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Electronic commerce allows bidders to find and participate in auctions regardless of location. This reduction
in bidders’ search costs has important effects on bidders’ participation patterns and sellers’ revenue. The

“demand expansion” effect occurs when reduced search costs allow bidders to participate in more auctions. The
“demand distribution” effect occurs when reduced search costs allow bidders to distribute themselves more
evenly across auctions. We focus on the latter effect by modeling when a more even distribution of bidder
participation across auctions increases seller revenue. We apply our analytical insights to 65,718 sequential
auctions (comprising over 10 million vehicles) in the wholesale used vehicle market. We show that reduced
search costs can increase seller revenue by smoothing the distribution of bidder participation across auctions,
even if the aggregate amount of bidder participation remains constant. This contributes new results to the
auction theory literature and generates novel insights for sellers seeking increased revenue.
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1. Introduction
Participation in an auction has traditionally required
bidders to be collocated at an auction hall or simi-
lar facility. The prices that sellers could fetch for their
objects were limited by the number of bidders they
could attract to these facilities. Advances in infor-
mation technology have allowed bidders to partici-
pate in auctions electronically. For example, eBay is
well known for its Internet auctions, and many indus-
tries in which transactions are conducted via auction
have implemented electronic auction systems (e.g.,
Koppius et al. 2004). These systems allow bidders
to identify and participate in auctions with the click
of a mouse, thereby lowering their search costs. We
examine how the reduction in search costs due to
these information systems affects prices. We consider
two effects, which we label “demand expansion” and
“demand distribution.” First, reduced search costs
might enable bidders to participate in more auc-
tions, which could lead to higher prices due to
increased bidding competition. Although we believe
this demand expansion effect to be interesting, it
is also rather intuitive, as it essentially reduces to
the argument that increased demand leads to higher
prices (e.g., Lee 1998). Thus, rather than focusing on
this effect, we focus on a more nuanced and (we
believe) surprising effect that we label the demand
distribution effect. We argue that lower search costs

may lead to a more even distribution of bidder par-
ticipation across auctions, because bidders with low
search costs can easily monitor multiple auctions and
shift from auctions with high bidding competition
to those with low competition. We show analytically
that a more even distribution often yields higher
prices, even if aggregate demand remains constant,
i.e., if there is no demand expansion. We show that
this holds under fairly general conditions, but that it
depends on the variability of bidder valuations for
the objects being auctioned, the degree to which sell-
ers can (and do) predict this a priori, and the average
number of bidders per auction.

The effect of the distribution of bidder partici-
pation across auctions on prices has received little
research attention. Understanding this effect is impor-
tant because advances in information technology con-
tinue to improve bidders’ ability to participate in
auctions regardless of location, leading to interesting
changes in bidder participation patterns. Our analysis
of how these changes affect auction prices contributes
new results to the auction theory literature, and it
generates novel insights for sellers seeking increased
revenue. For example, a standard strategy for a seller
seeking increased revenue is to increase bidder partic-
ipation in her auctions. We show that even if a seller
is unable to increase bidder participation, she can still
increase her revenue by implementing strategies to
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engender a more even distribution of bidder partic-
ipation across auctions (e.g., by spreading auctions
across time or space, by using promotions to shape
bidder participation, etc.).

We apply the insights of our model to the empirical
context of the wholesale used vehicle market. We use
a unique data set of over 65,000 sequential auctions
(comprising over 10 million used vehicles) conducted
from 2005 to 2010 in this market to study how the dis-
tribution of bidder participation across these auctions
influences the high bids. The sequential auctions in
this market are held at physical facilities, and bidders
are used car dealers purchasing inventory for their
dealerships. An important feature of this empirical
context is that the physical auctions are “simulcast’’
on the Internet, which allows bidders to participate
either physically or electronically. We show that phys-
ical bidders tend to bid early in the sequence, whereas
electronic bidders tend to bid later in the sequence,
which we attribute to differences in the search costs
faced by bidders when using the two channels. The
later bidding of electronic bidders smoothes the dis-
tribution of participation across the auctions in the
sequence. We show that a more even distribution of
bidder participation across auctions is positively asso-
ciated with the high bids received in the auctions.
Consistent with the analytical model, this relation-
ship is moderated by the average number of bidders
who participate in the auctions and whether the seller
sequences her vehicles based on the variability of bid-
der valuations.

2. Literature Review
Our research contributes to two streams of litera-
ture: (a) the literature on the Internet, search costs,
and prices; and (b) the literature on multiple-object
auctions.

2.1. The Internet, Search Costs, and Prices
Studies in information systems, marketing, and eco-
nomics have examined how the Internet reduces
search costs and the effect this has on prices. Smith
et al. (1999) defined search costs as being comprised
of external and internal search costs. External search
costs include the monetary and opportunity costs
associated with gathering information, and internal
search costs include the cognitive effort expended
while gathering and processing the information.

Several analytical models have been proposed to
link search costs to prices. Baye et al. (2006) grouped
these models into two categories. First, search theo-
retic models assume that each buyer pays a cost to
obtain a price quote from each seller (e.g., Stahl 1989).
“Fixed sample search” models assume that buyers
commit to searching a fixed number of sellers, and

“sequential search” models assume that buyers con-
tinue searching until the cost of an additional search
exceeds its benefit. Second, information clearinghouse
models assume that a list of prices is aggregated in
a repository such as a newspaper or Internet price
comparison site (e.g., Varian 1980). Motivated by
these models, several empirical studies have exam-
ined how search costs affect prices, with a recent
focus on whether the Internet has affected prices
by reducing search costs (Brown and Goolsbee 2002,
Brynjolfsson and Smith 2000, Clemons et al. 2002).
Whether reduced buyer search costs lead to lower
or higher prices is equivocal. Empirical findings are
mixed, and analytical predictions depend on model
assumptions (see Baye et al. 2006).

Much of this literature assumes that sellers set
prices. For example, Baye et al. (2006) provided an
impressive review of the literature in this stream; all
of the models they reviewed involve sellers who set
prices. By contrast, we consider the case in which
prices are determined by auction. Whether prices are
posted by the seller or determined by auction has
important implications for how search affects prices.
The reason is simple yet fundamental. In a posted
price setting, the outcome of a buyer’s search process
(i.e., his choice of a seller) does not affect the seller’s
price for that transaction (although the seller might
adjust her posted price for future transactions). This is
not true in an auction setting, where a buyer’s choice
of a seller may affect the transaction price through
changes in bidding competition.

2.2. Multiple-Object Auctions
Multiple-object auctions refer to situations in which
a seller(s) auctions more than one object that may or
may not be identical. There are many possibilities for
conducting multiple-object auctions: the objects may
be auctioned as a bundle in a single auction, each
object may be auctioned individually in multiple auc-
tions, or a combination of the two may be used. If
multiple auctions are conducted, then they may be
conducted sequentially, simultaneously, or in an over-
lapping manner. Scholars in information systems and
other disciplines have made several contributions to
our understanding of multiple-object auctions. This
includes recent research on how different policies for
revealing information about prior auctions influence
bidder learning and auction outcomes (e.g., Arora
et al. 2007, Greenwald et al. 2010, Kannan 2012) and
how bidders’ willingness to pay evolves in sequential
auctions for identical objects (Goes et al. 2010). Other
research has focused on overlapping auctions, includ-
ing how factors such as the degree of overlap and the
information revealed about prior auctions affect price
(Bapna et al. 2009), as well as simultaneous auctions,
including how bidders with unit demand choose the
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auction in which to participate (Bapna et al. 2010).
Other research has examined how sellers use multiple
auctions as a means of searching for high-valuation
buyers (Genesove 1995, Kuruzovich et al. 2010). Our
analysis contributes to this stream by showing how
the distribution of bidder participation across auc-
tions in a multiple-object setting affects prices.

3. Theory
We conceptualize the process of a bidder observing
or participating in multiple auctions as him search-
ing for the auction(s) that provides him the most sur-
plus. Bidders must balance the benefits of continuing
to search with the costs of doing so (as in a classical
sequential search model). Traditionally, bidders have
participated in auctions physically, although techno-
logical advances have provided them the opportu-
nity to participate electronically. The search cost that
a bidder incurs to observe (and potentially participate
in) each auction varies based on whether he is using
a physical or electronic channel. As is commonly
assumed in the literature on search costs in physi-
cal and electronic environments (Baye et al. 2006), we
assume that search costs are lower in the electronic
channel. This allows bidders using the electronic
channel to observe/participate in more auctions than
can bidders using the physical channel. (For exam-
ple, in a sequential auction setting, electronic bidders
can arrive earlier in the sequence and/or stay later.)
This allows them to be more selective and increases
the likelihood that they will participate in auctions
with low competition instead of auctions with high
competition, assuming that the auctions are for substi-
tutable objects. We refer to these shifts from high com-
petition to low competition auctions as Robin Hood
operations (Arnold 1987).1 All bidders seek to con-
duct Robin Hood operations, ceteris paribus, because
that will expose them to less bidding competition and
provide them with greater surplus. However, physical
bidders have less ability to conduct Robin Hood oper-
ations than do electronic bidders (on average) because
the former cannot observe as many auctions. In some
cases, a physical bidder will participate in an auction
even if he realizes that bidding competition is high,
because participation still provides him with positive

1 The “Robin Hood operation” term was coined as a synonym
for progressive transfers in income inequality economics in which
income is shifted from a rich person to a poor person, with the mag-
nitude of the shift being less than the original difference between
the persons’ incomes (Arnold 1987). We adapt it for our purposes
to describe instances in which bidders shift from high competi-
tion auctions (i.e., “rich” auctions) to low competition auctions (i.e.,
“poor” auctions). For example, assume that eight bidders partic-
ipate in auction A and four bidders participate in auction B. A
bidder who shifts from auction A to auction B conducts a Robin
Hood operation.

surplus and it is too costly to wait for a later auc-
tion. As a result, having a mix of bidders with high
and low search costs should result in a more even
distribution of bidder participation across auctions
than having only bidders with high search costs. We
explore this in our empirical context in §4.2. Under
fairly general conditions (which we detail below), a
more even distribution of bidder participation across
auctions will lead to higher expected revenue for the
seller.

Before proceeding, we note the potential for confu-
sion regarding the term “distribution.” When we say
“distribution of bidder participation,” we are refer-
ring to the manner in which bidder participation is
spread across auctions. We will also use the term “dis-
tribution” to refer to probability distributions.

3.1. Model Setup
Consider a multiple-object auction scenario i in which
J auctions are conducted, referenced by j = 1121 0 0 0 1 J .
Suppose there are M objects that may be auctioned in
scenario i, referenced by m= 1121 0 0 0 1M . Let pjm rep-
resent the probability of object m being offered in auc-
tion j . This probability allows us to model the seller’s
ability to allocate certain objects to certain auctions. In
any auction j , a single object m is auctioned (equiva-
lently,

∑M
m=1 pjm = 1 ∀ j5. Let Fm4 · 5 represent the prob-

ability distribution from which bidder valuations for
object m are independently drawn. As is commonly
assumed in the literature, Fm4 · 5 is a “regular” distri-
bution (Myerson 1981).2 Let xij represent the number
of bidders who participate in auction j in scenario i.
The same bidder can participate in more than one
auction and can purchase more than one object. Col-
lect the xij values in a vector labeled Xi, i.e., Xi =

4xi11xi21 0 0 0 1 xiJ 5. Let the aggregate amount of bidder
participation in scenario i be Xtotal

i =
∑J

j=1 xij .
We simplify our model by ignoring the learning

of bidder valuations across auctions. This simplifica-
tion is justified as follows. First, theoretical analysis
of multiple-object auctions has often focused on the
sequential auction of two identical objects in which
bidders learn each other’s valuations for the objects
(e.g., Bernhardt and Scoones 1994, Kannan 2010). By
contrast, we allow there to be more than two auctions.
Solving for the equilibrium in a general multiperiod
setting is hard because it involves modeling how each
bidder solves his own multidimensional dynamic
optimization problem as a best response to how all
other bidders solve their problems (Brendstrup and
Paarsch 2006). Given this difficulty, it is unreasonable

2 Because the distribution is regular, its hazard rate is monotonically
increasing (Myerson 1981). Many common distributions have an
increasing hazard rate, including normal, uniform, logistic, extreme
value, and �2.
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to expect bidders to compute and play their optimal
strategies. Furthermore, the equilibrium so computed
will likely not be stable because, for it to be stable,
every bidder has to compute and play his equilibrium
strategy. This creates doubt as to whether a model that
incorporates bidder learning would accurately repre-
sent actual bidder behavior. Second, and as a conse-
quence of the previous point, simplifications in which
bidder learning is not modeled have precedence in
the literature (e.g., see Edelman et al. 2007). Third,
our analysis involves nonidentical objects; as such, the
information a bidder learns about other bidders’ val-
uations for one object may be irrelevant to his bidding
strategy for a different object. Multiple-object auctions
in which the objects are nonidentical are common in
practice, as many traditional auctions for collectibles,
antiques, and livestock are conducted this way. Given
the above, we assume that valuations for each object
are drawn independently of the auction in which it
is offered. Hence, the expected price for object m in
auction j in scenario i is equal to the valuation of
the second-highest bidder in that auction. If object m
attracts xij bidders, then its expected price, Pricem4xij5,
is the expectation of the 4xij − 15st order statistic from
the set of the xij bidders’ valuations. As shown in
Lemma A1 in the appendix, Pricem4xij5 is concave
in xij given that Fm4 · 5 is a regular distribution. Let
TotalPrice(Xi) be the total expected revenue for the
seller in scenario i. Because TotalPrice(Xi) is separable
in j , TotalPrice4Xi5=

∑M
m=1

∑J
j=1 4pjm∗Pricem4xij55.

