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Abstract

We analyze the effect of patenting on R&D with a model linking a firm's R&D effort with its decision to patent, recognizing
that R&D and patenting affect one another and are both driven by many of the same factors. Using survey data for the U.S.
manufacturing sector, we estimate the increment to the value of an innovation realized by patenting it, and then analyze the effect
on R&D of changing that premium. Although patent protection is found to provide a positive premium on average in only a few
industries, our results also imply that the premium varies across industries and with firm size. Patent protection also stimulates
R&D across all manufacturing industries, albeit with the magnitude of that effect varying substantially.
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1. Introduction

Belief in the importance of patents has, over the past
twenty-five years, underpinned a trend towards a strength-
ening of patent protection—a strengthening that recently
has come under critical scrutiny (cf. NRC, 2004; FTC,
2003). In 1982, the Court of Appeals for the Federal
Circuit was established to make patent protection more
uniform. Indirectly, this also strengthened patent protec-
tion. The scope of what can be patented has expanded to
include software, life forms, and, most recently, business
methods. Plaintiff success rates as well as damages in
infringement have also risen. Patents have also become a
growing preoccupation of management (cf. Grindley and
Teece, 1997; Rivette and Kline, 2000). These changes in
patent policy and strategies have, however, proceeded
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1 Related to these two arguments, Boldrin and Levine (2002)
suggest that using patents to retain control over the use of knowledge
after the “first sale” can diminish social welfare more generally.
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with limited and mixed empirical evidence on the impact
of patent protection on industrial innovation.

In this paper, we address one part of this story—the
impact of patents on the private returns to R&D, and, in
turn, the impact of those private returns on firms' R&D
expenditures. With the exception of the use of European
patent renewal data to estimate the value of patent rights,
there is limited empirical evidence on the private returns
to patenting. Also, although there have been numerous
studies of the relationship between patenting and R&D
(see below), no study has examined the impact of the
returns to patent protection on R&D at the firm level. A
key reason is lack of suitable data. In this study, we
employ unique data from the 1994 Carnegie Mellon
Survey on Industrial R&D in the U.S. (CMS henceforth)
to estimate the returns to patent protection and the
impact of those returns on firm-level R&D investment.
By both providing a measure of the strength of patents
and allowing us to distinguish the number of patents
from the number of innovations, the CMS data permit us
to estimate the returns to patenting over and above the
returns that would otherwise accrue to the underlying
innovations. Employing a structural model in which the
R&D and patenting decisions are jointly determined, we
first estimate the “patent premium,” defined as the pro-
portional increment to the value of innovations realized
by patenting them. We then use the estimated para-
meters to simulate the effect of changes in the patent
premium on both R&D and patenting itself.

Our study is subject to limitations. First, unlike much
of the literature that deals with the relationship between
R&D and patenting (reviewed below), a cost of using the
CMS is that it is cross-sectional. As a result, we rely
heavily upon economic theory to find instrumental
variables and identify the parameters of interest. Second,
due to data limitations, our decision theoretic model
ignores strategic interaction among rivals. Third, we also
do not analyze all the different ways in which patenting
might affect innovation, especially at the industry level.
In particular, we are studying the private returns to R&D.
Thus, although we control for R&D spillovers, we do not
model the impact of patenting on those spillovers. Nor do
we consider the impact of patenting on entry and
associated innovation. Finally, we do not analyze the role
that patents may play in fostering the emergence of
specialized research firms, as observed, for example, in
biotechnology, semiconductors, scientific instruments
and chemicals (cf. Arora et al., 2001).

The rest of the article is organized as follows. Section 2
provides an overview of previous findings related to the
impact of patenting on innovation. In Section 3 we
present a model of R&D and patenting behavior and the
empirical specification of the model. Section 4 describes
the data and estimation procedure, including identifica-
tion. Section 5 presents the results, and Section 6 presents
robustness checks. Section 7 concludes the paper.

2. Returns to patent protection and its impact
on innovation

2.1. Theory

Economic theory suggests that the case for patents
advancing innovation is not straightforward. For example,
Horstmann et al. (1985) suggested that the costs of
disclosure can more than offset the private gains from
patenting. Also, the effect of “stronger” patents on
incentives to innovate are also not apparent once one
recognizes that “stronger” patents mean that not only any
given firm's patents but also those of its rivals are stronger
(cf. Jaffe, 2000; Gallini, 2002). Merges and Nelson (1990)
and Scotchmer (1991) further argue that, where technol-
ogies progress cumulatively and patents are broad, the
profit maximizing licensing decisions of upstream in-
ventors may retard downstream innovation. In a related
argument, Bessen andMaskin (2000) argue that in indust-
ries where technology progresses cumulatively, firms can
use patents to block potentially more (or differently) ca-
pable competitors from using their innovations in subse-
quent research, thereby dampening the pace of advance.1

Heller and Eisenberg (1998) propose that the patents
and patent-holders associated with just one new product
(a therapeutic drug in their setting) may be so numerous
that the negotiations necessary for subsequent develop-
ment and commercialization may be excessively costly.
Similarly, Shapiro (2000) suggests that for complex
products (cf. Cohen et al., 2000), firms often possess
numerous and overlapping patent rights, giving rise to
“thickets” where transactions costs can impede innova-
tion. Building on these ideas, Hunt (2006) develops a
model of overlapping patents where he shows that in
R&D and patenting intensive industries where patents
overlap (thus conferring rights to rivals' innovation rent
streams), making patents less costly to obtain may
actually dampen firms' incentives to invest in R&D.

Cohen et al. (2000) and Hall and Ziedonis (2001)
also suggest that the proliferation of rights in industries
such as electronics have spawned patent portfolio races.
Such patent portfolio races and cross-licensing practices
among industry incumbents can impede the entry of



2 For Lanjouw's (1998) estimate, however, we do not know whether
the R&D expenditures in the denominator includes government-
financed R&D. If so, then the relevant estimate is obviously higher.
3 For example, even relatively small ESRs can be consistent with a

sizable incentive from patent protection as long as the marginal
product of R&D does not fall rapidly and conversely large ESRs can
imply a small R&D response.
4 Our empirical findings imply a higher subsidy rate provided by

patents of about 33%. See Section 5.
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new, innovative firms. On the other hand, in industries
such as drugs and medical equipment, patents enable
research-intensive startups to gain access to finance and
license-out their inventions.

Encaoua et al.'s (2006) review of the theoretical
literature also highlights a broad theme from the theo-
retical literature when they conclude that patents “often
contribute to enhancing incentives to invent, to disclos-
ing and trading technology, but they also generate costs
to society in terms of monopoly rents and barriers to
access and use of knowledge.”

2.2. Empirical studies

The link between patents and innovation has been
examined empirically in: 1.) Descriptive survey and
field-based research studies; 2.) Analyses of the returns
to patenting; 3.) Regression analyses of the relationship
between patenting and innovation.

2.2.1. Descriptive survey and field-based research
studies

The survey and interview based early empirical work
on patents of Scherer et al. (1959), Taylor and Silberston
(1973), Mansfield et al. (1981) and Mansfield (1986)
suggest that patent protection may not be an essential
stimulus for innovation in most industries. Mansfield's
(1986) 100 respondents reported that, in the period 1981–
1983, most inventions would have been developed in the
absence of patents outside of the pharmaceutical and
chemical sectors. The subsequent survey findings of Levin
et al. (1987) and, more recently, Cohen et al. (2000)
suggest that, in most industries, patents are less featured
than other means of protecting innovations, such as first
mover advantages or secrecy. The finding that firms tend
to feature other means of appropriation does not imply that
the returns to patents are negligible. These findings do,
however, raise an important question that goes beyond the
scope of the present paper, namely what would be the
impact of the wholesale elimination of patents on the rate
and direction of innovation. Moser (2005) provides a
partial answer to this question in her analysis of the
invention records associated with twoWorld's Fairs in the
second half of the 19th century. She finds that in countries
without patent laws, inventors tended to focus their effort
on technologies where other means of protection were
available.

2.2.2. Returns to patenting
The private returns to patent protection have been

explored extensively by Pakes, Schankerman, Lanjouw
and colleagues in their examinations of European firms'
patent renewal decisions (see, for example, Pakes, 1986;
Pakes and Simpson, 1989; Schankerman, 1998; Schan-
kerman and Pakes, 1986; Lanjouw, 1998; Lanjouw et al.,
1998; Deng, 2007). To the degree that patent protection
per se yields value, it confers an incentive to do the R&D
that generates the underlying patentable inventions.
Schankerman (1998) comes closest to our own exercise
below when, on the basis of French patent renewal data
for four technology fields, he constructs a measure of the
implied R&D subsidy to R&D expressed as the ratio of
the value of patent protection to R&D expenditure,
which he calls the “equivalent subsidy rate” (ESR).
Averaged over technology fields, Schankerman esti-
mates the subsidy to private R&D to be about 25%.
Lanjouw, using data from the period 1953–1988 for
West Germany, estimates an average ESR in the range of
10–15%.2 As Schankerman suggests, however, analysis
of renewal data does not permit estimation of the
magnitude of the R&D incentive effect, for which one
would need the marginal subsidy rate.3 To estimate the
latter, one would need firm-level R&D data and a more
complete model of the joint R&D and patenting deci-
sions, as we provide in this paper.4

2.2.3. Relationship between patenting and innovation
Scholars have also tried to infer the impact of patenting

on innovation by examining the relationship between
either patenting activity or patent strength, and measures
of innovation or innovative activity—usually R&D or
sometimes patenting itself. These analyses have been
conducted variously with time series or cross-sectional
data. A key distinction across the studies is whether they
have been conducted at the level of the firm, or at an
aggregate level such as that of an industry or even a
nation. The importance of this distinction between units of
analysis is that, while the former would tend to reflect the
impact of patents on the private incentives to invest in
innovation, the latter will reflect more aggregate impacts,
and thus the potentially offsetting effects, including the
negative effect on R&D incentives of diminished R&D
spillovers to which patents may contribute.

The more aggregate studies analyzing the impact of
IPRs on innovation and growth have yielded mixed and,
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at times, difficult-to-interpret results. Most studies which
use aggregate cross-national data find a positive and
significant effect (Park and Ginarte, 1997; Kanwar and
Evenson, 2003; Lederman andMaloney, 2003; Chen and
Puttitanum, 2005; Falk, 2006). A limitation of most of
these studies, however, is that patent policy may be
endogenous with respect to innovation. Lerner (2002)
employs an instrumental variables approach to address
this endogeneity in his examination of the impact of 177
policy changes on innovation over a 150-year period and
across sixty countries. He finds, however, that strength-
ening patent protection appears to have few positive
effects on patent applications by domestic entities in the
country undertaking the policy change.

In their general equilibrium model of the impact of
R&D, innovation, and diffusion, Eaton and Kortum
(1999) consider, among other questions, the impact of
patents on R&D and growth. Estimating key parameters,
and relying upon the literature to specify others (notably
the difference in imitation rates for patented versus
unpatented innovations), they conclude that eliminating
patent protection would reduce R&D and economic
growth. Like us, and in contrast to any other empirical
study of patent protection and R&D, Eaton and Kortum
model the patenting and R&D decisions as simulta-
neously determined, with the value of the invention and
the strength of patent protection conditioning both.

A few empirical studies have considered the effect of
patent strength or policies on R&D at the firm level. In
one, Sakakibara and Branstetter (2001) exploit the 1988
change in Japanese patent policy, from a policy of one
claim per patent to one which allowed multiple claims
per patent. Interpreting this as an increase in patent
strength, Sakakabira and Branstetter find only a small
positive effect using a reduced-form model estimated
with a panel dataset of Japanese firms.

