fð�kðNÞÞP Fð�kðeNÞ.
This shows that the diverse MSA dominates all the non-diverse
MSAs with eN 2 ½N;N� small labs.
A.2. Relaxing the definition of diversity

Take an arbitrary ‘‘diverse’’ MSA with N P N small labs and
multiple large labs of size Sj with j ¼ 1; . . . ; J. We show that this
configuration generates more commercialized ideas than any
non-diverse MSA with N < N. Notice that when N < N, we obtain
the maximum amount of commercialized ideas by allocating all
scientists to a single large lab: T2ð1� Fð�pÞÞ=D. The amount of
commercialized ideas is lower than the one in the diverse MSA if:X

j

S2
j þ N > T2ð1� Fð�pÞÞ: ð4Þ

Call k the largest lab and notice that S2
k þ N <

P
jS

2
j þ N. Then a suf-

ficient condition to have (4) satisfied is:

S2
k þ N > T2ð1� Fð�pÞÞ

that is satisfied if Sk > S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2ð1� Fð�pÞÞ � N

q
.

Appendix B. Additional tables

Tables B.1, B.2, B.3, and B.4.
References

Agarwal, R., Echambadi, R., Franco, A.M., Sarkar, M., 2004. Knowledge transfer
through inheritance: spin-out generation, development, and survival. The
Academy of Management Journal 47 (4), 501–522.

Aghion, P., Bloom, N., Blundell, R., Griffith, R., Howitt, P., 2005. Competition and
innovation: an inverted-u relationship. The Quarterly Journal of Economics 120
(2), 701–728.

Agrawal, A., Cockburn, I., 2003. The anchor tenant hypothesis: exploring the role of
large, local, R&D-intensive firms in regional innovation systems. International
Journal of Industrial Organization 21 (9), 1227–1253.

Agrawal, A., Goldfarb, A., 2008. Restructuring research: communication costs and
the democratization of university innovation. American Economic Review 98
(4), 1578–1590.

Anton, J., Yao, D., 1995. Start-ups, spin-offs, and internal projects. Journal of Law,
Economics and Organization 11, 362–378.

Arora, A., Gambardella, A., 1994. The changing technology of technological change:
general and abstract knowledge and the division of innovative labour. Research
Policy 23 (5), 523–532.

Bertrand, M., Duflo, E., Mullainathan, S., 2004. How much should we trust
differences-in-differences estimates? The Quarterly Journal of Economics 119
(1), 249–275.

Bloom, N., Propper, C., Sailer, S., Reenen, J.V., 2010. The Impact of Competition on
Management Quality: Evidence from Public Hospitals. NBER Working Paper #
16032.

Bloom, N., Sadun, R., Reenen, J.V., 2012. Americans do IT better: US multinationals
and the productivity miracle. American Economic Review, Forthcoming 102 (1),
167–201.

Bruce, D., 2000. Effects of the united states tax system on transitions into self-
employment. Labour Economics 7, 545–574.

Caballero, R.J., Jaffe, A.B., 2002. How high are the giants’ shoulders: an empirical
assessment of knowldge spillovers and creative destruction in a model of
economic growth. In: Jaffe, A.B., Trajtenberg, M. (Eds.), Patents, Citations, and
Innovations: A Window into the Knowledge Economy. MIT Press, Cambridge.

Cassiman, B., Ueda, M., 2006. Optimal project rejection and new firm start-ups.
Management Science 52, 262–275.

Chatterji, A.K., 2009. Spawned with a silver spoon? entrepreneurial performance
and innovation in the medical device industry. Strategic Management Journal
30 (2), 185–206.

Chinitz, B., 1961. Contrasts in agglomeration: New York and Pittsburgh. The
American Economic Review 51 (2), 279–289.

Christensen, C., 1997. Innovator’s Dilemma: When New Technologies Cause Great
Firms to Fail. Harvard Business Press Books.

Cockburn, I.M., Henderson, R.M., 2001. Scale and scope in drug development:
unpacking the advantages of size in pharmaceutical research. Journal of Health
Economics 20 (6), 1033–1057.

Cohen, W.M., 2010. Fifty years of empirical studies of innovative activity and
performance. In: Hall, B.H., Rosenberg, N. (Eds.), Handbook of The Economics of
Innovation, vol. 1. North-Holland, pp. 129–213.