Consider two scenarios, 1 and 2, in which a seller
conducts the same J auctions for the same M objects.
X1 and X2 represent the vector of xij values for
the respective scenarios. Assume that the aggregate
amount of bidder participation in the J auctions is the
same in both scenarios, i.e., Xtotal

1 = Xtotal
2 . This means

that there is no demand expansion from one scenario
to the other. The two scenarios differ only in how bid-
der participation is distributed across the J auctions,
thereby allowing us to isolate the effects of demand
distribution, which is the focus of our analysis. Let
scenario 1 involve only physical bidders and result in
the distribution of bidder participation represented by
X1. Let scenario 2 mirror scenario 1 except that some
bidders switch to the electronic channel. The lower
search costs for electronic bidders in scenario 2 mean
that they are more likely to conduct Robin Hood oper-
ations in which they shift from a high competition
auction to a low competition auction, as discussed
above. Thus, the distribution of bidder participation
represented by X2 results from a series of Robin Hood
operations on X1. As shown by Arnold (1987, Chap. 2,
pp. 11–13), these Robin Hood operations mean that
X1 majorizes X2 and that the variance of the elements

in X1 exceeds that of X2.3 Therefore, the distribution
of bidder participation in scenario 2 is more even
than that in scenario 1. Because we want to examine
how the evenness of the distribution of bidder par-
ticipation across auctions affects prices, we compare
TotalPrice(X1) to TotalPrice(X2).

3.2. Model Analysis
We use two models to analyze when a more even
distribution of bidder participation yields higher
expected revenue. The first is for the general case
involving J auctions. The second is for a simple case
involving two auctions, which we use to explore
aspects of the problem that are intractable in the gen-
eral case.

3.2.1. Model 1: General Case Involving J Auc-
tions. Following Engelbrecht-Wiggans’s (1994) notion
of stochastic equivalence, we begin with the case in
which pjm = pm, where pm denotes the probability of
object m appearing in any given auction j . (We relax
this restriction later.) The following theorem holds.

Theorem 1. With stochastically equivalent auctions,
total expected seller revenue is higher (or the same) in
scenario 2 (in which bidder participation is more evenly
distributed across auctions) than in scenario 1 (in which bid-
der participation is less evenly distributed across auctions).

Proof. Because pjm = pm, TotalPrice4Xi5 =
∑M

m=1 pm ·
∑J

j=1 Pricem4xij5. Because Pricem4xij5 is a concave
function (see Lemma A1) and X1 majorizes
X2, it follows from Arnold (1987, Theorem 2.9,
p. 24) that −

∑J
j=1 Pricem4x1j5 ≥ −

∑J
j=1 Pricem4x2j5.

Thus, pm
∑J

j=1 Pricem4x1j5 ≤ pm
∑J

j=1 Pricem4x2j5. Sum-
ming both sides over all m, we have

∑M
m=1 pm ·

∑J
j=1 Pricem4x1j5 ≤

∑M
m=1 pm

∑J
j=1 Pricem4x2j5, which

means TotalPrice4X15≤ TotalPrice4X25. QED4

3 For vector Xi = 4xi11xi21 0 0 0 1 xiJ 5, let X↓

i contain the same elements
as Xi sorted in descending order. X1 “majorizes’’ X2 if

∑k
j=1 x

↓

1j ≥
∑k

j=1 x
↓

2j for k = 1121 0 0 0 1 J and
∑J

j=1 x1j =
∑J

j=1 x2j . For example, let
J = 3, let X1 be (6, 4, 2), and let X2 be (5, 4, 3). Note that X1 is more
unevenly distributed than X2 and that X1 majorizes X2. A Robin
Hood operation on X1 = (6, 4, 2) in which 1 is subtracted from the
1st element and added to the 3rd element results in X2 = (5, 4, 3).
This illustrates why Robin Hood operations result in more evenness
of the elements in a vector.
4 Suppose the auction’s starting price means that only the bidders
whose valuations lie to the right of a truncation point of the origi-
nal valuation distribution are observed to bid. We prove here that
the truncated distribution retains the increasing hazard rate prop-
erty of the original distribution. Let f 4x5 and F 4x5, respectively,
be the probability density function (pdf) and cumulative distribu-
tion function (cdf) of the original valuation distribution with sup-
port [v1 v̄]. Let g4x5 and G4x5, respectively, be the pdf and cdf
of the truncated distribution with support [a1 v̄], where a corre-
sponds to the truncation point. By definition, g4x5= f 4x5/41− F 4a55
and G4x5 = 4F 4x5− F 4a55/41 − F 4a55. Because the original valuation
distribution is regular, it has the increasing hazard rate property
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To expound on the above result, note that pjm deter-
mines how the seller assigns the M objects to the
J auctions. The seller might strategically set pjm using
knowledge of the distribution of bidder valuations
for the objects being auctioned (i.e., the Fm4 · 5 dis-
tributions). For example, if certain auctions tend to
attract a high number of bidders (which might be
the case, say, for the initial auctions in a sequential
auction setting), then the seller might be more likely
to offer objects with a wide range of bidder valua-
tions in those auctions, because having a high num-
ber of bidders will increase price more when bidder
valuations are widely dispersed than when they are
narrowly dispersed. However, this assumes that the
seller (a) knows the distribution of bidder valuations
for her objects and (b) uses that knowledge to allocate
objects to auctions.5 Often, this will not be the case,
such that modeling pjm = pm is reasonable and The-
orem 1 will apply. We discuss this further in §§3.2.2
and 3.2.3.

Next, we drop the pjm = pm restriction, thus allow-
ing the seller to allocate objects to auctions based on
knowledge of the distribution of bidder valuations,
although we add restrictions on the Fm4 · 5 distribu-
tions. We allow the support of the Fm4 · 5 distributions
(denoted as [vm1 v̄m]) to vary across objects m, but we
impose the restriction that the range (denoted by rm =

v̄m − vm5 and shape of the Fm4 · 5 distributions be the
same. (We consider relaxations of these restrictions
later in model 2.) The following holds.

Proposition 1. If bidder valuations for each auctioned
object are drawn from distributions with the same range
and shape, but potentially with different supports, then
total expected seller revenue is higher in scenario 2 (in
which bidder participation is more evenly distributed across
auctions) than in scenario 1 (in which bidder participation
is less evenly distributed across auctions).

Proof. The proof is similar to that for Theo-
rem 1. Because v̄m − vm = r ∀m, define F04 · 5 as
Fm4 · 5 shifted to the left such that 6vm1 v̄m7 becomes
[0, r]. Define �4xij5 as the expectation of the
second-highest order statistic when the bidder
valuations are drawn from F04 · 5 in auction j in
scenario i. Thus, Pricem4xij5 = vm + �4xij5. Therefore,
TotalPrice4Xi5 =

∑M
m=1

∑J
j=1 6pjm ∗ 4vm +�4xij557 =

f 4x5/41 − F 4x55 > 0. Using the above relations, it can be shown
that g4x5/41 −G4x55 > 0, i.e., that the truncated distribution retains
the increasing hazard rate property. Therefore, the concavity result
from Lemma A1 holds for the truncated distribution, which means
that Theorem 1 and subsequent proofs also hold for the truncated
distributions as long as the truncation points are consistent across
auctions.
5 This would require a nontrivial level of seller rationality, espe-
cially because the distributions may change with evolving market
conditions and buyer preferences.

∑M
m=1 vm

∑J
j=1 pjm +

∑J
j=1 �4xij5 (recall that

∑M
m=1 pjm =

1 ∀ j). Because �4xij5 is concave per Lemma A1, we
can complete the proof as in Theorem 1. QED

3.2.2. Model 2: Simple Case Involving Two Auc-
tions. Consider two nonidentical objects (A and B)
that are offered, individually, in two auctions (1 and 2).
Either object can be offered in either auction. Each
bidder for object A (B) draws a valuation from a uni-
form distribution with support [va1 v̄a] ([vb1 v̄b]).6 Let
ra = v̄a−va with rb analogous. Without loss of general-
ity, set ra ≥ rb. i.e., the range (and hence the shape) of
bidder valuations can differ. Consider two scenarios.
The aggregate amount of bidder participation is the
same in both scenarios (let it be equal to 2ẋ), but the
distribution of bidder participation differs; i.e., there
is no demand expansion between the scenarios, only
differences in demand distribution, as above. In sce-
nario 1, we assume x̄1 = ẋ + � bidders in auction 1
and x1 = ẋ−� in auction 2. In scenario 2, we assume
x̄2 = ẋ + � bidders in auction 1 and x2 = ẋ − � bid-
ders in auction 2. Note that ẋ is the average number
of bidders in the auctions, and � > � ≥ 0 represents
the degree to which the distribution of bidder partic-
ipation across the auctions is uneven. The condition
�>� means that the distribution of bidder participa-
tion is more even in scenario 2 than in scenario 1.7

�= 0 represents the special case in which the distribu-
tion of bidder participation in scenario 2 is perfectly
even. If the seller assigns the object with the widest
range of bidder valuations (object A) to the auction
that attracts more bidders (auction 1), then this could
increase her overall revenue, as noted above. To do
this, however, she must know the distribution of bid-
der valuations for the objects a priori, such that she
can identify object A as having the wider range of
valuations. Let p1A (which mirrors pjm from model 1)
represent the probability with which she does this.

Proposition 2. Total expected seller revenue is higher
in scenario 2 4in which bidder participation is more
evenly distributed across auctions5 than in scenario 1 4in
which bidder participation is less evenly distributed across
auctions5 when either of the following sufficient 4but not
necessary5 conditions holds:

(a) p1A ≤ 005. i.e., the seller cannot 4or does not5 identify
a priori the object with the widest range of bidder valua-
tions any better than chance.

6 The assumption of a uniform distribution simplifies the analysis
and satisfies the requirement that the distribution of bidder valua-
tions follows a regular distribution. Similar results apply to other
regular distributions, although the region defined in Proposition 2
is specific to a uniform distribution.
7 The variables x̄1, x1, x̄2, and x2 are positive integers to ensure that
someone is bidding in each auction. When coupled with �>�≥ 0,
this implies that ẋ = 2.
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(b) ra = rb; i.e., the range of bidder valuations is the
same for both objects.