Industry studies with firm level data have also not
offered clear insight into the question of the impact of
patent protection on R&D incentives, mainly because
these studies have conducted regression studies of the
effect of R&D on patenting. For example, Hall and
Ziedonis (2001) concluded that the rapid growth in
patenting in semiconductors between 1979–1995 was
due largely to more aggressive patenting by large
manufacturers, consistent with an acceleration of patent
portfolio races, which led them to conjecture that
semiconductor firms may be patenting more marginal
inventions over time. They found, however, little
evidence of a trend toward the patenting of lower quality
inventions (measured by forward citations). Bessen and
Maskin (2000) also conjecture that patent protection
offered little inducement for R&D or innovation in
software in the 1980s and 1990s. Indeed, they claim that an
apparent reversal in the growth in R&D intensity in
software during the 1980s, just as firms were just begin-
ning to patent software more aggressively, reflected an
innovation-dampening effect of patents. In related work,
Bessen and Hunt (2007) show that much of the dramatic
growth in software industry patenting since the 1980s is
not fully explained by changes in R&D spending or R&D
productivity over this period. They infer that strategic uses
of patents accounted for much of this growth, and, similar
to Hall and Ziedonis (2001), conjecture that patent protec-
tion may have conferred little incentive to innovate in
software in the 1980s and 1990s. Contrary to this conjec-
ture, Lerner and Zhu (2007) find that increased reliance on
patents by software companies in response to the reduction
of software copyright protection in the early 1990s was
associated with higher firm-level R&D investments.

In summary, the theoretical literature suggests that
patent protection can both stimulate and hinder innova-
tion. By affecting spillovers and potentially creating
complex thickets, patents may produce aggregate effects
that cannot be discerned purely by examining the re-
sponses of individual firms to changes in patent protec-
tion. Indeed, empirical studies of the relationship
between patenting and innovation at the aggregate levels
of nations or industries have provided ambiguous results,
though at least partly due to difficulties in controlling for
either the endogeneity of patent policy, or the joint
determination of R&D and patenting. Firm-level
research also leaves us with mixed results. The survey
research studies clearly indicate that firms in most
industries do not feature patents among their various
means of protection. However, these firm-level studies
do not show that patent protection does not add to the
value of the underlying inventions. Indeed, supporting
this last point, research on patent renewals suggest—at
least for Europe—that patent protection does yield a
return, sometimes substantial. These studies, however,
provide little sense of what the magnitude of that
incentive effect might be, nor how it affects patenting
behavior. In this paper, we contribute to the study of the
private returns to patent protection by estimating a model
in which the R&D and patent filing decisions are jointly
determined. We are able to estimate the patent premium
and analyze the associated response elasticities of both
R&D and patenting to changes in patent protection.
Moreover, as we will show below, the patenting response
elasticity to changes in the patent premium exceeds that
of the R&D response elasticity. This finding, ironically,
suggests that patent harvesting—the patenting of more
marginal inventions—is entirely consistent with an
R&D incentive effect of patent protection.
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3. Model and empirical specification

3.1. The model

To understand the impact of patents on R&D spending at the firm level, we begin by specifying a Cobb–Douglas
innovation production function (see for example Griliches, 1979; Jaffe, 1986).

3.1.1. The innovation production function
Assume that a firm, i (i=1,…, n), generates product innovations by investing R&D resources, ri, which reflect the

cost of R&D. The innovation production function is:

mi ¼ rbi si; ð1Þ
where mi is the number of innovations, ri is the firm's R&D expenditure, β is the elasticity of the number of
innovations with respect to R&D, and si represents the factors affecting the productivity of R&D, such as information
flows from other firms, universities and government research labs. Following Kortum (1993) and Eaton and Kortum
(1999), we assume that R&D only affects the number of innovations but not their value, and that R&D is subject to
diminishing returns such that 0bβb1.5

3.1.2. The payoff structure and the patent premium
An innovation is patented if the net benefits of doing so exceed the costs. These costs can include the tangible costs

of filing and defending patents, or the less tangible costs of information disclosure associated with patenting. More
formally, if a firm applies for patent protection on a given innovation, j, where j indexes innovations ( j=1,…,m), it
earns xijvij, where vij denotes the gross value of each of firm i's innovations without patent protection (always assumed
to be positive), and xij denotes the patent premium, which is defined as the incremental payoff due to patent protection,
net of patenting costs. As an ex ante measure, the patent premium represents the firm's beliefs regarding the net payoff
from applying for patent protection for an innovation. A patent premium less than unity represents an expected net loss
from patenting, and a patent premium greater than unity represents an expected net profit from patenting.

We assume that the value of an innovation and the associated patent premium are known by the firm at the time of
the patenting decision, but not at the time of the R&D investment. To compute both the probability of patenting an
invention and the firm's expected returns to R&D, we assume that the patent premium, xij, has a component, εij, that
varies across innovations within a firm, and is normally distributed with mean zero and variance σ2, and a fixed, firm-
specific component, μi. The patent premium, xij=εij+μi, is thus normally distributed with mean μi and variance σ2.
We also allow for heterogeneity in the value of an innovation within and across firms by assuming that vij=υij+vi,
where υij is an innovation-specific mean-zero stochastic component and vi is a fixed, firm-specific component. The
innovation-specific components of the innovation's payoffs, εij and υij, are unobserved by the firm at the time of the
R&D decision. We further assume that they are independently distributed. Although εij is assumed to be normally
distributed, we do not require normality of υij. Also recall that, although the distribution of the number of innovations,
mi, depends upon the R&D investment, we assume that the value of the innovation absent patent protection, vij, is
independent of the R&D investment. A schematic representation of the structure of payoffs is presented in Fig. 1.

3.1.3. The probability of patenting
Given the assumed payoff structure, the probability that a firm i applies for patent protection, πi, is

pi ¼ Pr xijvij N vij
� � ¼ 1�A zið Þ; ð2Þ

where Φ is the standard normal cumulative distribution function,

zi ¼ 1� µi

r
; ð2� 1Þ
5 A more general model that allows R&D to affect the value of innovations is not identified. Intuitively, the elasticity of the value of innovations
with respect to R&D enters the R&D equation much as β enters. In the appendix, we show the neglect of an effect of R&D on the value of
innovation biases our estimated premium conditional on patenting (μi⁎) upward and the estimated R&D elasticity downward. We also show that we
can approximate bounds for our estimates that are, however, consistent with our qualitative findings.



Fig. 1. R&D and patenting: the payoff structure.
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μi represents the mean of the patent premium distribution, and its standard deviation, σ, reflects the patent premium
heterogeneity across innovations within firm i.

3.1.4. The expected value of an innovation
At the time of its R&D investment, a firm does not know with certainty the actual patent premium, nor, therefore,

whether the associated innovation will be patented or not. Thus, we express the expected value of an innovation, hi, as a
weighted average of the expected payoffs from patenting and not patenting, gross of its R&D expenditures, as follows:6

hi ¼ piµ4i vi þ 1� pið Þvi; ð3Þ

where πi represents the probability of firm i applying for patent protection (2) and μ⁎i represents the mean of the patent
premium distribution conditional on patenting (the “conditional patent premium”) such that:

µ4i ¼ E xijjxij N 1
� � ¼ µi þ rwi; ð3� 1Þ

wi ¼
f zið Þ

1�A zið Þ½ � ; ð3� 2Þ

where (3–2) is the familiar inverse Mills ratio, with ϕ and Φ representing the standard normal probability and
cumulative distribution functions, respectively, with zi defined in (2–1). The conditional patent premium (3–1)
represents the proportional increment to the value of an innovation the firm expects to gain from optimally patenting.

Though we assume that the premium is normally distributed, and hence, symmetric about the mean, the “observed”
distribution of patent premia, xij⁎ , is truncated normal and positively skewed, as shown in Fig. 2, because firms will only
patent those innovations where patenting is profitable. Thus, our specification is consistent with the literature
suggesting that the distribution of the value of patent protection is positively skewed (e.g., Pakes, 1986; Schankerman
and Pakes, 1986).7 Even when the average patent premium µi is less than unity, a firm may still patent a fraction of its
innovations. Put differently, even if patent protection is not profitable for most of a firm's innovations, a firm may still
apply for patent protection for a minority of its innovations.
6 hi is derived as: hi=E(xijvij|xijN1)Pr(xijN1)+E(vij|xijb1)Pr(xijb1), which leads to (3), using the independence between εij and υij. The conditional
premium (3–1) is therefore the first moment of a truncated normal distribution (e.g., Greene, 2003: 759).
7 One can estimate the average conditional premium, μ⁎, without invoking normality, using only estimates of the R&D elasticity β and a measure

of πi, the probability of patenting. We do need to assume a specific distribution for the premium to link the conditional premium to the unconditional
premium via the estimate of σ, and the Gaussian provides a convenient closed form. Also note that υij can have a skewed distribution, as observed
by Scherer and Harhoff (2000).



Fig. 2. The patent premium probability distribution conditional on patenting.
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3.1.5. The equilibrium level of R&D
We assume that a firm, i, maximizes expected profit from R&D, equal to the firm's expected value from its typical

innovation, hi, defined in (3) multiplied by the number of innovations, mi, defined in (1), minus the cost of R&D,
measured as the dollars spent on R&D, ri.

8 Thus, the firm's objective function is:

Max
ri

himi � ri½ �: ð4Þ

Solving (4) for ri yields a firm's equilibrium level of R&D:9

ri ¼ bhisið Þ 1
1�b: ð5Þ

To summarize, a firm, i, optimally invests ri, generating a number of innovations, mi, some fraction of which it
will choose to patent. Since different innovations can have different patent premia, and the distribution of premia
differ across firms, the fraction of innovations patented will also differ across firms. Also, since the expected returns
to innovation partly depend upon the firm's distribution of the patent premium across its innovations, the factors that
drive the firm's patent premium (and the fraction of innovations patented) also drive the firm's R&D expenditures,
along with other exogenous variables. Thus, firms' R&D expenditures and their patent propensities are jointly
determined.

3.2. Empirical specification

To evaluate the impact of patenting on R&D incentives, we derive estimable equations from the innovation
production function (1), the probability of patenting (2), and the R&D Eq. (5). We therefore need to specify
what variables of the model are observed by the econometrician, the parameters to be estimated, and the error
structure. We start with the R&D relationship, the main equation of interest, and show that its estimation as a
single-equation is not sufficient to identify the key parameters. We then specify the innovation and patent
propensity equations.

3.2.1. The R&D equation
The expected returns, hi, in the R&D Eq. (5) depend on the R&D elasticity parameter β, R&D productivity (si), the

mean and standard deviation of the patent premium distribution (μi, σ) and its generating function zi, and the mean
value of a firm's innovation absent patent protection, vi. These parameters and variables are all unobserved by the
8 The expected and actual number of innovations are identical in this model, given our assumption that the firm observes all factors affecting R&D
productivity. Allowing for the existence of R&D productivity shocks unobserved to the firm would not change the results of the paper. See Arora
et al. (2003).
9 The first-order condition for an optimum is βri

β− 1hisi−1=0; the second-order condition is β (β−1)riβ−2hisib0, requiring 0bβb1.
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econometrician. We therefore set si, zi, and vi as functions of observed firm and industry characteristics, including a
constant in each of them:

si ¼ exp s Vi l þ gisð Þ; ð6� 1Þ

zi ¼ z Vi δ; ð6� 2Þ
vi ¼ exp v Vi αþ givÞ;ð ð6� 3Þ

with λ, δ, and α being vectors of parameters to be estimated, and ηis, and ηiv, being mean-zero firm specific stochastic
components, independently and identically distributed across firms, observed by the firm but not the econometrician.
We substitute (6–1), (6−2), and (6–3) into (5), and take the natural log of both sides of (5) to obtain the R&D equation
to be estimated:

log ri ¼ 1
1� b

log bþ s Vi l þ v Vi αþ log r
f z Vi δð Þ

1�A z Vi δð Þ � z Vi δ
� �

1� U z Vi δð Þ½ � þ 1

� �� 	
þ gir; ð7Þ

with ηir=(1 /1−β )(ηis+ηiv). The parameters to be estimated in this equation are β, σ, λ, δ, and α. However, we
cannot separately identify β from the constants included in vi and si, nor can we separately identify σ from δ by
estimating the R&D equation alone. We therefore employ two additional equations to identify the parameters of
interest. First, we estimate a transformation of the innovation production function (1), which allows us to separately
identify β, and, second, an equation for the probability of patenting (patent propensity), that allows us to separately
identify σ and δ.
3.2.2. The innovation equation
To estimate β, we transform the innovation production function (1) because we do not observe each firm's

total number of innovations, mi. We do, however, observe the firm's total number of patent applications, ai, and the
firm's patent propensity, pi, defined as the percentage of innovations for which a firm applied for at least one patent.10