Cohen, W.M., Klepper, S., 1996. A reprise of size and r&d. Economic Journal 106
(437), 925–951.

Cullen, J.B., Gordon, R.H., 2007. Taxes and entrepreneurial risk-taking: theory and
evidence for the US. Journal of Public Economics 91, 1479–1505.

Delgado, M., Porter, M.E., Stern, S., 2010. Clusters and entrepreneurship. Journal of
Economic Geography 10 (4), 495–518.

Ellison, G., Glaeser, E., Kerr, W., 2010. What causes industry agglomeration?
Evidence from coagglomeration patterns. American Economic Review 100 (3),
1195–1213.

http://refhub.elsevier.com/S0094-1190(14)00026-6/h0025
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0025
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0025
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0030
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0030
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0030
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0035
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0035
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0035
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0040
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0040
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0040
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0045
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0045
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0050
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0050
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0050
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0055
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0055
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0055
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0060
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0060
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0060
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0065
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0065
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0070
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0070
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0070
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0070
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0075
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0075
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0080
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0080
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0080
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0085
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0085
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0090
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0090
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0095
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0095
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0095
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0100
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0100
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0100
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0105
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0105
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0110
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0110
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0115
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0115
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0120
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0120
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0120


A. Agrawal et al. / Journal of Urban Economics 81 (2014) 149–165 165
Feenberg, D., Coutts, E., 1993. An introduction to the taxsim model. Journal of Policy
Analysis and Management 12 (1), 189–194.

Feldman, M.P., Audretsch, D.B., 1999. Innovation in cities: science-based diversity,
specialization and localized competition. European Economic Review 43 (2),
409–429.

Franco, A., Filson, D., 2006. Spin-outs: knowledge diffusion through employee
mobility. RAND Journal of Economics 37 (4), 841–860.

Galasso, A., Schankerman, M., Serrano, C., 2013. Trading and enforcing patent rights.
RAND Journal of Economics 44, 275–312.

Galbraith, J.K., 1952. American Capitalism: The Concept of Countervailing Power.
Houghton Mifflin, New York.

Gans, Joshua, D.H., Stern, S., 2002. When does start-up innovation spur the gale of
gale of creative destruction? RAND Journal of Economics 33, 571–586.

Gans, J., Stern, S., 2000. Incumbency and R&D incentives: licensing the gale of
creative destruction. Journal of Economics and Management Strategy 9, 485–
511.

Garmaise, M.J., 2011. Ties that truly bind: noncompetition agreements, executive
compensation, and firm investment. Journal of Law, Economics, and
Organization 27 (2), 376–425.

Gentry, W., Hubbard, G., 2004. Success Taxes, Entrepreneurial Entry and Innovation.
NBER Working Paper #10551.

Geroski, P.A., 1990. Innovation, technological opportunity, and market structure.
Oxford Economic Papers 42 (3), 586–602.

Glaeser, E.L., Kallal, H.D., Scheinkman, J.A., Shleifer, A., 1992. Growth in cities.
Journal of Political Economy 100 (6), 1126–1152.

Glaeser, E.L., Kerr, W.R., 2009. Local industrial conditions and entrepreneurship:
how much of the spatial distribution can we explain? Journal of Economics &
Management Strategy 18 (3), 623–663.

Griliches, Z., 1990. Patent statistics as economic indicators: a survey. Journal of
Economic Literature 28 (4), 1661–1707.

Grossman, G.M., Helpman, E., 1991. Quality ladders and product cycles. The
Quarterly Journal of Economics 106 (2), 557–586.

Hall, B.H., Jaffe, A.B., Trajtenberg, M., 2001. The NBER Patent Citation Data File:
Lessons, Insights and Methodological Tools. Working Paper 8498, National
Bureau of Economic Research.

Hausman, J., Hall, B., Griliches, Z., 1984. Econometric Models for Count Data with an
Application to the Patents-R&D Relationship. Econometrica 52 (4), 909–938.

Helsley, R.W., Strange, W.C., 2002. Innovation and input sharing. Journal of Urban
Economics 51, 25–45.
Henderson, R., Cockburn, I., 1996. Scale, scope, and spillovers: the determinants of
research productivity in drug discovery. RAND Journal of Economics 27 (1), 32–
59.