If neither condition holds, then there is a region in which
the more even distribution yields higher total expected rev-
enue, with the region defined by the following expression:

4�+�54ẋ+ 154ra + rb5

> 4��+ 4ẋ+ 152542p1A − 154ra − rb50 (1)

Proof. Consider the case when neither condi-
tions (a) nor (b) hold. The expected price is the expec-
tation of the second-highest order statistic from the
set of bidder valuations. From the properties of a
uniform distribution bounded by [v1 v̄], the expected
value of this order statistic given x bidders is v+ 44x−

15/4x+1554v̄−v5. In scenario 1, the expected total rev-
enue from the two auctions is p1A4va + 44x̄1 − 15/4x̄1 +

1554ra5 + vb + 44x1 − 15/4x1 + 1554rb55 + 41 − p1A54va +

44x1 − 15/4x1 + 1554ra5 + vb + 44x̄1 − 15/4x̄1 + 1554rb55. In
scenario 2, the expected total revenue is analogous,
with x̄2 and x2 replacing x̄1 and x1. The proof is accom-
plished by determining when the total expected rev-
enue for scenario 2 is greater than or equal to the
total expected revenue for scenario 1. After algebraic
manipulation, this reduces to (1). Note that the left-
hand side of (1) is always positive. Result (a) can be
verified by checking that, for p1A ≤ 005, the right-hand
side of (1) is always less than or equal to 0. Result (b)
can be verified by noting that the right-hand side is
equal to 0 when ra = rb. QED

Proposition 2 yields several insights about our over-
all model. First, as ra gets closer to rb, the right-hand
side of (1) gets smaller, making (1) more likely to hold.
This illustrates that similarity among the range and
shape of the bidder valuation distributions (rather
than equivalence) may be sufficient for a more even
distribution of bidder participation to yield higher
total revenue. Second, even if p1A = 1 (i.e., the seller
perfectly identifies the object with the widest range of
bidder valuations), (1) will often still hold, depending
on the values of the other parameters. Third, a more
even distribution is more likely to yield higher total
expected revenue when the average number of bid-
ders (ẋ in the model) is small. Although this holds for
any value of � and �, it is easy to see when � = 1
and �= 0. In that case, (1) reduces to ra + rb ≥ 4ẋ+ 15
42p1A − 154ra − rb5. As x grows, it becomes less likely
that (1) will hold.8

8 Another way to see this is to create a gap function by subtract-
ing the right-hand side of (1) from the left-hand side, differenti-
ating with respect to ẋ, and setting equal to 0. This yields 4� +

�54ra + rb5− 42ẋ + 2542p1A − 154ra − rb5 = 0. We know that ra − rb > 0
by construction. We also know that the proof holds for p1A ≤ 005,
so we need only concern ourselves with the case where p1A > 005,
such that 2p1A − 1 > 0. In that case, the gap function is always
decreasing in ẋ, which means that (1) is less likely to hold at higher
values of ẋ.

Proposition 2 also illustrates that the object-to-
auction allocation method that is relevant for our the-
ory is that the seller allocates objects based on the
distribution of bidder valuations; we account for this
via p1A (and pjm in the general case). Other allocation
methods, such as allocation based on object quality or
supply, will not affect our result about how a more
even distribution of bidder participation can increase
total expected revenue—unless the other methods are
surrogates for allocation based on the bidder valua-
tion distributions; i.e., we do not require that the seller
allocate objects randomly.

3.2.3. Summary and Intuition for the Results.
As illustrated in Figure 1, because Pricem4xij5 is con-
cave, adding a bidder to an auction adds less to the
price than removing a bidder subtracts from the price.
Thus, if the range and shape of the Fm4 · 5 distribu-
tion are the same for the objects being auctioned,
then distributing bidders evenly across auctions will
yield higher expected revenue than distributing them
unevenly; see Proposition 1. This is illustrated in
panels A and B of Figure 1; notice that a bidder
distribution of (3, 3) will yield higher revenue than
a distribution of (4, 2) or (2, 4). This result will also
hold if the ranges and shapes of the Fm4 · 5 distribu-
tions are similar (as opposed to equivalent) for the
objects being auctioned, with the necessary “similar-
ity” characterized in Proposition 2 for the two-auction
case. If the variability of the Fm4 · 5 distributions (as
reflected in their range and shape) differs substan-
tially across objects, then shifting a bidder from an
object with a low variability of bidder valuations to an
object with a high variability may yield a net increase
in total expected revenue, even if this shift results in a
more uneven distribution of bidder participation (as
illustrated in panels B and C of Figure 1). However,
this strategy can only be implemented if the seller can
identify (a priori and with some probability greater
than chance) the object(s) with the highest variabil-
ity of bidder valuations. If the seller cannot (or does
not) do this, then her expected revenue will be higher
with a more even distribution of bidder participation;
see Theorem 1 and Proposition 2. Because Pricem4xij5
is increasing and concave in xij , adding or removing
a bidder has a larger impact on Pricem4xij5 when xij
is small than when xij is large. This can be seen by
the steeper slope of the Pricem4xij5 function at smaller
values of xij (see Figure 1). This means that a more
even distribution of bidders is more desirable for the
seller if the average number of bidders is low; see
Proposition 2.

4. Empirical Application
The insights from our theoretical analysis are appli-
cable to any context in which sellers use multiple
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Figure 1 Graphical Intuition for the Analytical Results
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Notes. Each chart shows the Pricem4xij 5 function for three different objects m: A, B, and C. The range of the bidder valuations for each object, v̄m − vm , is
depicted on the y axis. The solid lines depict the expected price when xij = 3. The arrows and dashed lines depict the change in expected price after adding or
removing a bidder.

auctions to sell objects, including markets for live-
stock, agricultural goods, industrial equipment, col-
lectibles, and art (e.g., Ashenfelter 1989, Kazumori
and McMillan 2005). Here, we apply our theoretical
analysis and illustrate its implications in the context
of the wholesale used vehicle market.

4.1. Market Background
The wholesale used vehicle market is a business-to-
business market in which buyers and sellers trade
used vehicles. The buyers are used car dealers pur-
chasing inventory for their retail lots. Sellers are either
(a) other dealers, who sell vehicles that they do not
wish to sell on their retail lots, or (b) institutional sell-
ers such as rental car companies (who sell vehicles
retired from their rental fleets). In 2011, 7.9 million
used vehicles were sold in the U.S. wholesale market
for a total transaction value of approximately $73 bil-
lion (NAAA 2012).

The market in the United States has traditionally
functioned as follows. There are multiple automotive
auction companies that broker transactions between
buyers and sellers. Sellers transport vehicles to facil-
ities operated by these companies. Vehicles are auc-
tioned sequentially in a “sales event.” The sequence,
including the number of vehicles to be auctioned, is
published before the sales event in the “run list.” Each
vehicle in a sales event is driven, one at a time, into a
warehouse-type building, where an auctioneer solic-
its bids on the vehicle. The auction format is an open
outcry English auction. The bidding for each vehicle
takes approximately 30–45 seconds, after which the
next vehicle is auctioned. Because each used vehicle
is different, each sales event represents a sequential
auction for nonidentical objects. An entire sales event
can last several hours. The position in the sequence
in which each vehicle is auctioned is referred to as
the “run number.” Generally speaking, there are two
types of sales events that reflect the two types of
sellers in the market: sales events for dealer sellers
and sales events for institutional sellers. A dealer

sales event consists of vehicles offered by more than
one dealer seller (typically), whereas an institutional
sales event consists of vehicles offered by a single
institutional seller. For example, a dealer sales event
might consist of 150 vehicles being sold by 10 dif-
ferent dealers (each offering 15 vehicles), whereas an
institutional sales event might consist of 150 vehicles
being sold by Avis Rent A Car. No two vehicles in a
sales event are the same; even vehicles of the same
year/model differ due to color, option packages, trim
level, mileage, and wear and tear. These differences
mean that even if a bidder learns another bidder’s
valuation for a vehicle, that information may be irrel-
evant to his bidding strategy for another vehicle, even
if it is of the same year/model. Also, because buy-
ers in this market are acquiring inventory for resale
to retail customers, they are often willing to substi-
tute one vehicle for another. This is consistent with
the theoretical model (see §3).

Bidders can bid on each vehicle in one of two ways.
They can travel to the physical facilities and place
bids in person, or they can place bids electronically
via a web-based application that “simulcasts’’ live
audio and video of sales events as they occur at the
physical facility. Thus, each auctioned vehicle may be
bid upon by bidders using the physical channel and
bidders using the electronic “webcast” channel.

As in §3, we conceptualize a bidder’s continued
observation/participation in the auctions in each sales
event as a search for the auction(s) that provides him
the most surplus. As the auctions progress, each bid-
der can observe the bidding competition in each auc-
tion, assess whether it is high or low, and decide
whether to participate in that auction or wait for a
later auction. Although waiting may allow the bid-
der to participate in an auction with less competi-
tion, he incurs the cost of waiting, i.e., the search cost.
This cost is higher for physical bidders than for elec-
tronic bidders for the following reasons. First, phys-
ical bidders must pay the opportunity costs (which
are a component of search costs; see §2) of the time
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spent away from their dealerships, which accumulate
with each successive auction. These costs are lower
for electronic bidders because they can bid on vehicles
while performing other tasks at their dealerships. Sec-
ond, it is more physically costly to continue to partici-
pate in a sales event when at the physical facility than
when using the electronic channel. This is because the
physical facility requires bidders to stand while bid-
ding, the air quality is relatively poor given exhaust
fumes in the facility, the facility is loud, etc.

4.1.1. Raw Data and Variables. We obtained data
from an automotive auction company. The data con-
sist of 10,351,857 vehicles auctioned in 65,718 institu-
tional sales events in the United States from January
11, 2005, to March 31, 2010. Complete data for the
period from June 1, 2007, to December 31, 2008,
were not available because the bid logs could not be
retrieved.9 We focused on institutional sales events for
the following reasons. First, because institutional sales
events have only one seller, we can include seller fixed
effects in our regressions to control for seller charac-
teristics such as size, reputation, geographic presence,
etc. Second, because an institutional seller has con-
trol over all vehicles in her sales event, we can (and
do) estimate whether the seller sequences her vehicles
based on the variability of bidder valuations, which is
one of the variables identified in the analytical model.
We also examine whether the seller sequences her
vehicles based on other factors that might affect bid-
der participation across auctions.

A sales event i consists of J auctions; a single
vehicle m is auctioned in each auction j . For nota-
tional simplicity when describing the data, we use
the j subscript to refer to the auction and the vehi-
cle offered in the auction. For each vehicle j auc-
tioned in sales event i, the data contain an identifier
for the sales event (EventIDi); the facility at which
the sales event was conducted (FacilityIDi); the seller
of the vehicles in the sales event (SellerIDi); the day
the sales event was conducted (Dayi), which ranges
from 1 (January 11, 2005) to 1,906 (March 31, 2010); the
vehicle’s model and model year (VehicleModelij and
VehicleYearij ); the vehicle’s run number (RunNumberij );
the vehicle’s mileage (Mileageij ); the condition grade
(Conditionij ) assigned to the vehicle, which ranges
from 0 to 5 in 0.1 increments, with 0 (5) representing
very poor (good) condition;10 whether the vehicle was
sold (Soldij5; and the bid log. From the bid log, we
calculated the starting bid (StartingBidij ), the high bid
(HighBidij ), and the number of bids and bidders from

9 We assessed whether this discontinuity affected our estimates by
running our empirical models for the periods before June 2007 and
after December 2008. Results are similar to those we report.
10 Conditionij is null for approximately 10% of the vehicle observa-
tions. We discuss the implications of this along with the analysis.

(a) the physical channel (PBidsij and PBiddersij ), (b) the
electronic channel (EBidsij and EBiddersij ), and (c) both
channels (Bidsij and Biddersij ). The data are rich, but
a limitation of the data is that the number of physi-
cal bidders (PBiddersij ) is not directly recoverable from
the bid log. We imputed this variable; the imputation
procedure and associated implications for our esti-
mation are discussed in the appendix. For each sold
vehicle j , the data include the sales price (SalesPriceij ),
the vehicle’s wholesale value as estimated by the auc-
tion company (Valuationij ), and the ID of the winning
bidder (BidderIDij ).

The electronic webcast channel was relatively new
at the beginning of the sample period. During the
sample period, transactions conducted electronically
rose from 4.5% in 2005 to 15.7% in 2010 (see NAAA
2010, p. 8). These statistics include transactions con-
ducted in the webcast channel as well as in other
stand-alone electronic markets that operate within the
wholesale used vehicle industry. Thus, they overstate
the level of adoption of the electronic webcast channel
that we study herein.

In the next two subsections, we examine whether
use of the electronic channel led to a more even dis-
tribution of bidder participation across the sequence
of auctions (§4.2) and how the evenness/unevenness
of bidder participation affected seller revenue (§4.3).
In other words, we examine how the electronic chan-
nel influences the demand distribution across auc-
tions and how demand distribution, in turn, affects
seller revenue.