We allow that the firm may apply for more than one patent per innovation, and thus assume that the firm applies for
an average ki patents per innovation, which is unobserved.11 Accordingly, we set the firm's total number of
innovations equal to the observed total number of patent applications divided by the percentage of innovations for
which a firm applied for at least one patent, multiplied by the unobserved number of patent applications per innovation,
ki, i.e., we set mi=ai/(ki pi). The innovation production function, after this transformation and taking the log of (1)
becomes:

log ai � log pi ¼ log ki þ log si þ b logri: ð8Þ

Since ai, pi, and ri are observed (see next section), but ki and si are not, we use (6–1) and set

ki ¼ exp k Vi kþ gikð Þ; ð8� 1Þ
with ki a vector of industry dummies, κ a vector of parameters to be estimated, and ηik a mean-zero unobserved error
independently and identically distributed across firms. Substituting (6–1) and (8–1) into (8) we obtain an estimable
equation for the natural logarithm of the number of innovations for firm i:

log ai � log pi ¼ k Vi kþ s Vi l þ blog ri þ gia; ð9Þ
10 The availability of the total number of a firm's patent applications, along with a measure of patent propensity, is an important empirical
advantage over previous work, which has mostly used the total number of successful patent applications to estimate innovation production functions
(see also Griliches, 1989, who advocated total applications as a broader measure of innovation output).
11 By permitting the number of patents per innovation to vary, we can accommodate differences across respondents in how broadly they define an
innovation. Using data collected by the European Patent Office in 1994 from a survey of patentees (drawn from a stratified random sample of
European patents), Reitzig (2004) actually finds that the average number of patents per innovation is 5.35.
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with ηia=ηik+ηis representing a mean-zero unobserved econometric error term assumed to be uncorrelated with the
observed firm characteristics si.

12,13

Note that β is identified in this equation because it represents the coefficient of the logarithm of R&D in the
transformed innovation production function. In this equation, however, ri is correlated with ηia, the factors affecting
R&D productivity unobserved by the econometrician, and its estimation requires an instrumental variable approach
(cf. identification section below).

3.2.3. The patent propensity equation
We observe pi – patent propensity – the proportion of innovations for which firm i applies for patent protection. By

using the equation explaining the probability of patenting (2) and identity (6–2) we can therefore estimate a propensity
to patent equation at the firm level:

pi ¼ 1�A z Vi δð Þ þ gip; ð10Þ

with ηip a mean-zero heteroskedastic error term, where the subscript p indicates that this is an error in the patent
propensity equation. This equation allows us to estimate δ and therefore the predicted ratio between the mean and the
standard deviation of the patent premium distribution (2-1).
3.2.4. The system to be estimated
To summarize, after making all the substitutions, we obtain the following estimable system of simultaneous

equations:

log ri ¼ 1
1� b

log bþ s Vi l þ v Vi αþ log r
B z Vi δð Þ

1�A z Vi δð Þ � z Vi δ
� �

1� U z Vi δð Þ½ � þ 1

� �� 	
þ gir 11� 1ð Þ

log ai � log pi ¼ k Vi kþ s Vi l þ b log ri þ gia 11� 2ð Þ
pi ¼ 1�A z Vi δð Þ þ gip 11� 3ð Þ

8>>><
>>>:

with ηir=(1/1−β )(ηis+ηiv), ηia=ηik+ηis, and ηip is a mean-zero heteroskedastic sampling error.14 Also recall that ηiv,
ηik, and ηis are assumed to be mean-zero error terms, independently distributed of each other and across all firms. They
represent, respectively, the unobserved firm specific components of the value of an innovation, vi, the number of patent
applications per innovation, ki, and the unobserved factors affecting R&D productivity, si, respectively. After a
preliminary discussion of identification below, we introduce our data and the key exogenous variables and associated
measures.

3.2.5. Identification
The coefficients of particular interest for estimating the patent premium and subsequently analyzing its impact on

R&D are: (i) β, the elasticity of innovations with respect to R&D; (ii) δ, the coefficients of the patent premium
equation; and (iii) σ, which, together with δ, determines the distribution of the patent premium. The identification of
the structural parameters of our model relies on cross-equation restrictions and exclusion restrictions derived from the
model's first-order condition, the exogeneity of the firm and industry covariates used in identities (6–1), (6–2), (6–3)
and (8–1) and, finally, an assumption that the patent premium is normally distributed. In addition, we impose other
exclusion restrictions to preserve degrees of freedom, as explained in Section 4.4.

To broadly characterize our identification strategy, we use the innovation production function to identify β,
the patent propensity equation to identify the ratio between the average patent premium and its standard deviation, and
12 The presence of intercepts in both (6–1) and (8–1) implies that they are not separately identified in (9). As a consequence, the number of patent
applications per innovation, ki, is not identified.
13 Equation (9) does not include lagged R&D expenditures due to data constraints. This concern should be mitigated in light of the high within-firm
correlation of R&D spending over time (Pakes and Griliches, 1984; Hall et al., 1986; Blundell et al., 2002).
14 The variance of the sampling error, ηip, is equal to πi(1− πi)/mi, with mi representing the number of innovations and πi defined in (2). Since we
do not observe the number of innovations, we use heteroskedasticity-consistent standard errors (White, 1980).



Table 1

Variable name Measure description and construction

a. Endogenous variables
R&D (Log), used in (11–1) Obtained by multiplying company-financed R&D unit expenditures in millions of dollars in the most

recent fiscal year by the percentage of the R&D unit's effort devoted to new or improved products,
then computing the natural logarithm. Respondent level

Product innovations (Log), used in (11–2) The difference between the log of patent propensity (see below) and the log of product patent
applications generated by the R&D lab during 1991-1993, which is divided by 3 to obtain the yearly
average. This variable has been adjusted to reflect product innovation, because the respondents were
only asked to report their total number of patent applications. a Respondent level

Patent propensity, used in (11–2), (11–3) Reported % of R&D unit's product innovations in the 1991-1993 period for which they applied for
patent protection in the U.S. Respondent level

b. Exogenous variables conditioning the patent premium, zi (6–2), used in (11–1) and (11–3)
Patent effectiveness Reported % of product innovations for which patent protection had been effective in protecting the

firm's competitive advantage from those innovations during 1991-1993. There are five mutually
exclusive response intervals (b10%; 10-40%; 41-60%; 61-90%; N90%). Respondent level

Firm size Natural log of the total number of employees of the lab's parent firm (Source: Compustat, Dun and
Bradstreet, Moody's, and Ward's). Respondent level

Tech rivals Reported number of U.S. competitors capable of introducing competing innovations in time that can
effectively diminish the respondent's profits from an innovation in the lab's focus industry. We use the
mid points of the chosen interval: 0, 1-2, 3-5, 6-10, 11-20, or N20 competitors. Using category
dummies instead of mid-points of the categories does not materially change the results. This measure
varies across respondents within industries because it represents each respondent's assessment of his or
her focus industry conditions, often reflecting a particular niche or market segment. Respondent level

Industry dummies, set 1 Six industry dummies defined using SIC codes assigned to the focus industry (the principal industry
for which the unit was conducting its R&D): Biotech and Pharmaceuticals (SIC 283), Computer and
Electronics (SIC 36 and 357), Machinery (SIC 35, excl. 357), Transportation (SIC 37), Instruments
(SIC 38 excl. 384), Medical Instruments (SIC 384). Industry level

c. Exogenous variables included in vi (average value of an innovation), used in (11–1)
Business unit size The log of the number of employees involved in the firm's focus industry. Respondent level
Firm size As described above (Table 1b). Respondent level
Tech rivals As described above (Table 1b). Respondent level
Number of rivals Total number of U.S. competitors in the lab's focus industry. We used the mid-point of the 6 response

intervals: 0, 1-2, 3-5, 6-10, 11-20, or N20 competitors. This represents each respondent's assessment
of his or her focus industry conditions, often reflecting a particular niche or market segment, and thus
varies across respondents. Respondent level

Rivals' patent effectiveness % of firms in an industry – excluding the respondent – in each patent effectiveness class. We dropped
the first class to avoid collinearity with the constant in vi. Respondent level

Global Dummy variable=1 if the parent firm sells products in Japan or Europe. Respondent level
Public Dummy variable=1 if the firm owning the lab is a publicly traded company. Respondent level
Foreign Dummy variable=1 if the parent firm is located abroad. Respondent level
Industry dummies, set 2 17 industry dummies constructed using the SIC code of the focus industry: Food and Tobacco

(SIC 20,21), Industrial Chemicals (SIC 281–82,286), Drugs and Biotech (SIC 283), Other Chemicals
(SIC 284–85,287–89), Petroleum (SIC 13,29), Rubber (SIC 30), Metals (SIC 33-34), Computers
(SIC 357), Machinery (SIC 35, exc.357), Communication Equipment (SIC 366), Electronic
Components (SIC 367 excl. 3674), Semiconductors (SIC 3674), Transportation (SIC 37 excl.
372,376), Aircraft and Missiles (SIC 372,376), Instruments (SIC 38 excl. 384), Medical Instruments
(SIC 384), Other Manufacturing (SIC 22-27,31-32,361-65,369,39). Other Manufacturing is the
excluded dummy. Industry level

d. Exogenous variables included in si, (R&D productivity), used in (11–1) and (11–2)
% overlap with rivals' R&D A subjective assessment of the percent of each R&D unit's projects with the same technical goals as

an R&D project conducted by at least one of its competitors. The responses categories are: 1=0%;
2=1-25%; 3=26-50%; 4=51-75%; 5=76-100%. Responses were recoded to category midpoints.
Respondent level

University R&D by state & field of science Total R&D spending of doctoral granting institutions by U.S. state and field. (Source: 1993 NSF/SRS
Survey of Scientific and Engineering Expenditures at Universities and Colleges). Assigned to each
respondent according to its location and the importance of each field to its R&D activity. The CMS
provides information on the importance, to the lab's R&D activities, of the contribution of university
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Table 1 (continued)

Variable name Measure description and construction

or government research conducted over the previous 10 years by field of science and engineering
(possible fields are Biology, Chemistry, Physics, Computer Science, Materials Science, Medical and
Health Science, Chemical Engineering, Electrical Engineering, Mechanical Engineering,
Mathematics). These fields are aggregated by taking average scores of their importance to match
the NSF fields (engineering, physical sciences, and math & computer sciences, life sciences). The
importance score assigned to each field is used to compute a weighted average of the university R&D
spending by state. Respondent level

I.T. use Dummy variable=1 if computer network facilities are used by the firm to facilitate interaction
between R&D and other functions, such as manufacturing and marketing. Respondent level

e. Exogenous variables included in ki (number of applications per innovation), used in (11–2)
Industry dummies, set 3 The same set of dummies included in vi (cf. Table 1c) with a different set of coefficients to be

estimated. Industry level
a To compute the number of product patent applications we adjust as follows. Let a=a1+a2=(m1π1+m2π2)k be the total number of patent applications,

with a1 and a2 the number of product and process applications,m1 andm2 the number of product and process innovations, p1 and p2 the respective patent
propensity, and k≥1 the number of patent applications per patented innovation, assumed to be equal across products and processes. We assume that m1/
m2=r1/r2, with r1 and r2 being the level of product and process R&D effort. Let ρ1=m1 / (m1+m2)=r1 / (r1+r2), and ρ2=m2 / (m1+m2)=r2 / (r1+r2),
where ρ1 and ρ2 are the share of R&D effort devoted to product and process innovation. Then, a/k=m1 p1+m1(ρ2/ρ1) p2 and the number of product
innovations becomesm1=a/k(p1+(ρ2 /ρ1)p2). We report in Appendix A the sensitivity of our results to the use of adjustment factor (which improves the
overall fit of the estimated model).