Jacobs, J., 1969. The Economy of Cities. Random House, New York.
Jones, B., 2008. The burden of knowledge and the ‘‘death of the renaissance man’’: is

innovation getting harder? The Review of Economic Studies 76 (1), 283–317.
Klepper, S., Sleeper, S., 2005. Entry by spinoffs. Management Science 51, 1291–1306.
Klepper, S., Thompson, P., 2010. Disagreement and Intra-industry spinoffs.

International Journal of Industrial Organization 28, 526–538.
Klette, T.J., 1996. R&d, scope economies, and plant performance. RAND Journal of

Economics 27 (3), 502–522.
Lanjouw, J.O., Schankerman, M., 2004. Protecting intellectual property rights: are

small firms handicapped? Journal of Law and Economics 47 (1), 45–74.
Lerner, J., 2012. The Architecture of Innovation: The Economics of Creative

Organizations. Harvard Business School Press.
Levin, R., Cohen, W., Mowery, D., 1985. R&d appropriability, opportunity,and market

structure: new evidence on some schumpeterian hypotheses. American
Economic Review 75, 20–25.

Long, J., 1982. The income tax and self-employment. National Tax Journal 35, 31–42.
Malsberger, B.M., 2004. Covenants Not to Compete: A State-by-State Survey. BNA

Books, Washington, DC.
Marx, M., Singh, J., Fleming, L., 2010. Does Non-Compete Enforcement Create a Brain

Drain? HBS Working Paper.
Noel, M., Schankerman, M., 2006. Strategic patenting and software innovation. CEPR

Discussion Paper, 5701.
Pakes, A., Griliches, Z., 1980. Patents and R&D at the firm level: a first report.

Economics Letters 5 (4), 377–381.
Poterba, J.M., 1989. Capital gains tax policy toward entrepreneurship. National Tax

Journal 42 (3), 375–389.
Scherer, F., 1967. Market structure and the employment of scientists and engineers.

American Economic Review 57, 524–531.
Schumpeter, J.A., 1942. Capitalism, Socialism, and Democracy. Harper, New York.
Stuart, T.E., Sorenson, O., 2003. Liquidity events and the geographic distribution of

entrepreneurial activity. Administrative Science Quarterly 48 (2), 175–201.
Vernon, R., 1960. Metropolis 1985. Harvard University Press, Cambridge, MA.
Wooldridge, J.M., 1999. Distribution-free estimation of some nonlinear panel data

models. Journal of Econometrics 90 (1), 77–97.
Ziedonis, R.H., 2004. Do not fence me in: fragmented markets for technology and

the patent acquisition strategies of firms. Management Science 50 (6), 804–820.

http://refhub.elsevier.com/S0094-1190(14)00026-6/h0125
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0125
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0130
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0130
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0130
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0135
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0135
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0140
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0140
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0145
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0145
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0150
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0150
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0155
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0155
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0155
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0160
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0160
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0160
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0165
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0165
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0170
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0170
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0175
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0175
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0175
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0180
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0180
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0185
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0185
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0190
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0190
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0195
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0195
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0200
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0200
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0200
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0205
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0210
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0210
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0215
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0220
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0220
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0225
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0225
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0230
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0230
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0235
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0235
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0240
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0240
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0240
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0245
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0250
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0250
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0255
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0255
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0260
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0260
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0265
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0265
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0270
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0270
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0275
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0280
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0280
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0285
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0290
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0290
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0295
http://refhub.elsevier.com/S0094-1190(14)00026-6/h0295

	Why are some regions more innovative than others? The role of small firms in the presence of large labs
	1 Introduction
	2 Theoretical framework
	3 Data
	4 Methodology
	5 Results
	5.1 Firm size diversity and innovation
	5.1.1 Across–region variation
	5.1.2 Within–region variation

	5.2 Mechanism
	5.2.1 Firm size diversity and spin-out formation
	5.2.2 Firm size diversity and non-compete agreements
	5.2.3 Firm size diversity and large lab focus


	6 Alternative explanations and robustness checks
	6.1 Product market competition
	6.2 Agglomeration economies
	6.3 Large lab demand for innovation and licensees
	6.4 Strategic patenting
	6.5 Innovation affects lab structure
	6.6 Instrumental variable: lagged income tax rates
	6.6.1 Additional robustness checks


	7 Conclusion
	Acknowledgements
	Appendix A Theoretical model
	A.1 Comparison of diverse and non-diverse MSAs
	A.2 Relaxing the definition of diversity

	Appendix B Additional tables
	References