4.2. The Electronic Channel and the Distribution
of Bidder Participation Across Auctions

Figure 2 plots the average number of total, physical,
and electronic bidders per run number. For example,
vehicles auctioned in run number 1 attracted an aver-
age of 2.93 total bidders, 2.54 of whom were physical
bidders, and 0.39 of whom were electronic bidders.
Figure 2 shows that the average number of physi-
cal bidders generally declines over the sequence of
auctions. If electronic bidders’ participation in sales
events mirrored that of physical bidders, then we
should see a similar pattern of attrition. However, we
see the opposite; the average number of electronic
bidders increases over the sequence. This is consis-
tent with our argument that bidders use the elec-
tronic channel to shift their bidding from auctions
with high competition (which tend to be those early
in the sequence) to those with low competition (which
tend to be those later in the sequence), i.e., to con-
duct Robin Hood operations. Electronic bidders likely
behave this way because their low search costs make
it easier to wait until later in the sequence to bid,
and they have an incentive to do so to avoid com-
peting with the larger number of bidders (most of
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Figure 2 (Color online) Average Number of Total, Physical, and Electronic Bidders per Run Number for All Sales Events (Panel A) and Sales Events
With and Without Electronic Bidder Participation (Panels B and C)
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Notes. The upper data series indicates total bidders, the middle data series indicates physical bidders, and the lower data series indicates electronic bidders.
The total bidders and physical bidders data series overlap perfectly in panel C, given that the sales events summarized in panel C contain no electronic bidders.
Linear regression trend lines are shown for each data series.

whom are using the physical channel) who are active
at the beginning of the sequence.11 The upward trend
in electronic participation partially offsets the down-
ward trend in physical participation, such that the
average participation is more evenly distributed (on
average). We conducted the analyses reported in the
next three subsections to explore this further.

4.2.1. Matching Analysis. To further examine the
bidder participation pattern shown in Figure 2, we
estimated what the pattern would have been had
the electronic channel not been available (i.e., the
counterfactual pattern). This allowed us to examine
whether the electronic channel led to a more even
distribution of bidder participation across auctions
than would otherwise occur. To do this, we leveraged
the fact that, of the 65,718 sales events in the data,
4,631 had no electronic bidders participate. If the sales
events with no electronic participation (referred to as
“no-elec”) can be used as counterfactual events for
the sales events with electronic participation (referred
to as “elec”), then we could attribute differences in
overall participation to the electronic channel.12

11 This suggests that physical bidders should continue to switch
to the electronic channel until the distribution of bidder participa-
tion is perfectly even. That might occur eventually, but we do not
observe that in our data, likely because the electronic channel was
not sufficiently diffused during the sample period to support such
an outcome.
12 The equipment that enables the electronic channel was imple-
mented in phases. As such, another potential approach would be to
compare sales events in which the electronic channel was available
to those in which it was not. This is not possible for our analysis
because we require the bid log to measure bidder participation, and
the bid log is only recorded for sales events in which the electronic
channel was available.

As our first step, we created plots of the average
amount of bidder participation per run number for
the elec and no-elec sales events. These appear in pan-
els B and C of Figure 2. As in panel A, the average
number of physical bidders generally declines over
the sequence, with the slopes of these declines similar
regardless of whether the sales events had electronic
bidders or not. The upward trend in the number of
electronic bidders in panel B makes the overall distri-
bution of bidder participation more even in the sales
events with electronic bidding than in those without.
However, if the no-elec sales events differ from the
elec sales events on dimensions other than whether
there was electronic participation, then the no-elec
sales events would be poor counterfactual events, lim-
iting the value of this comparison.

We used a matching procedure (both exact match-
ing and coarsened exact matching) to address this
(Iacus et al. 2011, Imbens 2004). If the no-elec sales
events are appropriately matched to elec sales events,
then we can be more confident that differences in
bidder participation patterns are due to electronic
participation as opposed to other factors. We lim-
ited our matching to sales events that occurred in
2005. The lack of electronic participation in the no-
elec sales events in 2005 is likely because there was
relatively low adoption of the electronic channel at
this time, and bidders who did adopt did not par-
ticipate in all sales events. As such, whether a sales
event attracted electronic bidders was more likely to
be random during this time than at later times in
the sample. We matched elec sales events to no-elec
sales events as follows. First, we exact matched on
FacilityIDi to eliminate geographic variation between
the no-elec and elec sales events that might otherwise
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confound the comparison. Second, we coarsened Dayi
into three-month bins (i.e., quarters), AvgMileagei into
5,000-mile bins, AvgValuationi into $1,000 bins, and
AvgConditioni into bins of size 1. (AvgMileagei is the
mean of Mileageij for the J vehicles in sales event i,
and AvgValuationi and AvgConditioni are analogous.)
We only matched no-elec and elec sales events within
the same bins, which limits variation due to time
of year and the type of vehicles auctioned. Third,
we matched sales events based on how the seller
sequenced vehicles (e.g., from low to high value, high
to low value, etc.), because the sequence could influ-
ence the auctions in which bidders participate. We
did this as follows. We regressed RunNumberij on
Valuationij for the J vehicles in each sales event i.
We set SequenceByValuationi = 1 if the overall regres-
sion F -statistic for sales event i was significant (at
p < 0005); otherwise, we set SequenceByValuationi =

0.13 We set SequenceByValuation4↑5i = 1 if Sequence
ByValuationi = 1 and the relationship between
RunNumberij and Valuationij was positive. We defined
SequenceByValuation4↓5i analogously. We repeated
this procedure using other right-hand-side vari-
ables in place of Valuationij ,14 including Conditionij ,
Mileageij , and Supplyij (which we measured as the
count of vehicles in sales event i of the same
year/model as vehicle j5.15 Summary statistics for
the resulting SequenceBy 0 0 0 variables appear in the
appendix. We included SequenceByValuation4↑5i and
SequenceByValuation4↓5i in the matching criteria. This
allowed us to match no-elec to elec sales events
in which the seller sequenced vehicles from low
to high value (i.e., SequenceByValuation4↑5i = 1 and
SequenceByValuation4↓5i = 0), or from high to low
value (4↑5i = 0 and 4↓5i = 1), or in which the seller
did not sequence vehicles by value (4↑5i = 0 and
4↓5i = 0). As an example of our matching, a no-elec
sales event in Dallas in the first quarter of 2005 with
AvgMileagei between 40,000 and 45,000; AvgValuationi

between $10,000 and $11,000; AvgConditioni between 3

13 If the F -statistic was insignificant for a sales event (perhaps
because RunNumberij and Valuationij are related, but not in a lin-
ear fashion), then we rechecked the F -statistic after rerunning the
regression with Valuation2

ij (and then Valuation2
ij and Valuation3

ij 5
added to the right-hand side.
14 An alternative approach is to include all right-hand-side variables
in the same regression for each sales event i. Both approaches allow
us to assess whether multiple variables are related to RunNumberij
in a given sales event. We judged our approach to have more
power to detect relationships because each variable is examined
individually.
15 We used Supplyij because Grether and Plott (2009) noted that
many sellers in this industry sequence vehicles by supply. They
also noted that the best sequencing strategy is one that is opposite
to that which other sellers are using, i.e., there is no dominant strat-
egy, which explains the heterogeneity in vehicle sequencing (see
the appendix).

and 4; and SequenceByValuation4↑5i = 1 (and therefore
SequenceByValuation4↓5i = 0) could only be matched to
an elec sales event with the same characteristics, i.e.,
that was in the same “cell.”

The matching procedure yielded 644 cells contain-
ing 749 no-elec sales events matched to 1,006 elec
sales events. Some no-elec events were matched to
more than one elec event and vice versa. We refer to
these sales events as the matched sample.16 The val-
ues for Dayi, AvgMileagei, and AvgValuationi are sta-
tistically indistinguishable between the no-elec and
elec sales events (based on a t-test). The values
for AvgConditioni are statistically different (p < 0001),
although the difference (�= 0004) is small and of ques-
tionable practical significance. Overall, the matches
are well balanced. Panels A and B of Figure 3 show
the average number of total, physical, and electronic
bidders per run number for the elec and no-elec
events in the matched sample. Panels C and D show
the same statistics from a variation of the matched
sample in which we matched on SequenceBySupplyi
(↑ and ↓) rather than SequenceByValuationi (↑ and
↓). The patterns are similar when we match on
SequenceByMileagei (↑ and ↓) and SequenceByConditioni

(↑ and ↓). We did not match on all eight of the
SequenceBy… variables simultaneously because that
created substantial dimensionality in the matching
procedure and reduced the size of the matched sam-
ple too greatly. (We control for all of the sequencing
variables simultaneously in §4.2.2.) Overall, Figure 3
shows that when electronic bidders participate (a) the
distribution of bidders across auctions is more even,
and (b) more bidders participate (i.e., we see both
demand distribution and demand expansion). The
evidence of demand distribution is consistent with
our hypothesis that bidders leverage the lower search
costs of the electronic channel to shift participation
from high to low competition auctions, which results
in a more even distribution of bidder participation.

4.2.2. Vehicle-Level Regressions. We explored
further whether the trends shown in Figures 2 and
3 might be a result of the types of vehicles offered
in each run number, rather than a result of dif-
ferences in search costs across the channels (as we
conclude). For example, prior research has shown
that, ceteris paribus, electronic bidders prefer rela-
tively low-mileage, high-value vehicles whose qual-
ity is predictable and that can be easily represented
online (Overby and Jap 2009). If these vehicles tend
to be auctioned later in the sequence, then that could

16 The matched sample does not contain sales events that could not
be matched. We report the data for all no-elec and elec sales events
in Figure 2 to show that the results of the matched sample are
consistent with the full sample.
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Figure 3 (Color online) Average Number of Total, Physical, and Electronic Bidders per Run Number for Sales Events With and Without Electronic
Bidder Participation in the Matched Sample

y x
R

y x
R

y x
R

y x
R y x

R

y x
R

y x
R

y x
R

SequenceByValuationi
↑ ↓

SequenceByValuationi
↑ ↓

SequenceBySupplyi
↑ ↓

SequenceBySupplyi
↑ ↓

Notes. The upper data series indicates total bidders, the middle data series indicates physical bidders, and the lower data series indicates electronic bidders.
The total bidders and physical bidders data series overlap perfectly in panels B and D, given that the sales events summarized in panels B and D contain no
electronic bidders. Linear regression trend lines are shown for each data series.

explain the trends. We controlled for this in the match-
ing estimation by matching on the SequenceBy… vari-
ables, and we explored this further via the following
regression model:

DV ij = �0 +�1 ∗RunNumberij +�2 ∗Mileageij

+�3 ∗Conditionij +�4 ∗Valuationij

+�5 ∗ValuationMinusStartingBidij +�6 ∗Supplyij

+�7 ∗VehiclesOfferedi+�8 ∗AvgMileagei
+�9 ∗AvgConditioni+�10 ∗AvgValuationi

+�11 ∗Dayi+
K
∑

k=2

�124k5∗Seller4k5i+�ij 0 (2)

In (2), DVij is Biddersij , PBiddersij , or EBiddersij . Note
that Biddersij = PBiddersij +EBiddersij . Using Biddersij as
the dependent variable allows us to examine the over-
all relationship between run number and the number
of bidders after controlling for vehicle quality (e.g.,
mileage, valuation), a time trend, seller fixed effects,
and other factors. Using PBiddersij and EBiddersij as
the dependent variables allows us to decompose the
overall effect to see how the relationship between run
number and the number of bidders differs based on
bidder type. In (2), Seller(k)i are indicator variables for
each seller k (i.e., fixed effects), and the other vari-
ables are described in Table 1. Notice that (2) contains
variables at both the vehicle and sales event levels.
This is because the 10,351,857 vehicles in the data are
clustered within the 65,718 sales events. We accounted
for the clustered nature of the data in two ways:
(a) by clustering the standard errors by sales event

(this accounts for correlation among the error terms
for vehicles in the same sales event), and (b) by esti-
mating a multilevel model (aka a hierarchical linear
model), the specification for which is shown as (3). In
the multilevel model, we allow the intercept to vary
by sales event (note the i subscript in �0i in (3)), and
we model this variance as a function of the sales event
variables. The number of observations and explana-
tory variables (particularly given the inclusion of the
seller fixed effects) increases model dimensionality
substantially, making convergence of the multilevel
model difficult. Accordingly, we fit this model using a
random 10% sample of the sales events. We used the
full data when fitting model (2):

DV ij = �0i+�1 ∗RunNumberij +�2 ∗Mileageij

+�3 ∗Conditionij +�4 ∗Valuationij

+�5 ∗ValuationMinusStartingBidij

+�6 ∗Supplyij +rij1

where �0i = �00 +�01 ∗VehiclesOfferedi

+�02 ∗AvgMileagei+�03 ∗AvgConditioni

+�04 ∗AvgValuationi+�05 ∗Dayi

+

K
∑

k=2

�064k5∗Seller4k5i+u0i0 (3)