Table 1 (continued )

Variable name Measure description and construction
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the R&D equation in combination with the patent propensity equation to separately identify the standard deviation and
the average patent premium. We will describe in detail our identification strategy and its implementation below in
Section 4.4, after we have described the data.
4. Data, variables, measures and estimation

4.1. Data

The Carnegie Mellon survey (CMS) on industrial
R&D is our principal data source. Administered in 1994,
the CMS covers a cross-section of 1478 R&D labs for the
1991–1993 period. Questionnaires were completed by
R&D lab managers, who were asked to respond with
reference to the business unit (within their parent firm)
that represented the principal focus of their lab's efforts.15

After dropping observations with missing values and
restricting the analysis to business units with 10 or more
employees, we obtain a final sample of 790 R&D units.16

4.2. Endogenous variables and measures

Our three endogenous variables are, respectively,
business unit R&D expenditures devoted to new prod-
15 More details on the survey can be found in Cohen, Nelson, and
Walsh (2000).
16 The sample also reflects the exclusion of 6 R&D units reporting
more than 20 patent applications per million dollar of R&D, (the 99th
percentile value of the distribution). A more conservative trimming
procedure of excluding observations with patents per million dollars
R&D above the median plus twice the interquartile range resulted in
very similar estimates to those reported here.
ucts, the business unit's patent propensity defined as the
percentage of the unit's product innovations for which
patent protection is sought, and the number of product
innovations. As noted above, the latter is computed by
dividing the firm's product patent propensity by the total
number of patent applications. Details on the construc-
tion of each of the measures for each of these variables
are provided in Table 1a.

4.3. Exogenous variables and measures

As noted above, our system has three classes of
exogenous variables that drive, respectively: 1) the func-
tion zi, determining the distribution of the patent premium;
2) the productivity of the firm's R&D si; and 3) the gross
value of innovation absent patent protection, vi.. For the
sake of brevity, we will focus our discussion on selected
exogenous variables. All the exogenous variables, their
associated measures, construction and data sources are
described in Tables 1b through 1e. Table 2 provides
descriptive statistics.

4.3.1. Determinants of the patent premium
Our key exogenous variable is “patent effectiveness,”

which is intended to be a summary measure of the net
benefits from patenting. Drawn from the CMS, this
measure reflects each respondent's assessment of the



Table 2
Descriptive statistics

Variable Mean St. Dev. Median Min. Max.

% prod. innov. applied for patent 0.32 0.31 0.25 0 1
No. of product patent applications 8.86 21.77 2.67 0.13 283.33
Product R&D (Mil. $) 8.97 32.41 1.4 0.02 420.75
Patent effectiveness dummy, class 1 0.34 0.48 0 0 1
Patent effectiveness dummy, class 2 0.23 0.42 0 0 1
Patent effectiveness dummy, class 3 0.16 0.37 0 0 1
Patent effectiveness dummy, class 4 0.15 0.36 0 0 1
Patent effectiveness dummy, class 5 0.11 0.32 0 0 1
Business unit employees 6256 26,589 600 10 448,000
Firm employees 20,429 50,043 3120 10 710,800
No. of U.S. technological rivals 4.05 5.01 4 0 32
No. of total U.S. rivals 10.72 10.06 8 0 32
Firm is global 0.78 0.41 1 0 1
Firm is public 0.66 0.47 1 0 1
Firm is foreign 0.09 0.29 0 0 1
% overlap with rivals' R&D 0.56 0.24 0.63 0 0.88
University R&D by state/field-weighted (Bill. $) 0.13 0.15 0.09 0 1.32
I.T. used in organization 0.55 0.50 1 0 1
N. of obs.=790
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strength of patent protection, measured as the reported
% of product innovations for which patents had been
effective in protecting the responding firm's competitive
advantage from those innovations. Measured with a cate-
gorical response scale, there are five mutually exclusive
ranges, reflecting less than 10% of product innovations;
10–40%; 41–60%; 61–90%; and greater than 90%. These
categories are represented as a set of dummy variables in
our specification.17 We expect the estimated coefficients
for each dummy variable to increase in a strict ordinal
ranking; that is, the more effective patents are judged to be
by the respondent, the higher the patent premium.

The histogram displayed in Fig. 3 shows a positive
relationship between patent effectiveness, patent propen-
sity and R&D at the respondent level, suggesting that the
data are consistent with the idea that more effective pro-
tection stimulates both patenting and R&D. Although
partly an artifact of the level of industry aggregation,
Table 3 also shows that inter-industry differences (ob-
tained using 17 industry groups as defined in Table 1-c)
account for less than 20% of the variation in patent
applications, R&D, patent propensity and patent effec-
tiveness, and thus suggests that the positive relationship
among these variables is not due preponderantly to
industry effects.

One important question is how to interpret the patent
effectiveness measure. To probe whether this measure
captures the different ways in which patents are used to
yield a return (Cohen et al., 2000), in a corollary analysis
17 As a consequence, z in (6-2) includes 5 dummy variables
representing patent effectiveness.
we regress patent effectiveness against respondents' uses
of patents. Results, shown in Table A3 in Appendix A,
indicate that the magnitude of the coefficients for
conventional uses of patents, such as the prevention of
copying, are comparable to those for less conventional
uses of patients, such as cross-licensing or patent
‘blocking’. Licensing is also an important determinant
of patent effectiveness, suggesting that the estimated
patent premium will reflect profits obtained from the use
of patents in markets for technology as well (cf. Arora et
al., 2001; Gans et al., 2002). Overall, the results suggest
that, with the exception of defensive patenting (which has
no significant effect), our effectiveness measure appears
to reflect the returns to the broad range of uses of patents
observed across the manufacturing sector.

Although we interpret our measure of “patent effec-
tiveness” to reflect the net benefits from patenting, this
measure may not fully reflect either the capabilities of the
Fig. 3. R&D and patent propensity by patent effectiveness class.



Table 3
Within and across industries variation in key variables

Mean Total sum of squared deviations % variance explained by inter-ind. differences⁎

Log of R&D 0.40 2566 7.8%
Log of Pat. applications 2.24 889 5.3%
Patent propensity (%) 0.32 74 13.4%
Patent effectiveness (%) 0.38 80 13.3%

⁎Proportion of variance explained by cross industry variation (explained sum of squared deviations from the mean as a fraction of the total sum of
squared deviations from an OLS regression of the variable on a constant and the industry dummies used in the analysis).
Note: Patent effectiveness measured using mid-points of the related patent effectiveness classes for descriptive purposes.
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firm in prosecuting,managing or defending patents, or the
ability of rivals to invent around or otherwise challenge a
firm's patents. Thus, we include two additional variables
as drivers of the patent premium: 1) Overall firm size to
proxy the firm's patent-related legal and other capabil-
ities; and 2) the reported number of firms capable of
introducing competing innovations. Our expectation is
that the premium should rise with firm size, but decline
with the number of technological rivals. We also include
industry fixed effects to control for six broad industrial
groups as well (described in Table 1b).18

Another possible concern with our measure of patent
effectiveness is that sources of variation in patent
effectiveness within an industry may be correlated with
unobserved variations in R&D productivity, introducing
endogeneity and possibly biasing our coefficient
estimates for patent effectiveness and our predicted
patent premia. We address this concern by instrumenting
for patent effectiveness, as discussed in Section 6 below
and Appendix A.

4.3.2. Determinants of the gross value of an innovation
absent patent protection

Among our determinants of the gross value of an
innovation absent patent protection, we include business
unit size to reflect the role of R&D cost spreading
(Cohen and Klepper, 1996), overall firm size to reflect
the possibility of economies of scope, the number of
technological rivals (i.e., prospective imitators) and,
more broadly, the number of economic rivals to control
for competitive conditions, whether the company is
public to reflect differential access to finance, and
whether the company is global as another control for
market size. We also included the respondents' rivals'
reported patent effectiveness to reflect the possibility
that the more effective rivals' patents are, the lower the
18 A finer grained control for industry fixed effects is difficult to
implement due to the nonlinearities of the cumulative normal
distribution.
firm's expected returns to innovation. Seventeen indus-
try dummies are also included.19

The value of a firm's innovation is also driven by the
use of means of protecting innovations other than patents,
such as lead time and secrecy (Levin et al., 1987; Cohen
et al., 2000). Although we have effectiveness scores for
each of these mechanisms, we do not, however, have
measures of their use, as we do for patents, and, to the
degree that these other mechanisms are substitutes or
complements for patenting, their exclusion from vi may
bias our estimates. To address this concern, in an un-
reported corollary analysis, we estimated our model
including the effectiveness scores for other appropriation
strategies, such as secrecy or lead-time, among the deter-
minants of vi in (6–3). There was no qualitative change in
the results, suggesting that any bias due to the omission of
other appropriation strategies is likely to be small.

4.3.3. Determinants of R&D productivity
We include three drivers of R&D productivity: R&D

spillovers from other firms; extra-industry sources of
knowledge, and the firm's own R&D capability. Our
measure of R&D spillover, drawn from the CMS, is the
reported degree to which R&D managers believe their
unit's R&D projects overlap with rivals, reflecting the
idea that the closer a firm is to others technologically, the
more likely there will be spillover. Our measure of the
amount of knowledge that the firm draws from extra-
mural sources is the level of R&D expenditure by
universities in fields relevant to the unit's R&D (where
relevance is measured in the CMS) located in the same
state. Finally, scholars do not yet have a clear sense of
what firm's key R&D capabilities are, and, to the degree
we have some sense, measurement is challenging. Thus,
we proxy for whether a firm is a more capable manager
19 We control for industry at the two-digit SIC level, using three-digit
industry dummies where we judge the two digit level to be too coarse.
For instance, we distinguish between pharmaceuticals and the rest of
the chemical industry because R&D and patent appropriability
conditions differ dramatically between drugs and plastics.



Table 4
Sources of identification: summary

Variable/
parameter

Measures Cross equation restrictions Exclusion restrictions

Restriction Test Restriction Test

Patent
premium

Patent effectiveness, firm size,
technology rivals, industry dummies

zi′δ in R&D
Eq. (11–1) and
patent propensity
Eq. (11–3) are
identical

Not possible (lack of
overidentification)

Does not affect
innovation Eq. (11–2)

Validity
confirmed

Value of an
innovation
absent
patent
protection

Business unit size, firm size, total
rivals, technology rivals, rivals'
patent effectiveness, global, public,
foreign, industry dummies

None None Does not affect
innovation and patent
propensity
Eqs. (11–2), (11–3)

Validity partly
confirmed.
Exclusion
does not
affect results

Efficiency of
R&D

% overlap with rivals' R&D,
University R&D, Use of IT

si′λ in R&D
Eq. (11–1) and
innovation
Eq. (11–2) are
identical

Validity partly
confirmed. Main
results robust if
restriction is relaxed

Does not affect
patent propensity
Eq. (11–3)

Validity confirmed

Elasticity of
innovations
w.r.t.
R&D effort

β in R&D
Eq. (11–1) and
innovation
Eq. (11–2) are
identical

Not possible
(lack of
overidentification)

20 We can reject the restriction at the 1% confidence level for the
spillover-related parameters (% overlap and university R&D), but cannot
reject it for the parameter associated with the “use of I.T.” measure.
21 This assumption is consistent with previous work estimating patent
production functions (cf. Jaffe, 1986), with the possible exception of
size, which has sometimes been used as a control.
22 We tested the validity of the instruments used for R&D in the
innovation equation (11–2). The C (or difference-in Sargan) statistic
(Hayashi, 2000) related to equation (11–2) is 5.9, which fails to reject
the null that the 6 instruments excluded from the innovation equation –
firm size, business unit size, and the four rival patent effectiveness
variables – are valid at the 5% confidence level.
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of its R&D with a measure of whether the firm em-
ployed computer networking to facilitate interaction
between R&D and other functional units within the firm.
We also include seventeen industry dummies.

4.4. Identification

4.4.1. Sources of identification
The R&D equation by itself is insufficient to identify

the parameters of interest because the elasticity of inno-
vation with respect to R&D, β, is not identified. Thus, we
need to estimate the other two equations, namely the
patent propensity and innovation equations and impose
cross-equation restrictions. The key cross-equation
restrictions are that β in the innovation Eq. (11–2) is
the same as the β in the R&D equation, and that zi′δ in the
R&D Eq. (11–1) and the patent propensity Eq. (11–3) are
the same. Both of these restrictions arise directly from the
assumption that the R&D and patenting decisions are
optimal and cannot be tested due to lack of over-
identification. The assumption that the patent premium is
normally distributed and the joint estimation of the patent
propensity and the R&D equations allow us to identify σ
from the R&D equation and therefore the ratio of μi to σ
(through estimation of δ).