We refer to these as the vehicle-level regressions.
Descriptive statistics appear in Table 1, and results
using specification (2) appear in Table 2 (results from
(3) are similar and are available from the authors).
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Table 1 Descriptive Statistics for Variables in the Vehicle-Level Regressions

Variable Description Mean SD Min Max Median

Biddersij Number of bidders for vehicle j 2075 1028 0 26 2
PBiddersij Number of physical bidders for vehicle j 2033 1004 0 20 2
EBiddersij Number of electronic bidders for vehicle j 0042 0080 0 20 0
RunNumberij Run number in which vehicle j is offered 171075 164007 1 802 127
Mileageij a Mileage of vehicle j 4040 3083 000010 39083 3012
Conditionij Condition grade of vehicle j 3007 0083 0 5 3
Valuationij

a Estimated value of vehicle j 1029 0073 000025 3505 1021
ValuationMinus StartingBidij

b Valuationij minus StartingBidij for vehicle j 1022 1042 −409 909 0097
Supplyij c Number of vehicles of same year/model as

vehicle j (includes vehicle j5

1048 2065 001 6501 0040

VehiclesOfferedi
d Number of vehicles offered in sales event i 2040 1020 0001 8002 2029

AvgMileagei a Average mileage of vehicles in sales event i 4043 2063 000102 28085 3083
AvgConditioni Average condition of vehicles in sales event i 3006 0050 0 5 3005
AvgValuationi

a Average valuation of vehicles in sales event i 1028 0048 000225 20017 1027
Dayi Day sales event occurred (January 11, 2005 = 1) 908053 629003 1 11906 718

Correlations 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Biddersij 1
2. PBiddersij 0072 1
3. EBiddersij 0058 −0006 1
4. RunNumberij −0001 −0006 0005 1
5. Mileageij a −0003 0007 −0013 −0010 1
6. Conditionij 0006 −0004 0012 0005 −0038 1
7. Valuationij

a 0011 −0006 0023 0007 −0052 0030 1
8. ValuationMinusStartingBidij

b 0016 0014 0008 −0004 0009 −0027 0018 1
9. Supplyij c −0005 −0012 0007 0020 −0028 0014 0013 −0013 1

10. VehiclesOfferedi
d 0001 −0005 0010 0038 −0026 0019 0019 −0014 0038 1

11. AvgMileagei a −0001 0011 −0014 −0020 0061 −0034 −0043 0019 −0037 −0043 1
12. AvgConditioni 0001 −0008 0010 0011 −0035 0060 0029 −0026 0024 0032 −0058 1
13. AvgValuationi

a 0007 −0009 0022 0014 −0040 0025 0066 0002 0028 0028 −0065 0043 1
14. Dayi 0009 −0002 0012 −0001 0008 0004 −0000 0002 −0011 −0004 0014 0004 0001 1

aScaled by dividing by 10,000.
bScaled by dividing by 1,000.
cScaled by dividing by 10.
dScaled by dividing by 100.

The largest variance inflation factor (VIF) is 3.58,
suggesting that multicollinearity is not a major con-
cern. We also estimated (2) using other specifications,
including negative binomial, zero-inflated negative
binomial, and seemingly unrelated regression (to esti-
mate the model for all three dependent variables
simultaneously).17 Results are similar to those in
Table 2. Results indicate that the relationships shown
in Figures 2 and 3 hold after controlling for other

17 We used a negative binomial model because the dependent vari-
ables are counts that are overdispersed. We used a zero-inflated
negative binomial model because the dependent variables, par-
ticularly EBiddersij , are often 0. We did this purely for robust-
ness, however, because a zero-inflated model assumes a distinct
process by which some of the observations must always equal 0
(Cameron and Trivedi 2005), and there is no such process in our
context (i.e., there is no structural reason why some vehicles would
always attract 0 bidders). The seemingly unrelated regression (SUR)
results are identical to those reported in Table 2 because SUR yields
the same results as estimating each regression separately when
the right-hand-side variables are the same (see Wooldridge 2002,
Theorem 7.6, p. 164).

variables/alternative explanations. Specifically, there
is a negative relationship between RunNumberij and
Biddersij , a (more) negative relationship between
RunNumberij and PBiddersij , and a positive relation-
ship between RunNumberij and EBiddersij .

4.2.3. Range of Purchasing Behavior. In §3, we
argued that lower search costs allow electronic bid-
ders to observe and potentially participate in more
auctions, thereby helping them to conduct Robin
Hood operations that might lead to the participa-
tion patterns shown in Figure 2. We examined this
by investigating whether bidders using the electronic
channel remained active in sales events longer than
bidders using the physical channel. We did this by
examining instances (n= 113791379) in which a given
bidder (based on his BidderID) purchased at least
two vehicles in the same sales event i. For each of
these instances, we recorded the lowest and highest
run number at which the bidder purchased and sub-
tracted them to approximate the range of the bidder’s
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Table 2 Results of the Vehicle-Level Regressions

Dep. var.: Biddersij Dep. var.: PBiddersij Dep. var.: EBiddersij
Coefficient Coefficient Coefficient

RunNumber ij −000001 (0.0000)∗∗∗ −000002 (0.0000)∗∗∗ 000001 (0.0000)∗∗∗

Mileage ij
a 000042 (0.0003)∗∗∗ 000046 (0.0002)∗∗∗ −000004 (0.0002)∗

Condition ij 001598 (0.0013)∗∗∗ 000471 (0.0008)∗∗∗ 001128 (0.0010)∗∗∗

Valuation ij
a 000531 (0.0022)∗∗∗ −000178 (0.0014)∗∗∗ 000709 (0.0017)∗∗∗

ValuationMinusStartingBid ij
b 001380 (0.0016)∗∗∗ 000747 (0.0009)∗∗∗ 000634 (0.0009)∗∗∗

Supply ij
c −000277 (0.0009)∗∗∗ −000214 (0.0006)∗∗∗ −000063 (0.0006)∗∗∗

VehiclesOffered i
d 000297 (0.0021)∗∗∗ 000109 (0.0013)∗∗∗ 000188 (0.0019)∗∗∗

AvgMileage i
a 000019 (0.0016) 000154 (0.0012)∗∗∗ −000135 (0.0015)∗∗∗

AvgCondition i −000893 (0.0062)∗∗∗ −000675 (0.0041)∗∗∗ −000218 (0.0062)∗∗∗

AvgValuation i
a 000390 (0.0116)∗∗∗ −000816 (0.0070)∗∗∗ 001206 (0.0104)∗∗∗

Day i 000002 (0.0000)∗∗∗ −000001 (0.0000)∗∗∗ 000003 (0.0000)∗∗∗

Intercept e 202974 (0.0510)∗∗∗ 206272 (0.0423)∗∗∗ −003298 (0.0426)∗∗∗

Seller fixed effects e included included included
n f 6,530,431 6,530,431 6,530,431
R 2 0.08 0.06 0.17

Notes. Results are from specification (2) in the text in which the standard errors are clustered by sales event.
Results of the multilevel model shown in specification (3) are available from the authors.

aVariable scaled by dividing by 10,000.
bVariable scaled by dividing by 1,000.
cVariable scaled by dividing by 10.
dVariable scaled by dividing by 100.
eThe overall intercept is reported but has minimal meaning because it represents the conditional mean of the

dependent variable for the seller whose fixed effect was withheld.
fIncluding Valuation ij and Condition ij reduces the sample size because Valuation ij is only recorded for vehicles

that sold, and Condition ij is null for approximately 10% of the transactions. Similar results are achieved after
dropping Valuation ij , Condition ij , or both.

∗p < 0010; ∗∗∗p < 0001.

participation in the sales event. For example, if a bid-
der used the physical channel to purchase vehicles at
run numbers 28, 49, and 90, then his range of par-
ticipation was 90 − 28 = 62. The average range was
88.7 (SD = 88.0) and 101.4 (SD = 91.8) for physical
and electronic bidders, respectively. The range was
significantly higher (p < 0001) for electronic bidders
than for physical bidders, based on either a t-test or
a Mann–Whitney U test. A limitation of this measure
is that it is based on auctions won rather than auc-
tions observed. Thus, it may underestimate the true
range of a buyer’s participation. However, this issue
will exist in both channels, such that a comparison
between channels should still yield useful informa-
tion about differences in participation.

4.3. The Distribution of Bidder Participation
Across Auctions and Seller Revenue

We next examined how the evenness/unevenness of
the distribution of bidder participation across the
auctions in a sales event affects seller revenue. Our
empirical analysis is motivated directly by the ana-
lytical model. The analytical model considers how
demand distribution across a group of single-object
auctions affects seller revenue. Because each sales
event consists of a group of single-object auctions, we
used the sales event i as our unit of analysis. The
key variables identified by the analytical model are

(a) expected revenue from the auctions, (b) the distri-
bution of bidder participation across auctions, (c) the
average number of bidders per auction, (d) the degree
to which the variability of bidder valuations varies
across the objects being auctioned, and (e) whether
the seller uses knowledge of the distribution of bid-
der valuations to allocate objects to auctions. We mea-
sured these as follows.

Expected Revenue: The analytical model considers
total expected revenue across a group of auctions,
although adjusting the model to consider average
expected revenue for each auctioned object is triv-
ial. To make it easier to interpret the economic
significance of our empirical estimates, we mea-
sured average expected revenue for each vehicle auc-
tioned in sales event i. Specifically, AvgHighBidi =
∑J

j=1 HighBidij/J . Because HighBidij is equal in expecta-
tion to the second-highest order statistic from the set
of bidder valuations, it corresponds to the expected
auction price we use in the analytical model.

Distribution of Bidder Participation Across Auctions:
We measured the distribution of bidder participa-
tion across vehicles in each sales event (StDevBiddersi)
as the standard deviation of Biddersij . For example,
if Biddersij is the same for all vehicles in a sales
event, then StDevBiddersi = 0. Thus, a lower value of
StDevBiddersi indicates a more even distribution of
bidder participation. This relates to the Robin Hood
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operations described in §3 because each Robin Hood
operation will reduce StDevBiddersi.18

Average Number of Bidders per Auction: We measured
the average number of bidders for a vehicle j in sales
event i as AvgBiddersi =

∑J
j=1 Biddersij/J .

Degree to Which the Variability of Bidder Valuations
Varies Across the Objects Being Auctioned: We measured
this via two steps. First, we estimated the variability
of bidder valuations for each vehicle j (ValuationStDev
_Vehiclejt) as the standard deviation of the high bid for
all vehicles of the same year and model as vehicle j
auctioned in the same month t. (We also computed the
corresponding mean, ValuationMean_Vehiclejt .) Note
that ValuationStDev_Vehiclejt measures the variability
of the second-highest order statistic (i.e., the auction
price) for vehicles of a given year/model rather than
the variability of the underlying bidder valuations.
However, this is a reasonable approach for our pur-
poses because a low (high) standard deviation of high
bids should reflect relatively low (high) variability.19

Second, we calculated the degree to which the vari-
ability of bidder valuations for each vehicle varies
across a sales event i (ValuationStDev_SalesEventi5 as
the standard deviation of ValuationStDev_Vehiclejt for
the vehicles auctioned in sales event i. For exam-
ple, if an entire sales event consisted of 2007 Ford

18 This measure reflects how we measure the evenness of the dis-
tribution of bidder participation in the analytical model because if
vector X1 majorizes vector X2, then the standard deviation of the
elements in vector X1 will exceed that of the elements in vector X2

(Arnold 1987). However, the converse is not always true, i.e., if
the standard deviation of the elements in vector X1 exceeds that of
the elements in vector X2, then X1 does not always majorize X2.
In the case when neither vector majorizes the other, our theoret-
ical model does not predict which distribution of bidder partici-
pation yields higher revenues. To assess how well our empirical
measure corresponds to the underlying theoretical construct, we
simulated how often a more evenly distributed vector of bidder
participation yields higher revenue than a less evenly distributed
vector (as indicated by the standard deviation of bidders across
auctions), even if the latter does not majorize the former. In the
simulation, we generated two vectors of bidder participation (X1

and X2) across J = 158 auctions (which is the mean in our empir-
ical application). The distribution of bidder participation differed
between the two vectors, but the aggregate amount did not. We
calculated the total expected revenue from the J auctions for each
scenario by assuming that bidder valuations for each object were
uniformly distributed between 10,000 and 12,000. We ran the sim-
ulation 1,000 times. The vector with the lower standard deviation
yielded higher total expected revenue 93% of the time, with the
increase equal to approximately $14.50 per vehicle. For the excep-
tions in which the higher standard deviation vector yielded higher
total expected revenue, the increase was approximately $2.35 per
vehicle. This indicates that StDevBiddersi is a good empirical mea-
sure of our theoretical construct.
19 Because we calculated it for each vehicle year/model on a
monthly basis, ValuationStDev_Vehiclejt is not artificially inflated
by differences in vehicle age or model. Although our procedure
does not explicitly control for differences in vehicle mileage and
condition, these variables are highly correlated with vehicle age.