As noted we impose the cross-equation restriction that
si′λ in the R&D and innovation Eqs. (11–1) and (11–2)
are identical. In this case, the λ parameters are over-
identified, and aWald test partially rejects this restriction.20

However, if we relax this restriction we obtain similar
estimates of the parameters and elasticities of interest.

We also impose exclusion restrictions. Some of these
restrictions arise naturally from the assumption of profit
maximization. In the innovation equation, conditional
upon R&D, factors affecting the value of innovation or
appropriability should not affect the productivity of
R&D, and hence, should not affect the number of
innovations. Thus, patent effectiveness, firm size, and
the number of rivals should be valid instruments for
R&D in the innovation equation.21 We test and fail to
reject the null that these are valid instruments.22 Given
the obvious logic, we also exclude the firm-level patent
effectiveness measure from the variables conditioning vi,
the value of the innovation absent patent protection. We
do, however, include rivals' patent effectiveness in vi.



Table 5
Single equation, step-by-step estimates

Equation (2) (4) (8)

Dependent variable Patent propensity Log of patent applications Log of R&D

Variables Nonlinear OLS 2SLS Nonlinear OLS

Patent effectiveness dummy, class 1 −1.66 (0.13)
Patent effectiveness dummy, class 2 −0.97 (0.12)
Patent effectiveness dummy, class 3 −0.47 (0.11)
Patent effectiveness dummy, class 4 −0.29 (0.12)
Patent effectiveness dummy, class 5 −0.27 (0.12)
Log of parent firm employees 0.05 (0.01) 0.03 (0.01)
No. of U.S. technological rivals −0.01 (0.01) −0.002 (0.004)
No. of total U.S. rivals 0.002 (0.002)
Log of business unit employees 0.13 (0.01)
% rivals with pat. effectiv.=2 −0.55 (0.27)
% rivals with pat. effectiv.=3 −0.02 (0.31)
% rivals with pat. effectiv.=4 0.32 (0.34)
% rivals with pat. effectiv.=5 −0.36 (0.40)
Firm is global 0.21 (0.04)
Firm is public 0.15 (0.05)
Firm is foreign 0.12 (0.07)
% overlap with rivals' R&D 0.21 (0.19) 0.32 (0.08)
University R&D by state/field 0.36 (0.27) 0.27 (0.13)
I.T. used in organization −0.16 (0.10) 0.22 (0.04)
Log of R&D 0.61 (0.05)
N=790

Standard Errors in parenthesis.
Notes: 1) Industry fixed effects estimates are not shown; 2) The standard deviation of the patent premium distribution, σ, obtained from estimating the
R&D Eq. (8) with nonlinear OLS – using the two-step procedure – is 0.7, with a standard error of 0.16.
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The remaining exclusion restrictions implied by our
model are that: 1) Variables affecting the efficiency of
R&D do not affect the patent premium; 2) The value of
an innovation absent patent protection does not affect
the patent propensity equation.23

Eq. (6–2), which represents the patent premium as a
function of observable firm and industry characteristics
(e.g., patent effectiveness, firm size and the number of
technological rivals), is particularly important. Our
estimation is not robust to the existence of unobserved,
persistent firm-specific heterogeneity in the premium.
As explained above, we use a self-reported summary
measure of the multiple – and difficult to measure –
factors that might affect the patent premium. This raises
23 Testing confirms the validity of the former restriction. The latter
restriction is partly rejected by a Wald test, but its relaxation is not
critical to our results. In particular, we can reject the null hypothesis
that the coefficients for the business unit size, public, and industry-
level patent effectiveness measures are zero in the patent propensity
equation; whereas, we cannot reject it for the global, foreign, and total
number of rivals measures. In a previous version of this paper (Arora
et al., 2003) we estimated a more general model where we include all
the determinants of vi among the drivers of the propensity to patent,
and obtained results similar to those reported here. The current
specification is beneficial, however, in that it allows us to estimate the
coefficients of interest with greater precision.
two issues. One is whether the measure we use is in fact
a good summary measure, which has been discussed in
Section 4.3 above. The second issue is whether it is
exogenous, and, in particular, uncorrelated with the
R&D equation error, which is discussed in Section 6 and
Appendix A. Our key identification restrictions and the
results of the related tests are summarized in Table 4.

4.4.2. Identification and single-equation estimates
To further illustrate the sources of identification of our

structural parameter estimates, we estimate the system of
equations in two steps. First, we separately estimate the
patent propensity and the innovation equations, (11–2)
and (11–3), where we instrument for R&D in the
innovation equation using measures of the value of an
innovation and the patent premium. This provides
estimates of the parameter vector δ, identified in the
patent propensity equation, and β, identified in the
innovation equation. Thus, for each firm, we obtain
predicted values from the first stage patent propensity
equation estimates, zi′δ,Φ(zi′δ),φ(zi′δ), and use the β
estimated from the innovation equation to estimateα,λ
and σ from the R&D equation (11–1). We can then
compute an estimate of the average patent premium
μi using (2–1) and the patent premium conditional on



Table 6
System estimates of the structural parameters

β 0.608 (0.048) Elasticity of innovation w.r.t. R&D Value of innovation without patenting
σ 0.708 (0.200) St. dev. of patent premium distribution α1 0.129 (0.018) Log of business unit employees

α2 0.036 (0.012) Log of parent firm employees
Patent premium α3 −0.002 (0.003) N. of U.S. technological rivals
δ1 −1.653 (0.155) Patent effectiveness, class 1 α4 0.002 (0.002) Tot. N. of U.S. rivals
δ2 −0.939 (0.218) Patent effectiveness, class 2 α5 −0.562 (0.317) % rivals with pat. effectiv.=2
δ3 −0.489 (0.185) Patent effectiveness, class 3 α6 −0.064 (0.337) % rivals with pat. effectiv.=3
δ4 −0.324 (0.188) Patent effectiveness, class 4 α7 0.269 (0.357) % rivals with pat. effectiv.=4
δ5 −0.278 (0.211) Patent effectiveness, class 5 α8 −0.456 (0.471) % rivals with pat. effectiv.=5
δ6 0.048 (0.013) Log of parent firm employees α9 0.207 (0.053) Firm is global
δ7 −0.011 (0.007) N. of U.S. technological rivals α10 0.144 (0.052) Firm is public

α11 0.115 (0.080) Firm is foreign
R&D productivity
λ1 0.311 (0.094) % Overlap with rivals' R&D
λ2 0.0003 (0.0001) University R&D by state/field
λ3 0.168 (0.048) I.T. use in organization

Notes:
1) Heteroschedasticity consistent standard errors in parenthesis.
2) Industry fixed effects estimates are not shown.
3) An intercept, with the parameter estimate of −1.28 is estimated in the R&D equation, which represents an estimate of α0+λ0, the constants
included inλ andα. λ0 is also part of the intercept of the patent applications equation, where however it is not separately identified either, because of
the presence of a constant in the parameter vector κ.
4) The total number of parameters estimated is 65.We used 790 observations for both the patent propensity andR&Dequations, and 559 (the patentees)
for the patent application equation. Overall, we have 3 endogenous (R&D, patent propensity, patent applications) and 38 unique exogenous variables in
the system.
5) The adjusted R-square for each equation are the following: 0.43 for the patent propensity equation, 0.39 for the patent application equation, and
0.51 for the R&D equation.

25 We estimate this unbalanced system (different number of
observations per equation) with SAS ‘Model’ procedure, using the
N3SLS and “missing=pairwise” options, and the HCCME=1 option
to correct for heteroscedasticity, available in SAS v. 9.1.
26
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patenting, μi⁎, using (3–1) and (3–2), evaluated at the
sample average.24

The single-equation estimates are shown in Table 5.
The main point is that these estimates are similar to
those obtained from estimating the three equations as a
system. In particular, the estimates of β are 0.61 in both
cases. Similarly, the estimate for σ is 0.70 in the single-
equation case and 0.71 in the system estimates. The
implied estimates of the conditional premium, μi⁎, are
1.66 and 1.47 respectively. Further discussion on these
results is postponed until we review the results from the
joint estimation.

4.5. Estimation

The three equations in the system have an unequal
number of observations. The innovation equation does
not include observations for firms which do not patent
(about 30% of the sample) due to the way the dependent
variable is constructed. However, non patenting firms are
included in the R&D and patent propensity equation. We
jointly estimate the system of simultaneous Eqs. (11–1),
24 The constant terms included in vi and si are not identified, but the
estimation of the average patent premium is unaffected once we have
estimates of δ and σ.
(11–2), and (11–3) with the method of nonlinear three-
stage least squares (NL3SLS).25 NL3SLS is a moments
type estimator, where instrumental variables are used to
form the moment equations, and consistency requires
only that the error terms be mean zero and i.i.d. across
observations (cf. Amemiya, 1985; Gallant, 1987).26

NL3SLS allows us to impose cross-equation restrictions,
as well as take into account the correlation of errors
across equations. The error terms of the innovation and
R&D Eqs. (11–1) and (11–2), ηia and ηir, are indeed
correlated through the unobserved components affecting
the average productivity of R&D, ηis.

5. Results

Table 6 presents the structural estimates of our bench-
mark specification, represented by Eqs. (11–1), (11–2),
Formally, the NL3SLS estimator is the θ̂ that minimizes
η(θ)′ZΣ-1Z′η(θ), where Z is a set of instruments, η is an error
term, function of the model parameters, andΣ is a consistent estimate
of E[Z′ηη′Z] obtained using the nonlinear two stage least squares
residuals (cf. Gallant, 1987: p. 433).



Table 7
Patent premium estimates

Expected patent premium Conditional patent premium

Medical instruments 1.11 1.62
Biotech 0.99 1.58
Drugs and medicines 0.96 1.57
Office and computing equipment 0.73 1.49
Machinery 0.72 1.49
Industrial chemicals 0.66 1.48
Other electrical equipment 0.58 1.46
Other chemicals 0.57 1.46
Communication equipment 0.56 1.45
Semiconductors 0.55 1.45
Metals 0.54 1.44
Petroleum refining and extraction 0.50 1.44
Other manufacturing industries 0.49 1.43
Instruments, exc. Medical 0.47 1.43
Aircraft and missiles 0.46 1.42
Transportation, exc. Aircrafts 0.46 1.43
Rubber products 0.42 1.42
Electronic components, exc. Semicond 0.40 1.41
Food, kindred, and tobacco products 0.28 1.38
Total 0.60 1.47
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and (11–3). Tables 7 and 8 show the implied values of the
expected and conditional patent premia and the elasticities
of interest. The robustness of the results is further
explored in Section 6 and Appendix A.