Rangers (with ValuationStDev_Vehiclejt = 11500), then
ValuationStDev_SalesEventi = 0. If the sales event con-
sisted of five 2007 Ford Rangers and three 2007 Ford
Explorers (with ValuationStDev_Vehiclejt = 21500), then
ValuationStDev_SalesEventi = 517055.

Whether the Seller Uses Knowledge of the Distribu-
tion of Bidder Valuations to Allocate Objects to Auctions:
If the seller in sales event i sequences her vehicles
(i.e., allocates her objects to auctions) based on knowl-
edge of the distribution of bidder valuations, then
we would expect a correlation between RunNumberij
and ValuationStDev_Vehiclejt . We examined this by
regressing RunNumberij on ValuationStDev_Vehiclejt ,
ValuationStDev_Vehicle2

jt , and ValuationStDev_Vehicle3
jt

for the J vehicles in each sales event i. This allows
a potential relationship between RunNumberij and
ValuationStDev_Vehiclejt in sales event i to take any
form that can be approximated by a third-degree
polynomial. We set SequenceByValDisti = 1 if the over-
all regression F -statistic was significant (at p < 0005).
As noted in §3.2, this is the relevant sequencing
method for the analytical model. Other sequencing
methods such as by Mileageij or by Valuationij are not
relevant, unless they are surrogates for sequencing
based on the bidder valuation distributions (which
will be picked up by SequenceByValDisti5.

4.3.1. Regression Specification. To examine the
relationships posited by the analytical model, we
regressed AvgHighBidi on StDevBiddersi, AvgBiddersi,
ValuationStDev_SalesEventi, SequenceByValDisti, inter-
actions between StDevBiddersi and the other afore-
mentioned variables, and a set of control variables.
We refer to this as the sales event regression. Includ-
ing AvgBiddersi in the regression allowed us to con-
trol for any demand expansion effect so that we can
better identify the demand distribution effect repre-
sented by StDevBiddersi. We include the interaction
terms because the analytical model shows that the
relationship between the distribution of bidder par-
ticipation across vehicles (StDevBiddersi) and expected
revenue (AvgHighBidi) should be (a) weaker at higher
levels of AvgBiddersi, because a more even distri-
bution has less impact on revenue when the num-
ber of bidders is high; (b) weaker at higher levels
of ValuationStDev_SalesEventi, because a more even
distribution is less likely to increase revenue when
bidder valuations vary widely across objects; and
(c) weaker if SequenceByValDisti = 1, because a more
even distribution is less likely to increase revenue
when the seller allocates objects to auctions based
on (a priori) knowledge of the distribution of bid-
der valuations. We mean-centered the variables that
appear in the interaction terms so that the coeffi-
cients on the lower-order terms represent main effects
rather than simple effects (Echambadi and Hess 2007).
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Control variables include the vehicle quality mea-
sures AvgMileagei, AvgValuationi, and AvgConditioni;20

VehiclesOfferedi; Dayi (to control for a linear time
trend); and seller fixed effects (to control for unob-
served seller-specific factors). Descriptive statistics are
shown in Table 3. Results are shown in Table 4. All of
the VIFs for the independent variables in the model
without the interaction terms are 2.20 or below. This
suggests that collinearity is unlikely to be a problem
for our estimates.21

4.3.2. Results. The coefficient for StDevBiddersi
is negative and significant, indicating that seller
revenue is lower for sales events with less even
distributions of bidders across auctions, which is con-
sistent with the analytical model. The coefficient for

20 Although Valuationij and Conditionij are null for some vehicles,
we are able to calculate AvgValuationi and AvgConditioni using
the vehicles in a sales event for which we observe these values.
We believe these to be effective controls for the average quality
of the vehicles in sales event i. However, if the missing values
of Valuationij and Conditionij are systematically different from the
observed values, then these controls will not work as intended.
To examine this, we imputed the missing values. We imputed
Valuationij using a procedure similar to that which the auction com-
pany uses to calculate Valuationij . We grouped vehicles by year and
model. We took the sold transactions for each group in a given
calendar year and regressed HighBidij on Mileageij . We used the
resulting coefficients, including the intercept, to impute Valuationij

for each vehicle of that year and model (and mileage) that was
offered in that calendar year; we label this Valuation_Imputedij .
We assessed the performance of this procedure by regressing the
observed values of Valuationij on Valuation_Imputedij . The coeffi-
cient for Valuation_Imputedij is 0.99 (p < 0001), and R2 = 0095. This
indicates that our imputation procedure closely reflects Valuationij

as estimated by the auction company. We imputed Conditionij as
follows. For each vehicle of year/model j offered by seller k
on day t, we calculated the average condition grade for vehi-
cles of the same year/model j offered by the same seller k over
the prior 30 days (AvgConditionjkt−305. We regressed Conditionij

(when observed) on AvgConditionjkt−30, Mileageij , and the vehi-
cle’s age (computed as the date of the sales event minus Jan-
uary 1 of VehicleYearij ). We used the resulting coefficients to impute
Conditionij , which we label Condition_Imputedij . As we did for
Valuationij , we regressed the observed values of Conditionij on
Condition_ Imputedij . The coefficient for Condition_Imputedij is 0.99
(p < 0001), and R2 = 0049. We then replaced the missing values of
Valuationij and Conditionij with the imputed values and recalcu-
lated AvgValuationi and AvgConditioni . The results of the sales event
regression are qualitatively the same whether we use the versions
of AvgValuationi and AvgConditioni with the imputed values or
those without.
21 We also computed the VIFs for the interaction terms using the
uncentered data as suggested by Echambadi and Hess (2007). VIFs
for uncentered interaction terms are often high, because main
effects are typically highly correlated with the interaction effects
of which they are a part (and vice versa). Ours are no differ-
ent, with VIF = 4902 for the uncentered StDevBiddersi ∗ AvgBiddersi
interaction term. This is an artifact of the definition of the VIF
rather than a threat to valid estimation, as discussed by Alli-
son (2012; archived by WebCite® at http://www.webcitation.org/
6R7G70Aou). All VIFs for the mean-centered interaction terms are
below 2.

AvgBiddersi is positive and significant. This is con-
sistent with auction theory that more bidders are
associated with higher prices. To account for a pos-
sible nonlinear relationship between AvgBiddersi and
AvgHighBidi, we reestimated the model with both
AvgBiddersi and AvgBidders2

i . However, neither coef-
ficient was significant when both were included, so
we retained the model with AvgBiddersi only.22 The
coefficient for StDevBiddersi ∗AvgBiddersi is positive
and significant, indicating that the negative effect of
StDevBiddersi is weaker at higher levels of AvgBiddersi.
This is consistent with the analytical model. The coef-
ficient for StDevBiddersi ∗ SequenceByValDisti is pos-
itive and significant, indicating that the negative
effect of StDevBiddersi is attenuated when the seller
sequences the vehicles based on the variability of the
bidder valuations. This is also consistent with the
analytical model. The coefficient for StDevBiddersi ∗

ValuationStDev_SalesEventi is positive (which is con-
sistent with the analytical model) but insignificant.

4.3.3. Economic Significance. To get a sense of
the economic significance of these results to sellers in
the wholesale used vehicle market, we considered the
marginal effect of a change of one standard deviation
in StDevBiddersi (0.27; see Table 3) when AvgBiddersi
is at its mean (2.70) and SequenceByValDisti = 0. This
effect is − 67056, ceteris paribus. For a sales event of
average length (i.e., 158 vehicles), a $67.56 decrease
in the average high bid equates to a reduction of
$10,675 in total revenue for the entire sales event,
assuming that the seller accepts all of the high
bids. In the appendix, we show that this estimate
may be conservative because of possible measure-
ment error in StDevBiddersi and AvgBiddersi. The most
powerful explanatory variables are AvgValuationi and
AvgConditioni (based on the standardized coefficients
shown in Table 4), which is intuitive given that the
average high bid for vehicles depends heavily on the
value and condition of the vehicles.

4.3.4. Examining the Regression Specification/
Robustness Checks. We considered whether the co-
efficients reported in Table 4 could be biased because
of specification error. A particular problem in the
analysis of auctions is endogenous entry (e.g., Bajari
and Hortacsu 2003). This problem arises because the
number of bidders in an auction is not fixed; rather,
bidders choose whether to participate. If unobserved

22 The lack of significance for the linear and quadratic terms when
included together may be because this model is at the sales event
level, i.e., at the aggregate level. To examine this, we ran a model
at the vehicle level in which we regressed HighBidij on a constant,
Biddersij , Bidders2

ij , Valuationij , Conditionij , and Mileageij . The coef-
ficient for Biddersij is 205.47 (SE = 2.18), and the coefficient for
Bidders2

ij is −6039 (SE = 0.28). This reflects the concave relationship
between HighBidij and Biddersij predicted by theory.
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Table 3 Descriptive Statistics for Variables in the Sales Event Regression

Variable Description (each variable describes a sales event i) Mean SD Min Max Median

AvgHighBidi Average high bid 117,84 5,721 132 148,299 11,745
StDevBiddersi Standard deviation of the number of bidders 1019 0027 0 3.28 1.18
AvgBiddersi Average number of bidders 2070 0048 0.02 6.4 2.68
ValuationStDev_SalesEventi Standard deviation of the standard deviation of bidder

valuations for vehicles in sales event i
1,069 1,630 0 10,780 883.97

SequenceByValDisti Indicator for whether the seller sequenced vehicles
based on the bidder valuation distributions

0039 0049 0 1 0

AvgValuationi Average vehicle valuation 12,126 5,439 225 201,666 11,616
AvgMileagei Average vehicle mileage 52,411 32,179 102 288,545 45,007
AvgConditioni Average vehicle condition 2093 0058 0 5 3
VehiclesOfferedi Number of vehicles offered 157052 113094 10 802 139
Dayi Day sales event occurred (January 11, 2005 = 1) 891024 634024 1 1,906 703

Correlations 1 2 3 4 5 6 7 8 9 10

1. AvgHighBidi 1
2. StDevBiddersi −0005 1
3. AvgBiddersi 0011 0062 1
4. ValuationStDev_SalesEventi 0005 0005 0004 1
5. SequenceByValDisti 0002 0001 −0000 −0000 1
6. AvgValuationi 0097 −0003 0010 0006 0001 1
7. AvgMileagei −0065 0017 0005 0004 −0003 −0064 1
8. AvgConditioni 0054 −0017 −0004 −0003 0004 0046 −0055 1
9. VehiclesOfferedi 0026 0001 0009 0000 0023 0022 −0034 0030 1

10. Dayi 0001 0011 0020 0008 0004 0001 0011 0004 0003 1

Notes. Additional detail about variable definitions is available in the text. The descriptive statistics for AvgValuationi , AvgMileagei , AvgConditioni , and
VehiclesOfferedi differ from those reported in Table 1 because Table 1 summarizes data at the vehicle level; here, data are summarized at the sales event level.
For example, suppose there were only two sales events: A with two vehicles and AvgMileagei = 401000 and B with four vehicles and AvgMileagei = 601000.
The mean of AvgMileagei would be 53,333 in Table 1 and 50,000 here.

factors influence both bidder participation and the
auction price, then bidder participation variables will
be endogenous in a regression on prices (this can be
thought of as either an omitted variables problem
or a simultaneity problem). For example, unobserved