5.1. Marginal R&D productivity

The elasticity of the number of innovations with
respect to R&D (β) importantly conditions the impact of
Table 8
Percentage change in R&D and patenting associated with a one-tenth-point

Industry R&D Patent appl

Medical instruments 10.2% 16.4%
Biotech 9.6 17.5
Drugs and medicines 9.2 17.8
Office and computing equipment 7.7 19.9
Machinery 7.6 19.9
Industrial chemicals 7.1 20.6
Other chemicals 6.5 21.5
Other electrical equipment 6.5 21.4
Communication equipment 6.3 21.6
Semiconductors 6.2 21.5
Metals 6.1 21.7
Petroleum refining and extraction 5.8 22.1
Other manufacturing industries 5.8 22.2
Transportation, exc. aircrafts 5.7 22.7
Instruments, exc. medical 5.6 22.3
Aircraft and missiles 5.5 22.5
Rubber products 5.2 22.9
Electronic components, exc. Semiconductors 5.0 23.2
Food, kindred, and tobacco products 4.1 24.2
Total 6.6 21.2
changes in the patent premium on R&D in our sub-
sequent simulation. The smaller the elasticity, the more
sharply the marginal productivity of R&D declines, and
hence, the less responsive R&D is to factors that affect
the payoff from R&D, such as the patent premium. As
shown in Table 6, our point estimate for β is 0.61, which
is consistent with other studies of the relationship
between patents and R&D (e.g., Pakes and Griliches,
1984; Hall et al., 1986; Cincera, 1997).
patent premium increase

ications Patent propensity Patent applications per R&D $

10.2% 6.2%
11.6 7.9
12.2 8.6
15.2 12.2
15.3 12.3
16.2 13.4
17.5 15.0
17.5 14.9
17.8 15.3
17.8 15.3
18.0 15.6
18.5 16.3
18.7 16.4
19.3 17.0
18.9 16.7
19.1 16.9
19.7 17.6
20.1 18.1
21.8 20.2
17.1 14.6



28 The standard error is 0.124, with a 95% confidence interval
between 1.2 and 1.7.
29 This is obtained from the difference between expected returns from
R&D with and without patents, i.e. m(h-v), with h defined in (3).
30 This is obtained by substituting the level of r from the F.O.C.,
r=βmv(μ⁎π−π+1), into the expression for the ESR.
31 We use the following values: the conditional patent premium
estimate of μ⁎=1.5; the empirical probability of patenting (observed
patent propensity) weighted by R&D equal to 0.5; the estimated value
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5.2. The patent premium distribution

The ascending ordinal ranking of the coefficient esti-
mates for our patent effectiveness dummies conforms to
our priors; respondents with higher patent effectiveness
scores are characterized by higher patent premium levels, as
shown by the increasing value of the first five coefficients
of the parameter vector δ. The equality of the first four
coefficients is rejected at the 5% confidence level. The
coefficient estimates for the other hypothesized determi-
nants of the premium are also significant and conform to
our priors. Larger firms have higher premia (δ6 is positive
and significant at the 1%), consistent with the notion that
larger firms have greater access to legal and other resources
that can be so important in the enforcement of patent rights.
Also, firms with more technological competitors have
lower premia (δ7 is negative with a significance close to
conventional levels). Industry effects (not shown) are
jointly significant, with significant positive effects only for
the biotech and pharmaceutical industry.

Estimation of the parameter vector δ allows us to
compute the predicted patent premium for each firm as,
μ̂i =1− σ̂zi′δ̂ using (2–1) and (6–2). Table 7 reports the
average premium for all innovations (i.e., the expected
premium), as well as for patented innovations only—the
latter reflecting the premium conditional upon patenting.
The average patent premium for all innovations for the
sample is about 0.6 (with a standard error of 0.118 and a
95% confidence interval between 0.4 and 0.8). Thus, for
the U.S. manufacturing sector, the expected value of the
typical innovation if patented, is 40% lower than without
patenting. This unconditional patent premium is greater
than unity in only one industry, medical instruments, and
it is about unity in biotech and drugs. An unconditional
average patent premium less than unity suggests that the
opportunity cost of patenting, including the cost of
information disclosure, the likelihood of inventing
around, and perhaps the cost of enforcement are
substantial.27 This result both confirms earlier findings
but also marks an advance. Earlier studies (e.g., Levin et
al., 1987, Cohen et al., 2000) had found that patents are
not as central to the protection of inventions as other
mechanisms except in few, selected industries. Our
estimates confirm that in most industries, patenting the
27 To help interpret the results, as a corollary exercise we computed
the average estimated premium across respondents who indicated the
amount of information disclosed in a patent application, the ease of
legally inventing around a patent, or the cost of defending a patent in
court as reasons not to patent. We find that respondents with positive
scores for these variables (i.e. not patenting for that reason) have an
estimated net patent premium respectively 17%, 12%, and 34% lower
than those who did not report them.
typical innovation is indeed not profitable. However,
even in these industries, some innovations are profitable
to patent, thus explaining why firms may patent some
innovations even though they report patents to be less
effective than other appropriability mechanisms.

Although the typical innovation may not be profitable
to patent, conditional upon patenting an innovation the
patent premium is, however, large. As the second column
of Table 7 shows, conditional upon having patented an
innovation, firms expect to earn almost 50% more on
average than if they had not patented those innovations.28

The conditional premium is highest in industries such as
medical instruments, biotechnology, and drugs and
medicines and lowest in food and electronics. As
expected, the variation is also much smaller for the
conditional than for the unconditional premium.

Our aggregate result is consistent with the “equivalent
subsidy rate” that Schankerman (1998) found in his ana-
lysis of patent renewal data for four industries in France,
though a bit higher than the rate that Lanjouw (1998)
estimated on the basis of data from four West German
industries. Schankerman's rate is computed as the addi-
tional value created by patent protection in the economy
for all the innovations that are patented, divided by total
R&D. In our model, and omitting the firm subscript i, the
ESR is simply mvπ(μ⁎−1)/r, where m is the number of
innovations, v is the value of an innovation absent patent
protection, μ⁎ is the conditional patent premium, π is the
probability of patenting, and r is a firm's total R&D.29

When the R&D level is optimally chosen, this is equal to
(μ⁎π−π)/[β(μ⁎π−π+1)].30 At the average values in our
sample, ESR is equal to 33%,31 which is close to
Schankerman's estimate of 25%, though higher than
Lanjouw's (1998) estimates which fall in the 10–15%
range.32 While it is encouraging that our estimates are
of β=0.6.
32 In Section 6 below we note that if we permit the expected returns
to R&D to also depend upon R&D itself, then we can bound our
premium estimate. Under this assumption, our estimate of the ESR
would then fall in a range between 20% and our original estimate of
33% (see Appendix). Also, the fact that our estimate is for a later
period for the U.S. – the mid-1990s, by which time the effects of the
pro-patent reforms of the early and mid-1980s in the U.S. had been
fully applied – could partly explain why our estimates are somewhat
higher than those of Schankerman and Lanjouw.
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comparable to those arrived at by very different methods
and data, our judgment of comparability must, however,
be tempered with the fact that these are for different
nationswith somewhat different patent laws and practices.

5.3. Firm and industry characteristics

Table 6 also shows the effect of other firm and industry
characteristics on the expected value of an innovation
without patenting (vi) and R&D productivity (si). Both
business unit size and firm size have a positive and sig-
nificant effect on the value of an innovation, but the effect
of business unit size is more than twice as large, which is
qualitatively consistent with an R&D cost-spreading ad-
vantage of larger business unit size (Cohen and Klepper,
1996). Being public and being global are also associated
with higher expected value per innovation. Technological
rivalry decreases the value of an innovation, whereas an
increase in the number of total rivals increases the value of
an innovation, though neither effect is statistically signi-
ficant.33 The impact of increasing rival patent effective-
ness on vi is mixed and jointly insignificant.34 The
technological overlap between the R&D lab's projects
and those of its rivals — a measure of closeness in the
technology space which should increase information
flows between rivals — is associated with higher R&D
productivity. Similarly, university R&D spending by state
and field also increases R&Dproductivity, consistent with
knowledge spillovers from public research.

5.4. The response of R&D and patenting to changes in
the patent premium

To assess the R&D response to patent premium
changes, we compute the marginal increase in the log of
R&D w.r.t. to a change in the firm's average uncondi-
33 In symmetric industry settings without spillovers, more rivals tend
to reduce R&D investments (cf. Vives, 2004). From an empirical
point of view, however, the effect of competitive pressure on
innovation is controversial (cf. Cohen, 1995). Ceccagnoli (2005)
shows how, in asymmetric industry settings with spillovers, a larger
number of rivals, holding the number of technologically capable rivals
constant, may actually increase R&D effort.
34 The effectiveness of rivals' patents can have different effects on
the expected value of an innovation. The most obvious one is that
increases in the effectiveness of a rival's patents should reduce the
value of an innovation, reducing the average return to R&D. However
this component of our model is the “reduced form” of a more complex
market interaction in which increases in rival patent effectiveness may
spawn offsetting incentive effects. For example, in some models of
patent races, an increase in the effectiveness of rivals' patents may
increase the marginal payoff to own R&D by increasing rival R&D
(cf. Reinganum, 1989).
tional patent premium by differentiating the log of (5) w.
r.t. μi, and obtain:

eru
∂ log ri
∂µi

¼ 1
1� b

pi

µ4i � 1

 �

pi � 1
; ð12� 1Þ

with πi and μi⁎ defined in (2) and (3-1), respectively. We
then evaluate for each firm the magnitude of the response
and compute the averages. We find that the responsive-
ness of R&D to changes in the patent premium is
substantial. As the first column of Table 8 shows, a 0.1
increase in the premium (equivalent to 1/5 of the stan-
dard deviation of the predicted μi across respondents)
leads to an average 6.6% increase in R&D.35 However,
there is substantial inter-industry variation, with the
R&D response being around 10% in the health-related
industries and 5% in the electronics or communication
equipment industries.

Alternatively, for comparison with similar results
from the literature, one could evaluate the impact on
R&D of a decrease in the premium on the order of 0.5,
which would correspond to a case in which, on average,
μi⁎=1, that is, where it is no longer to the firm's benefit
to obtain patent protection (i.e., patented innovations
have a 0% conditional premium). In such a case, R&D
would decline by about 31%, which is comparable to
survey evidence on this question presented by Mans-
field et al. (1981) and the simulation results of Eaton and
Kortum (1999), who estimate reductions in R&D of
36% and 50% respectively.36

We also computed the impact of increasing the patent
premium on patent applications, patent propensity, and
patent applications per R&D dollar. The semi-elasticity
of patent applications (i.e., the percentage change in
patent applications per unit change in the premium) is:

eau
∂ log ai
∂µi

¼ ∂ log pi
∂µi

þ b
∂ log ri
∂µi

¼ ep þ ber; ð12� 2Þ
35 A 0.1 increase in the premium is also equivalent to 1/3 of the
increase in the predicted premium for respondents scoring patent
effectiveness equal to the second class – the median – to the next
higher level – the third class.
36 On the basis of a small sample survey, Mansfield et al. (1981)
reports that respondents suggested that about one-half of the patented
innovations would not have been introduced without patent protec-
tion, and about one-quarter if the drug industry respondents are
dropped from their sample of 48 innovations. Mansfield et al. (1981)
suggest that combining their industry weights with Taylor and
Silberston's earlier analysis implies that 36% of the R&D conducted
by the firms would not have been conducted in the absence of patent
protection.
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with ep representing the elasticity of patent propensity
with respect to the patent premium,

ep ¼ 1
r

B zið Þ
1�A zið Þ½ � ; ð12� 3Þ

with er defined in (12–2) above, and zi defined in (2–1).
Thus, the % change in patent applications per R&D
dollar w.r.t. a unit change in the patent premium is simply
ear≡ep− (1−β )er, with er and ep defined in (12–1) and
(12–3).

Table 8 shows that, on average, an increase in the
premium of 0.1 (i.e., 10%) will increase patent appli-
cations by 21%, patent propensity by 17%, and patent
applications per R&D dollar by 15%. These results sug-
gest that the impact of increasing the patent premium
on patenting is substantial, and is consistent with the
hypothesis that the reversal of the secular decline in the
patent per R&D dollar ratio in the U.S. during the mid
1980s (cf. Kortum and Lerner, 1998) partly reflects an
underlying increase in the strength of patent protection.As
was true earlier, we find substantial differences across
industries. Indeed, in biotech, pharmaceuticals and
medical instruments the increase in the patent per R&D
dollar ratio as a response to a 0.1 change in the patent
premium is between 6% and 9%, almost half as big as the
increase of 15% in semiconductors and communication
equipment. Our results are consistent with Hicks et al.'s
(2001) finding that patents per R&D dollar grew
substantially more in information technology relative to
health-related technology industries during 1989–1996—
a period during which the patent premium arguably
increased, at least modestly. Likewise, our results are
consistent with Hall and Ziedonis (2001) who note that
since the 1980s, patenting itself grew disproportionately
more than R&D spending in the semiconductor industry.

An important implication of our analysis is that, given a
change in the patent premium, patenting itself will rise
disproportionately more than R&D and that such a dis-
proportionate effect need not reflect mere “patent harvest-
ing”—that is, the patenting of innovations that would have
been generated even in the absence of patent protection.

6. Robustness checks

In this section we report on a variety of robustness
tests. More details and additional sensitivity analysis are
provided in Appendix A.