Table 4 Results of the Sales Event Regression

Dep. var.: AvgHighBidi Dep. var.: AvgHighBidi

Coef. (robust SE) Std. coef.a Coef. (robust SE) Std. coef.a

AvgValuationi 00927 (0.027)∗∗∗ 00880 00927 (0.027)∗∗∗ 00880
AvgMileagei −00001 (0.002) −00004 −00001 (0.002) −00004
AvgConditioni 111010773 (33.275)∗∗∗ 00111 111020342 (33.206)∗∗∗ 00111
VehiclesOfferedi 10111 (0.071)∗∗∗ 00022 10136 (0.073)∗∗∗ 00023
Dayi −00102 (0.010)∗∗∗ −00011 −00105 (0.010)∗∗∗ −00012
StDevBiddersi −5380596 (48.615)∗∗∗ −00026 −5310553 (48.214)∗∗∗ −00025
AvgBiddersi 3960658 (40.748)∗∗∗ 00033 3840162 (40.968)∗∗∗ 00032
ValuationStDev_SalesEventi 00017 (0.011) 00005 00018 (0.011) 00005
SequenceByValDisti 100084 (8.867) 00001 100635 (8.873) 00001
StDevBiddersi ∗ AvgBiddersi 104019 (52.49)∗∗ 00003
StDevBiddersi ∗ ValuationStDev_SalesEventi 00003 (0.044) 00000
StDevBiddersi ∗ SequenceByValDisti 1360239 (41.970)∗∗∗ 00003
Intercept b -35,947.4 (1,466.11)∗∗∗ -35,626.2 (1,469.79)∗∗∗

Seller fixed effects b Included Included
n 65,718 65,718
R2 0.97 0.97

aThese are standardized regression coefficients.
bThe overall intercept is reported but has minimal meaning because it represents the conditional mean of the dependent variable for the seller whose fixed

effect was withheld.
∗∗p < 0005; ∗∗∗p < 0001.

item quality and/or unobserved seller characteris-
tics might create endogeneity in a regression model
such as ours. We believe that endogeneity arising
from factors such as these is unlikely in our case,
given that we have controlled for vehicle quality
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via AvgValuationi, AvgMileagei, and AvgConditioni; we
have controlled for seller characteristics via seller
fixed effects; and we have included a linear time
trend via Dayi to control for general unobserved fac-
tors that vary over time. A related potential problem
is if high prices cause lower bidder participation
by filtering out low-valuation bidders who would
have otherwise participated. This might create reverse
causality between AvgHighBidi and the bidder par-
ticipation variables. However, this is not actually a
problem for our model (at least not directly), because
it is not prices (i.e., AvgHighBidi) that affect bidder
participation, it is where the auctioneer sets the start-
ing bid. For example, consider two vehicles that sell
for $5,000 and $30,000, respectively. If the auctioneer
starts the bidding for the $5,000 ($30,000) vehicle at
$4,900 ($29,900), then few bidders will bid. If he starts
the bidding at $3,000 ($20,000), then many bidders
will bid.

As a robustness check, we considered whether
where the auctioneer set the starting bid could
affect our results. We estimated where the auction-
eer started the bidding for each vehicle relative to
estimated bidder valuations for that vehicle as fol-
lows. We estimated the low and high ends of the bid-
der valuation distribution for vehicle j (ValuationLow
_Vehiclejt and ValuationHigh_Vehiclejt) as Valuation
Mean_Vehiclejt ± 2∗ ValuationStDev_Vehiclejt (the latter
two variables are defined in §4.3). We set Relative
StartingBidij = (StartingBidij − ValuationLow_Vehiclejt)/
(ValuationHigh_Vehiclejt − ValuationLow_Vehiclejt). For
example, if StartingBidij = 9,000, ValuationMean
_Vehiclejt = 101000, and ValuationStDev_Vehiclejt =

11000 (such that ValuationLow_Vehiclejt = 81000 and
ValuationHigh_Vehiclejt = 121000), then RelativeStarting
Bidij = 0025. We then calculated AvgRelativeStarting
Bidi as the mean of RelativeStartingBidij for the J vehi-
cles in sales event i. We reestimated the sales event
regressions using only those sales events for which
AvgRelativeStartingBidi was in the lowest quartile (0.23
or below), i.e., those in which the auctioneer set
the starting bids relatively low (on average). Results
(available from the authors) are substantively similar
to those in Table 4. This provides evidence that our
main results are robust to the possibility that our mea-
sures of the number of bidders are truncated by high
auctioneer starting bids for some sales events.

Overall, the regression model maps directly to
the theory and causality developed in the analytical
model. The high level of correspondence between the
results of the regression model and the predictions
of the analytical model (which include not only the
main effect of StDevBiddersi but also the interaction
effects with AvgBiddersi and SequenceByValDisti) pro-
vides evidence that the regression model is an appro-
priate representation of how the theory applies to
the data.

5. Conclusion
5.1. Contributions
As advances in information technology continue to
reduce search costs and improve bidders’ ability to
participate in auctions regardless of location, bidder
participation patterns will change in interesting ways.
Analyzing these changes is important for extending
auction theory and for understanding how sellers
can leverage multiple-object auctions to maximum
effect. From a theoretical perspective, we identified
two effects of the Internet and reduced search costs
on prices in a multiple-object auction setting. Because
bidding electronically reduces search costs relative to
bidding physically, we argue that this reduction in
search costs may cause bidders to participate not only
in more auctions (the “demand expansion” effect) but
also to adjust their participation so that bidding com-
petition is more evenly distributed across auctions
(the “demand distribution” effect). The latter effect
exists because the low search costs facing online bid-
ders make it relatively costless for them to shift their
demand from auctions in which bidding competi-
tion is high to those in which bidding competition
is expected to be low. Given that the positive price
effects of demand expansion are relatively straightfor-
ward, we focus instead on the price effects of demand
distribution by modeling the circumstances under
which a more even distribution of bidder participa-
tion across auctions yields higher expected prices. We
show that a more even distribution of bidder partic-
ipation yields higher prices under fairly general con-
ditions. However, this depends on the variability of
bidder valuations for the objects being auctioned, the
degree to which sellers can (and do) predict this a pri-
ori, and the average number of bidders per auction.

From a managerial perspective, the results have
implications for sellers who use multiple auctions to
sell products and who are interested in achieving
higher prices. An obvious strategy for the seller is to
attract more bidders to her auctions. It is nonobvi-
ous, however, that the seller can receive higher prices
without increasing the number of bidders. Instead, she
can often receive higher prices by distributing existing
bidders more evenly across auctions. Possible strate-
gies for doing this include spreading auctions across
time or space and/or using promotional strategies
to shape bidder participation. Testing which of these
strategies is most effective is beyond the scope of
our analysis but a fruitful avenue for future research.
Engendering a more even distribution of bidder par-
ticipation is a particularly good strategy if the seller
cannot (or does not) forecast the variability of bidder
valuations for each object a priori, which is likely to
be the case for sellers whose inventory changes fre-
quently or who sell objects for which buyer prefer-
ences change frequently. In addition to the relevance
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to sellers, our findings should be of interest to auction
houses whose fees are based on a percentage of the
selling price.

We tested the insights of our model using a unique
data set of over 65,000 sequential auctions comprising
over 10,000,000 vehicles in the wholesale used vehi-
cle market. These auctions are conducted at physical
market facilities, and bidders can submit bids phys-
ically or electronically (through an Internet applica-
tion that streams live audio/video of the auctions).
We show that physical bidders are more likely to bid
early in the sequence, whereas electronic bidders are
more likely to bid later in the sequence. We attribute
this to electronic bidders having lower search costs
than physical bidders. This makes it easier for elec-
tronic bidders to wait until later in the sequence to
bid, when bidding competition from physical bidders
lessens. The attrition among physical bidders and the
converse for electronic bidders create a more even dis-
tribution of bidder participation across the auctions
in the sequence. Consistent with the analytical model,
we show that a more even distribution of bidder par-
ticipation is associated with higher prices, but that
this is moderated by the average number of bidders
who bid on the vehicles in the sequence and whether
the seller sequences the vehicles based on the vari-
ability of bidder valuations for them. We estimate that
more even demand distribution (specifically, a reduc-
tion of one standard deviation in the standard devi-
ation of bidders across the auctions in the sequence)
yields a more than $10,000 increase (on average) in
the total expected revenue from the auctions in the
sequence.

5.2. Limitations
Because of space and scope considerations, we focus
our analysis on how the distribution of bidder partici-
pation influences prices. We do not explore how other
auction parameters, such as optimal reserve prices or
changes to auction design, influence prices. Also, we
do not model individual bidders’ decisions to bid on
a given vehicle, nor do we model bidders’ decisions
to bid physically or electronically. Instead, we observe
the auctions in which bidders participate after hav-
ing chosen a channel, and we use this information
to measure the distribution of bidder participation
across auctions. Future research could investigate bid-
ders’ decisions at a microlevel; some studies of this
type have already been conducted (e.g., Bapna et al.
2010). Also, we cannot fully eliminate the possibil-
ity that relationships in our regressions are biased
because of omitted variables or other sources of endo-
geneity, despite our use of multiple control variables
and robustness checks. Similarly, if unobserved fac-
tors influence how sellers in our empirical applica-
tion sequence vehicles, then this could confound our

analysis in §§4.2.1 and 4.2.2, although we have con-
trolled for the main sequencing methods identified
by Grether and Plott (2009). Also, we use the regres-
sions in §4.2.2 to examine the relationship between
run number and the number of bidders after control-
ling for other variables—and to decompose this over-
all relationship to see how it differs based on bidder
type (i.e., physical or electronic). We do not estimate
a simultaneous equations system for the number of
physical and electronic bidders, which is an opportu-
nity for future research. Also, we used a proxy mea-
sure for the variability of bidder valuations per object.
We believe this to be unavoidable given the archival
nature of the data used in the empirical portion of our
paper; measuring these variables with perfect preci-
sion would require an experimental approach. Data
limitations also required us to impute the number
of physical bidders. Potential measurement error in
this variable represents a limitation of the empiri-
cal portion of this research, which we explore in the
appendix.
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Appendix

A.1. Constructing the Bid Log Variables
We extracted Bidsij , Biddersij , PBidsij , PBiddersij , EBidsij ,
EBiddersij , HighBidij , and StartingBidij from the bid log. Some
institutional detail is necessary to understand the data con-
tained within the bid log. If a bid is placed by a physical
bidder, then a clerk at the auction facility enters the bid
amount but not the identity of the physical bidder in the
bid log. If a bid is placed by an electronic bidder, then the
bid amount is automatically entered in the bid log, along
with the ID of the bidder based on the credentials used to
log into the electronic webcast application. The bidder ID is
recorded for a winning bid, for both physical and electronic
bidders. Thus, each row of a vehicle’s bid log contains the
bid amount, whether the bid was placed by a physical or
electronic bidder, and the bidder ID for all electronic bids
and for winning physical bids. Table A.1 illustrates.

For each vehicle j in sales event i, we extracted the start-
ing bid (StartingBidij ), high bid (HighBidij ), and the sequence
of physical and electronic bids (BidPatternij ). For the bid
log in Table A.1, BidPatternij = “PEEPP.” We constructed
Biddersij as the sum of the number of physical bidders
(PBiddersij ) and electronic bidders (EBiddersij ). We counted
the number of electronic bidders from the bid log. However,
we could not count the number of physical bidders because
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Table A.1 Example of the Bid Log for a Vehicle

Bid amount Bid type Bidder ID

10,000 P
10,100 E 111
10,200 E 222
10,300 P
10,400 (winning bid) P 333

Note. P, physical; E, electronic.

their IDs are not recorded (unless they place a winning bid).
Thus, we imputed the number of physical bidders. Imputa-
tion was trivial for three cases that cover 17% of the sam-
ple. If a vehicle i had no physical bids (n =290,559), we
set PBiddersij = 0. If a vehicle had one physical bid (n =

8241315), we set PBiddersij = 1. If a vehicle had two phys-
ical bids that were placed consecutively (n = 6781620), we
set PBiddersij = 2, because a bidder will not immediately
outbid himself. For the remaining cases, we imputed the
number of physical bidders for a vehicle based on the num-
ber and pattern of physical bids for that vehicle. We did
this by assuming that the unobserved relationship between
physical bids and bidders is analogous to the observed rela-
tionship between electronic bids and bidders (we justify this
assumption below).

To implement this procedure, we leveraged not only the
number of bids but also whether bids of the same type
were placed consecutively. We created ConsecutiveEBidsij ,
which is an indicator variable set to 1 for vehicles in
which two electronic bids were placed consecutively. We
created ConsecutivePBidsij analogously. We calculated the
empirical distribution of EBiddersij for each combination
of EBidsij and ConsecutiveEBidsij . Figure A.1 shows the
histograms for some of these distributions. As shown
in the first panel of Figure A.1, if EBidsij = 3 and
ConsecutiveEBidsij = 1, then EBiddersij = 2 approximately
90% of the time. We used the distribution of EBiddersij
conditional on EBidsij and ConsecutiveEBidsij as a proxy
for the distribution of PBiddersij conditional on PBidsij and
ConsecutivePBidsij . We imputed PBiddersij by taking a draw
from the appropriate distribution based on the values of
PBidsij and ConsecutivePBidsij . For example, if PBidsij = 3
and ConsecutivePBidsij = 1, then we imputed PBiddersij = 2
approximately 90% of the time.