6.1. The impact of R&D on the value of an innovation

We assume that a firm's R&D effort affects expected
returns by increasing the number of innovations, with-
out affecting their value. In Appendix A we extend our
model by letting the value of an innovation depend on a
firm's R&D effort. We show that in such a model it is
not possible to identify the elasticity of value with
respect to R&D. Further, our estimate of the premium
conditional on patenting is upward biased. But the
estimated the elasticity of R&D w.r.t. to the premium is
downward biased. We can use our existing estimates to
bound the extent of the bias. A lower bound for the
conditional premium, μi⁎, is 1.26 (against the benchmark
estimate of 1.47) and an upper bound for the R&D
elasticity is 1.5 (against the benchmark estimate of
0.66).

R&D could also affect the expected returns by affect-
ing the patent premium, if, for example, the strength
of the patent portfolio depends on its size. Such an
effect, if present, would make estimation intractable.
We argue, however, that such an effect is weak, at best.
Indeed, additional sensitivity analysis (not reported)
shows that when R&D is included on the right-hand-
side of the patent propensity equation, its impact, al-
though statistically significant, is very small in magni-
tude. Moreover, when the simultaneity between the two
variables is accounted for by instrumenting for R&D
(using spillover-related variables, which ought to be
excluded from the patent propensity equation), its im-
pact decreases even further and also becomes statisti-
cally insignificant.

6.2. Endogeneity of patent effectiveness

One concern is that sources of variation in patent
effectiveness within an industry may be correlated with
unobserved variations in R&D productivity. Since we
have cross-section data, we have to seek a source of
variation in the perceived strength of patents that is
plausibly uncorrelated with variations in R&D produc-
tivity. We develop two instruments. The first exploits
differences in the focus industry of the R&D lab (i.e., the
industry sector of the business unit) and the primary
industry of the parent firm. Our instrumentation strategy
can be illustrated by the suggestion that a business unit
whose parent firm operates, for example, in the
pharmaceutical industry, where sophisticated IP strate-
gies and a belief in the value of patents are the norm, will
obtain higher returns to patenting– and therefore report a
higher patent effectiveness scores – than an otherwise
identical business unit whose parent firm is in textiles.
Roughly half of the respondents belonged to an SIC
different from the primary SIC of the parent firm, pro-
viding a significant source of variation to be exploited.
Although we lack information about patent effectiveness
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for the parent firm of each R&D lab, we use the average
patent effectiveness score of the primary industry of the
parent firm as an instrument for the respondent level
patent effectiveness dummy variables.

As an additional instrument, we use a binary respon-
dent-level measure of whether the cost of information
disclosure was a reason not to patent a recent invention.
While this factor may shift the firm's cost of patenting, it is
plausibly uncorrelated with any unobserved variations in
the productivity of R&D. In Appendix Awe show that the
instruments are not weak and are valid. As shown in Table
A.2 in Appendix A, the results are similar to the estimates
arrived at under the assumption that patent effectiveness is
exogenous. For instance, the point estimate of σ is 0.79 as
compared to 0.71, and the average patent premium is 0.48
and premiumconditional on patenting is 1.48, as compared,
respectively, to 0.6 and 1.47 obtained assuming patent
effectiveness to be exogenous.

7. Conclusion

Despite its importance, the question of “do patents
stimulate innovation” has proven difficult to answer,
largely due to data limitations. Thus, it is not surprising
that empirical studies to date provide conflicting
evidence. In this study, we have brought to bear unique
data drawn from the 1994 Carnegie Mellon Survey of
R&D performing units in the U.S. manufacturing sector.
By providing key measures for R&D, patent effective-
ness, and particularly patent propensity—the percen-
tage of innovations that are patented—the data allow us
to analyze patenting and R&D as distinct, albeit jointly
determined, decisions. As a consequence, we are able to
estimate the patent premium, and empirically distinguish
the impact of the patent premium on R&D from its
impact on patenting behavior itself.

Our results indicate that even though most innovations
are not worth patenting, patents are valuable for a subset
of innovations, and consequently, patents do provide
incentives for R&D. We find that on average patents do
not provide a positive (greater than unity) expected
premium net of patent application costs in any industry
except medical instruments. The net premium is around
unity for biotech and pharmaceuticals, followed by
computers, machinery, and industrial chemicals. How-
ever, the expected premium conditional on patenting (i.e.,
the patent premium for innovations that were patented) is
substantial. Firms earn on average a 50% premium over
the no patenting case, ranging from 60% in the health
related industries to about 40% in electronics. Our
estimates also imply that an increase in the mean of the
patent premium distribution for a typical firm in our
sample of manufacturing firms would significantly
stimulate R&D. This is certainly true in industries
where the patent premium tends to be high, such as
drugs, biotech and medical instruments. But, even in
industries where the patent premium is lower and firms
rely more heavily upon means other than patents to
protect their inventions, such as electronics and semi-
conductors, our estimates imply that patents stimulate
R&D, though less so.

Our analysis indicates that patenting stimulates
incumbent R&D. With its focus on private returns, our
analysis does not, however, imply that patents necessarily
yield a net social welfare benefit in any specific industry,
nor overall. Per Scotchmer (1991) andMerges andNelson
(1990), for example, the net social return to patentingmay
well be negative in industries subject to cumulative
innovation where the assertion of patent rights restrict the
use of discoveries in follow-on research to the point where
the private returns to the initial patent-protected innova-
tion are more than offset.

Although we have aggressively probed the robustness
of our results, our data and analysis do suffer from
limitations. First, despite their richness, the Carnegie
Mellon Survey data force reliance upon only cross-
sectional variation across firms. Data constraints also
preclude a comprehensive analysis of the impact of patent
protection on innovation. Specifically, as noted above, our
analysis is confined to estimating the private, not social
returns, to patenting. We also ignore the impact of patents
on entry and on the emergence of markets for technology,
both of which are important determinants of technical
change. Our decision theoretic model also ignores
strategic interactions among rivals. Finally, while our
results appear robust to possible use of other appropria-
bility mechanisms in lieu of patents, we cannot analyze
the implications of the wholesale elimination of patents
due to the discontinuity of such a change, no less its
implications for strategic behavior. Notwithstanding these
limitations, we suggest, however, that our modeling
approach and use of survey-based data provide a strong
complement to other methods and data for attacking what
is clearly an important and complex problem.

Appendix A. Additional specifications and
sensitivity analysis

A.1. The impact of R&D on the expected value of an
innovation

Weassume that a firm'sR&Deffort affects the expected
returns from the resulting innovations by increasing the
number of innovations, without affecting their value.
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To probe the robustness of our results to the
assumption of the lack of a relationship between R&D
and the value of an innovation absent patent protection,
we extended our model by letting vi= ṽiri

γ, with ri repre-
senting a firm's R&D effort, ṽi the firm-level component
of the value of an innovation which depends on firm-
level characteristics other than R&D (as well as industry
level variables), and γ is the elasticity of value w.r.t. to
R&D. The first-order condition for an optimum of such
an extended model becomes (β+γ)ri

β + γ–1h̃isi−1=0,
with h̃i=μi⁎ν̃iπi + (1−πi)ν̃i; the second-order condition is
(β+γ)(β+γ−1)riβ +γ− 2h̃isib0. Satisfaction of first and
second-order conditions require 0bβ+γb1.

The equilibrium level of R&D of this extended
model, expressed in logs, is almost identical to (11–1):

log ri ¼ 1
1� b� g

log bþ gð Þþ s
0
i kþ ṽ

0

iαþ log µ4i � 1

 �

pi þ1
h in o

þ gir:

The main implications of the extension are:
1) Although we can identify β from the patent

application equation, we do not have data to identify γ.
2) Our estimate of the premium conditional on

patenting is upward biased. This can be seen by noting
that, using log[(μi⁎−1)πi+1]≌ (μi⁎−1)πi for the nonlinear
term in the R&D equation, the coefficient multiplying the
probability of patenting in the R&D equation becomes
τ≡ (μi⁎−1) / (1−β−γ).37 We then estimated τ with a step-
by-step single – and linear – equation procedure, using
the observed patent propensity as a measure of πi,
instrumented using patent effectiveness (as explained in
the main text of the paper, this sequential estimation
procedure yields results consistent with full-system joint
estimation). The obtained value of τ=1.47, together with
the estimate of β=0.61, obtained from the single equation
estimation of the innovation equation, suggest that μi⁎=
1.57−1.47γ. When γ=0, as assumed in our benchmark
specification, the conditional premium estimated from the
linearized single equation procedure is 1.57. Given the
estimates, as the true γ increases, the true μi⁎ tends to 1,
suggesting that if γ were positive, the true premium
conditional on patenting would be lower (see further
below for an estimate of the true lower bound of μi⁎).
37 Numerical simulation shows that this is in fact, for our purpose, a
good approximation for values of μi⁎ between 1 and 2. For example,
with a μi⁎=1.5 and using the sample average patent propensity of 0.32
to measure πi, the difference between the true term and its approxi-
mation is 0.01.
3) The elasticity of R&D w.r.t. to the premium is
downward biased. In the extended model this elasticity is
er≡∂ log ri /∂μi= [1 / (1−β−γ)](πi / [(μi⁎−1)πi+1]), with
πi and μi⁎ defined in (2) and (3-1). The true elasticity
increases as the true γ increases, because 1/ (1−β−γ)
increases and μi⁎ decreases.

4) We can provide approximate bounds for our key
estimates using the following constraints:

a)
µ4i �1
1�b�g ¼ 1:47;

b) 0≤γb1−β;
c) eru 1

1�b�gð Þ
pi

µ4i �1ð Þpiþ1
z 0.

Constraint a) follows from the R&D equation esti-
mated as a linear single equation, as explained above,
while b) and c) follow from the first and second-order
conditions of the extended model. With an estimated
β=0.61, and a value for πi=0.32 equal to the sample
average patent propensity, we find that 0bγb0.21 is the
only range of parameter values of γ compatible with the
above constraints, towhich corresponds a lower bound for
μi⁎ of 1.26 (against the benchmark estimate of 1.47) and an
upper bound for the true R&D elasticity er of 1.5 (against
the benchmark estimate of 0.66).

We can also compute bounds for the “equivalent
subsidy rate” (ESR). Omitting the firm subscript i, in the
extended model the ESR is m(h− v) / r, with h=
μ⁎νπ+(1−π)ν, and ν= ν̃rγ. Substituting into this ex-
pression r=(β+γ)+mv(μ⁎π−π+1) obtained from the
F.O.C. for optimal r, implies that, ESR=(μ⁎π−π) /
[(β+γ)(μ⁎π−π+1)]. At the average values in our
sample, and using the upper bound for γ=.21, the
lower bound of the ESR is 25%. If β+γ is set to the
maximum value compatible with the S.O.C., i.e.
β+γb1, then the lower bound for the ESR would be
20%. The upper bound, equal to 33%, is obtained using
our benchmark model, for which γ=0.

A.2. Instrumenting for patent effectiveness

Another concern is that sources of variation in patent
effectiveness within an industry may be correlated with
unobserved variations inR&Dproductivity. It is plausible,
for example, that managers who manage their patent
holdings in a more sophisticated way also manage their
R&D more effectively, for example by providing strong
incentives to generate patentable innovations.

We address this concern by instrumenting for patent
effectiveness. As discussed in the text, we develop two
instruments. The first exploits differences in the focus
industry of the R&D lab (i.e., the industry sector of the
business unit) and the primary industry of the parent firm.



38 We performed the C (or difference-in Sargan) test (see for example
Hayashi, 2000), by computing the difference between two Sargan
statistics for each equation of the estimated system: that for the
(restricted, fully efficient) estimation using the full set of instruments
(parent's industry patent effectiveness and information disclosure
respondent's dummy), versus that for the unrestricted estimation only
using the parent's industry patent effectiveness instrument, assumed
to be valid, and therefore leading to inefficient but consistent
estimates. The obtained values of the test statistics for each equation
are 0.15, 1.69, and 1.14 in the R&D, innovation, and patent
propensity equations respectively. We therefore fail to reject the null
hypothesis that the information disclosure patenting cost dummy is a
valid instrument (the critical value of the χ2 with one degree of
freedom – the number of suspect instruments being tested − is 3.84).
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Our instrumentation strategy can be illustrated by the
suggestion that a business unit whose parent firm oper-
ates, for example, in the pharmaceutical industry,
where sophisticated IP strategies and a belief in the
value of patents is the norm, will obtain higher returns to
patenting – and therefore report a higher patent effective-
ness scores – than an otherwise identical business unit
whose parent firm is in textiles. Roughly half of the
respondents belonged to an SIC different from the
primary SIC of the parent firm, providing a significant
source of variation to be exploited. Although we lack
information about patent effectiveness for the parent firm
of each R&D lab, we use the average patent effectiveness
score of the primary industry of the parent firm as an
instrument for the respondent level patent effectiveness
dummy variables. As an additional instrument, we also
use a binary respondent level measure, available from the
survey, of whether the cost of information disclosure was
a reason not to patent a recent invention.

To assess instrument validity we first assess their
power, i.e., their correlation with the potentially endo-
genous patent effectiveness variable. Table A1 reports the
results from an auxiliary ordered logit regression
explaining patent effectiveness with the above instru-
ments and the remaining exogenous variables (described
in Table 1, main text). Table A1 reveals that the first
instrument, the industry-level patent effectiveness (mea-
sured as the % of firms within the primary industry of
the parent firm reporting a given range of patent
effectiveness – excluding the lowest) has a large, positive
and significant effect on the respondent's patent effective-
ness. The chi-square statistic for the differences between
coefficients corresponding to different patent effectiveness
levels is equal to 15.9, and we can therefore reject the
equality in the coefficients at the 1% significance level.
The second instrument, the cost of disclosure as a reason
not to patent, has a negative and significant effect. The
chi-square statistic is equal to 8.6, so that we can reject the
null of no effect at conventional confidence levels. The chi-
square statistic to test the null hypothesis that the full
set of instruments has no effect on patent effectiveness
(i.e. the coefficient of the cost of disclosure as a reason
not to patent is null and the coefficients corresponding to
different patent effectiveness in the primary industry of
the parent firm are equal) is 25.4. The instruments have
therefore a degree of power at conventional levels.

We also performed a test of overidentification to assess
the null hypothesis that the instruments are exogenous,
i.e. uncorrelated with the econometric error terms in
Eqs. (11–1), (11–2), and (11–3). To perform this test,
however, we need to assume that at least one instrument is
exogenous, and we therefore assume that the average of
patent effectiveness in the primary industry of the parent
firm is a valid instrument. The C (or difference-in Sargan)
test fails to reject the null hypothesis that the second
instrument, the cost of disclosure as a reason not to patent,
is exogenous.38

Parameter estimates of the system of Eqs. (11–1),
(11–2), and (11–3), where we instrument for the each
respondent's patent effectiveness, using nonlinear three-
stage least-squares, are reported in Table A2. Results are
very similar to the exogenous patent effectiveness case,
shown in Table 5. We obtain an estimate of the standard
deviation of the patent distribution of 0.79 (σ), instead of
the benchmark estimate of 0.71. The implied average
patent premium is 0.49 and the patent premium conditional
on patenting 1.48. The similarity of the results obtained
with exogenous and endogenous patent effectiveness
points to the robustness of the results. Any bias due to
the correlation between patent effectiveness and the un-
observed factors affecting R&D productivity or the value
of an innovation (the two components of the structural error
term of the R&D equation) appears to be small.

We also assessed the reliability of the patent effective-
ness variable by re-estimating the model using randomly
generated data for each respondent on the five patent
effectiveness dummies included in (6–2). We did not
obtain meaningful estimates of the patent premium as
indicated by estimated coefficients δ1 through δ5 which
were not significantly different from one another (equal to
about −1), and an ‘exploding' estimate of σ (around 60),
indicating no effect of the randomly computed patent
effectiveness on the patent premium. By randomly as-
signing values to patent effectiveness, we basically loose a
key source of variation to identify some of the structural
parameters.

Finally, further support for the robustness of our results
to any concerns surrounding our measure of patent ef-
fectiveness – either its possible endogeneity or its
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interpretation – is provided by single-equation estimates
(not reported) obtained omitting patent effectiveness
from the analysis. In particular, we estimated the R&D
Eq. (11–1), where we substitute the value β=0.61, use
actual patent propensity as a measure of πi, and set the
conditional premium as a constant to be estimated. The
average conditional premium obtained from the estimated
coefficient of the observed patent propensity is 1.52, very
similar to the system estimate of 1.47.

A.3. Measurement of the total number of product patent
applications

One of the three endogenous variables of the
estimated system of Eqs. (11–1), (11–2), (11–3) – the
log of the total number of product innovations – is
actually not observed in the survey data, but rather is
computed as the difference between the log of the
number of product patent application and the log of
product patent propensity, with the unobserved number
of product patent applications based on an adjusted
measure of the observed number of total patent
applications (as explained in footnote a, Table 1 in the
main text). To explore the robustness of our results to the
use of such an adjusted measure, we re-estimated the
system of 3 equations using the observed variable as it
appears in the CMS (i.e. we use the total number of yearly
patent applications by firm i in the business unit of the
respondent without the adjustment) with very similar
results. In particular, we obtain an estimate of the
standard deviation of the patent premium distribution of
0.57 (σ), instead of the benchmark estimate of 0.71. The
Table A1
Impact of the instruments on respondents' patent effectiveness

Information disclosed in a patent as reason not to patent (dummy)

% firms with patent eff.=2 at the primary industry level of the parent firm

% firms with patent eff.=3 at the primary industry level of the parent firm

% firms with patent eff.=4 at the primary industry level of the parent firm

% firms with patent eff.=5 at the primary industry level of the parent firm

Log of business unit employees

Log of parent firm employees

No. of U.S. technological rivals
implied average patent premium (μ) is slightly higher,
0.68 (instead of 0.6), and the conditional patent premium
(μ⁎) slightly lower, 1.37 (instead of 1.47). The elasticity of
R&D w.r.t. changes in the patent premium is 0.8 instead
of 0.66. Finally, the adjusted R2 using the observed total
number of patent applications instead of our adjusted
measure drops from 0.39 to 0.35, suggesting a better fit
using our preferred measure.

A.4. Additional specifications

In a previous version of this paper (Arora et al., 2003)
we estimated a model specification where the payoff
from patenting an innovation is wijvij− c, and vij
otherwise, with c being a constant representing the cost
of patenting and wij the patent premium gross of
patenting costs. This specification allows patent pro-
pensity to depend upon size and other firm and industry
characteristics that condition vi, the average value of an
innovation absent patent protection. This results in an
empirical model with additional cross equation restric-
tions, and one that also proved to be more difficult to
estimate.We did obtain qualitatively similar results, both
in terms of our estimates of the conditional and
unconditional patent premium, and in terms of the
impact of the patent premium on R&D and patenting. It
also yielded ESR estimates very similar to those reported
by Schankerman (1998). However, estimates of c and vi
were very sensitive to the specification and required a
grid search procedure. The results indicated that the
estimated ratio of c to vi was stable, leading to the
benchmark specification discussed in the text.
−0.410
(0.140)
−0.369
(0.900)
0.878
(1.142)
1.197
(1.198)
4.542
(1.304)
0.150
(0.049)
−0.024
(0.044)
−0.031
(0.017)



No. of total U.S. rivals −0.006
(0.008)

% rivals with patent eff.=2 −2.028
(1.127)

% rivals with patent eff.=3 −1.128
(1.329)

% rivals with patent eff.=4 −1.744
(1.442)

% rivals with patent eff.=5 −4.793
(1.707)

Firm is global 0.372
(0.184)

Firm is public 0.442
(0.197)

Firm is foreign 0.332
(0.286)

I.T. Used in organization 0.320
(0.150)

University R&D by state/field 0.868
(0.493)

% Overlap with rivals' R&D −0.206
(0.300)

Notes: 1) Dependent variable: Patent effectiveness (cf. Table 1); 2) Parameter estimated using an auxiliary ordered logit regression; 3) Industry fixed
effects are not shown; 4) Robust standard errors in parentheses; 5) N. of obs.: 763. 6) We reject the null that the instruments have no effect at the 1%
significance level using a likelihood-ratio test (see Appendix A).

Table A2
System estimates of the structural parameters with endogenous patent effectiveness

β 0.591 (0.043) Elasticity of innovation w.r.t. R&D Value of innovation without patenting
σ 0.793 (0.389) St. dev. of patent premium distribution α1 0.129 (0.019) Log of business unit employees
Patent premium α2 0.042 (0.015) Log of parent firm employees

δ1 −2.056 (0.532) Patent effectiveness, class 1 α3 −0.002 (0.004) N. of U.S. technological rivals
δ2 −1.119 (0.595) Patent effectiveness, class 2 α4 0.002 (0.002) Tot. N. of U.S. rivals
δ3 −0.156 (0.543) Patent effectiveness, class 3 α5 −0.450 (0.327) % rivals with pat. effectiv.=2
δ4 −0.046 (0.430) Patent effectiveness, class 4 α6 0.025 (0.353) % rivals with pat. effectiv.=3
δ5 −0.177 (0.453) Patent effectiveness, class 5 α7 0.220 (0.392) % rivals with pat. effectiv.=4
δ6 0.044 (0.037) Log of parent firm employees α8 −0.361 (0.496) % rivals with pat. effectiv.=5
δ7 −0.001 (0.020) N. of U.S. technological rivals α9 0.227 (0.055) Firm is global

R&D productivity α10 0.136 (0.055) Firm is public
λ1 0.356 (0.098) % Overlap with rivals' R&D α11 0.116 (0.084) Firm is foreign
λ2 0.293 (0.130) University R&D by state/field
λ3 0.173 (0.049) I.T. use in organization

Notes:
1) Heteroschedasticity consistent standard errors in parenthesis.
2) Industry fixed effects estimates are not shown.
3) An intercept, with the parameter estimate of −1.42 is estimated in the R&D equation, which represents an estimate of α0+λ0, the constants
included inλ andα. λ0 is also part of the intercept of the patent applications equation, where however it is not separately identified either, because of
the presence of a constant in the parameter vector κ.
4) The total number of parameters estimated is 65. We used 763 observations for both the patent propensity and R&D equations, and 544 (the
patentees) for the patent application equation. Relative to the exogenous patent effectiveness case, where we used 790 observations, in the exogenous
patent effectiveness case we loose 27 observations because respondents have missing observations on one of the instruments, i.e. the information
disclosure patenting cost dummy. Overall, we have 8 endogenous variables (R&D, patent propensity, patent applications and the five patent
effectiveness dummies) and 43 unique instruments.
5) The adjusted R-square for each equation are the following: 0.39 for the patent propensity equation, 0.40 for the patent application equation, and
0.51 for the R&D equation. In order to facilitate convergence, we also included the squares and cross-products of the continuous exogenous variables
as instruments.

Table A1 (continued )
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Table A3
Impact of patent strategies on patent effectiveness

Variables
Pure blocking (fence building) as reason to patent 0.804

(0.283)
Blocking and cross-licensing (player) as reason to patent 1.088

(0.295)
Licensing as reason to patent 0.709

(0.207)
Prevent suits as reason to patent −0.293

(0.336)
Prevent copying as reason to patent 1.730

(0.532)
Difficult to demonstrate novelty as reason NOT to patent −0.084

(0.184)
Information disclosed in patent as reason NOT to patent −0.471

(0.178)
Cost of applying as reason NOT to patent −0.186

(0.188)
Cost of defending patent in court as reason NOT to patent −0.264

(0.221)
Ease of legally inventing around as reason NOT to patent −0.287

(0.177)
N=555

Notes:
1) Ordered logit estimates.
2) Dependent variable: Patent effectiveness for product innovations (5 point Likert scale).
3) Independent Variables: Reasons to patent and not to patent for product innovations, including patent fencing and negotiation dummies (as
suggested in Cohen et al., 2000). Note that the reasons to patent dummies are only observed for the sample patentees in the CMS, and therefore we
estimate this relationship using a reduced number of observations (N=555 as opposed to the N=790 full sample).
4) Standard errors in parentheses.
5) Industry fixed effects and intercept estimates are not shown.
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