Next, we justify—both theoretically and empirically—the
assumption that the mapping between electronic bids and
bidders is a valid proxy for the mapping between phys-
ical bids and bidders. Theoretically, we first distinguish
between two distinct bidder behaviors relevant to our con-
text: (a) how a bidder chooses the auctions in which to par-
ticipate, and (b) his bidding strategy once he has chosen

Figure A.1 Examples of Empirical Distributions of EBiddersij Conditional on EBidsij and ConsecutiveEBidsij

EBidsij = 3 EBidsij = 4 EBidsij = 5

EBiddersij

ConsecutiveEBids = 0
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0.00
1 3 42
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1 3 542
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an auction. As shown in the main text, whether a bidder
is using the physical or electronic channel influences the
auctions in which he chooses to participate. However, we
do not believe that which channel he uses influences his
bidding strategy once he has chosen an auction. We reason
that a bidder’s strategy will be to remain in the bidding
until he either wins or reaches his valuation, regardless
of which channel he is using. This is a rational strategy
because he can achieve positive surplus by purchasing at
or below his valuation. Furthermore, 70% of the sold vehi-
cles in the sample were purchased by “multichannel” bid-
ders, i.e., those who purchased vehicles via both channels.
It seems unlikely that these multichannel bidders would
dramatically change their bidding strategies when shifting
between the two channels. Given similar bidding strate-
gies across the channels, the mapping between electronic
bids and bidders should be a good proxy for the mapping
between physical bids and bidders.

Empirically, we validated this mapping by engaging in
primary data collection at the physical auction facilities.
One of the authors traveled to four different physical auc-
tion sites in the Southeast United States in January, March,
and May of 2013 to observe the auctions and record the
number of physical bidders for each vehicle. This required
close cooperation with the auctioneers, because bidders’ bid
gestures are often quite subtle and targeted directly at the
auctioneer. At the end of each auction, the auctioneer would
indicate the number of physical bidders to the author. We
then extracted the number of physical bids and the bid
pattern from the bid logs for each auction we observed.
This yielded a sample of 429 vehicles for which we had
data on the number of physical bidders (PBiddersij ) and
physical bids (PBidsij ). We dropped 35 observations due to
coding/communication problems (e.g., the number of phys-
ical bidders exceeded the number of physical bids). Another
99 observations were for the three “trivial” cases discussed
above (i.e., 0 physical bids, 1 physical bid, or 2 phys-
ical bids placed consecutively). We refer to the remain-
ing 295 observations as the supplementary sample. Using
the supplementary sample, we constructed empirical distri-
butions for PBiddersij for each combination of PBidsij and
ConsecutivePBidsij . Because ConsecutivePBidsij = 1 for 98% of
vehicles in the full sample that had 2 or more physical bids,
we focused on those distributions. We used Pearson’s �2

test and Fisher’s exact test to assess whether the empirical
distributions from the supplementary sample matched the
corresponding distributions used in the imputation proce-
dure. Fisher’s exact test may be the more appropriate of the
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two because the distributions often have low mass where
the number of bidders is large relative to the number of
bids.23 The null hypothesis for both tests is that the distri-
butions do not differ. As shown in Table A.2, we cannot
reject the null hypothesis in most cases. Because the sta-
tistical power of these tests may be low given the size of
the supplementary sample, we also show in Table A.2 that
the percentage of times each number of bidders is observed
closely matches the predicted percentage from the impu-
tation procedure. Our results support the validity of our
imputation procedure.24

Necessarily, imputation introduces some mismeasure-
ment into PBiddersij ; sometimes we will overestimate it, and
sometimes we will underestimate it. This does not pose
any particular problem in the vehicle-level regression for
PBiddersij (or Biddersij5 reported in Table 2 because mea-
surement error in the dependent variable is captured in the
regression’s error term (Hausman 2001, p. 59). A more seri-
ous concern is the possibility that measurement error in
PBiddersij will lead to measurement error in StDevBiddersi
and AvgBiddersi in the sales event regression. This is because
measurement error in an explanatory variable can bias
the coefficients. It should be noted that StDevBiddersi and
AvgBiddersi are computed after aggregating Biddersij across
vehicles in sales event i. Thus, even if Biddersij is mismea-
sured, StDevBiddersi and AvgBiddersi may not be, because
the measurement error in Biddersij might “wash out” when
aggregated (e.g., see Cameron and Trivedi 2005, p. 899).25

Despite this possibility, we investigated the effects of poten-
tial measurement error in the sales event regressions.

Our primary approach was to adjust the coefficients
and standard errors from the sales event regressions by
the variance/covariance matrix of the measurement errors.
This permits consistent estimation (Fuller 1987). We esti-
mated the variance/covariance matrix as follows. We ran-
domly drew 158 vehicles from the supplementary sample
described above (we used 158 because that is the mean
of VehiclesOfferedi in our empirical analysis). We refer to

23 A common rule of thumb for Pearson’s �2 test is that each discrete
point in the distribution contain at least 5 observations, although
DeGroot and Schervish (2002, p. 537) state that 1.5 is satisfactory.
24 We considered whether our validation of the imputation proce-
dure using data from 2013 was valid given that we use the imputa-
tion procedure on data from 2005 to 2010. We do not believe this to
be a problem, because the institutional context is fairly stable over
time: the basic auction procedure has remained intact and the same
bidders participate year over year. We also checked this empiri-
cally. In addition to receiving the bid logs for the 429 vehicles for
which we manually observed the number of physical bidders, we
also received the bid logs for an additional 6,080 vehicles auctioned
during our site visits that we didn’t observe. We compared the
empirical distributions of EBiddersij for each combination of EBidsij
and ConsecutiveEBidsij from these data to the distributions we used
for imputation using Pearson’s �2 test and Fisher’s exact test. We
found no significant differences, indicating that the imputation dis-
tributions that we use are stable over time.
25 For example, if the true number of bidders in each auction in a
sales event is 4212135, then AvgBiddersi = 2033 and StDevBiddersi =
0057. If our imputation of the number of bidders yields any combi-
nation of two 2s and one 3 (i.e., 4212135, 4213125, or 4312125), then
our measures of AvgBiddersi and StDevBiddersi will be correct. Ta
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Table A.3 Results of the Sales Event Regression Aafter Adjusting for Measurement Error

Dep. var.: AvgHighBidj Dep. var.: AvgHighBidj

Coef. (robust SE) Coef. (robust SE)

�1: AvgValuationi 00961 (0.001)∗∗∗ 00961 (0.001)∗∗∗

�2: AvgMileagei 00003 (0.002) 00003 (0.002)
�3: AvgConditioni 112100408 (10.636)∗∗∗ 112220650 (10.545)∗∗∗

�4: VehiclesOfferedi 00950 (0.048)∗∗∗ 00948 (0.048)∗∗∗

�5: Dayi −00107 (0.008)∗∗∗ −00111 (0.008)∗∗∗

�6: StDevBiddersi −9290655 (34.466)∗∗∗ −7320758 (24.937)∗∗∗

�7: AvgBiddersi 6490832 (15.698)∗∗∗ 5980466 (14.382)∗∗∗

�8: ValuationVar_SalesEventi 00009 (0.003)∗∗∗ 00008 (0.003)∗∗∗

�9: SequenceByValDisti 160723 (10.393) 150087 (10.380)
�10: StDevBiddersi ∗ AvgBiddersi 690589 (9.929)∗∗∗

�11: StDevBiddersi ∗ ValuationStDev_SalesEventi −00020 (0.015)
�12: StDevBiddersi ∗ SequenceByValDisti 2740518 (51.007)∗∗∗

�0: Intercept −31657072 (39.953)∗∗∗ −316770439 (40.097)∗∗∗

n 65,178 65,178
R2 n/a n/a
Wald F -statistic (d.f.) 138,291 (9, 65,708) 108,551 (12, 65,705)

∗∗∗p < 0010.

these 158 vehicles as the supplementary sales event. Because
we observe the true value of PBiddersij for each vehicle in
the supplementary sales event, we can compute the true
values of StDevBiddersi, AvgBiddersi, and the StDevBiddersi
interaction terms. We also imputed PBiddersij for each
vehicle in the supplementary sales event and used those
values to compute the imputed values for StDevBiddersi,
AvgBiddersi, and the StDevBiddersi interaction terms.26 We
subtracted the imputed values from the true values to get
the measurement errors. We repeated this procedure to
create 10,000 “bootstrapped” supplementary sales events
and 10,000 instances of each measurement error. We com-
puted the variance/covariance matrix of the measurement
errors using these 10,000 instances of each error. We reesti-
mated the sales event regressions (without the seller fixed
effects)27 using this matrix to adjust for the measurement
errors. Results appear in Table A.3. The coefficients for
StDevBiddersi and AvgBiddersi are larger in absolute value
than those reported in Table 4, suggesting coefficient atten-
uation. (They are also larger if we reestimate the Table 4
results without the seller fixed effects.) This is not par-
ticularly surprising, because measurement error is known
to cause attenuation, although the direction of the bias is
equivocal a priori when more than one explanatory vari-
able is measured with error. This suggests that our results
in Table 4 may be conservative, such that the economic sig-
nificance of our results may be even greater than what we
report in the main text.

A potential limitation of the above analysis is that
the variance/covariance matrix of the measurement errors

26 To create the true and imputed StDevBiddersi ∗ ValuationStDev
_SalesEventi and StDevBiddersi ∗ SequenceByValDisti interaction
terms, we randomly drew a value for ValuationStDev_SalesEventi
and SequenceByValDisti from the main sample of 65,718 sales events.
27 Including the seller fixed effects creates computational problems
when attempting to invert the matrices needed for estimation of the
coefficients and their standard errors (for the formulas, see Fuller
1987, §3.1.3, pp. 199–202).

recovered from the supplementary sample may differ from
that of the main sample. For robustness against this possi-
bility, we implemented an alternative approach to account
for the potential measurement error by using instrumen-
tal variables. Wooldridge (2002, Chap. 4.4.2, pp. 105–106)
referred to this approach as the multiple indicator solution. In
this approach, we considered both AvgBiddersi and AvgBidsi
to be observed indicators of the unobserved true value
of AvgBiddersi (with StDevBiddersi and StDevBidsi analo-
gous); i.e., AvgBiddersi = AvgBidders∗i + �1 and AvgBidsi =

AvgBidders∗i + �2, where AvgBidders∗i is the unobserved
true value and �1 and �2 are the measurement errors.
AvgBidsi (StDevBidsi) can be used as an instrument for
AvgBiddersi (StDevBiddersi) in the sales event regressions
if (a) the measurement errors �1 and �2 are uncorrelated
with AvgBidders∗i and the other explanatory variables, (b)
AvgBidsi is correlated with AvgBiddersi, (c) AvgBidsi has
no influence on AvgHighBidi except through its relation-
ship with AvgBidders∗i , and (d) �1 and �2 are uncorrelated
with each other. The assumptions in (a) are the standard
ones for errors-in-variables models, they are almost always
maintained in practice, and they seem reasonable for our
context. (b) is satisfied; the correlation between AvgBidsi
and AvgBiddersi(StDevBidsi and StDevBiddersi5 is 0.75 (0.66).
(c) seems reasonable, given that the theoretical changes
to AvgHighBidi modeled in the regression pertain to bid-
ders, not bids. (d) seems reasonable because the correla-
tion between AvgBidsi and AvgBiddersi stems from their
common correlation with AvgBidders∗i , not from correlation
between �1 and �2. The instrumental variable results (avail-
able from the authors) are consistent with the adjusted
results reported in Table A.3; they also show coefficient
attenuation.

A.2. Proof of Concavity of Prices
Lemma A1. Pricem4x5 is strictly concave in x.

Proof. Recall that Pricem4x5 is the expectation of the
(x− 1)st-order statistic from the set of bidder valuations
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Table A.4 Summary Statistics for How Sellers Sequence Vehicles in Sales Events

Proportion of sales events in which both patterns occura

Pattern Mean 1 2 3 4 5 6 7 8 9 10 11 12

1. SequenceByValuation4↓5i 0044 —
2. SequenceByValuation4↑5i 0015 — —
3. SequenceByValuationi = 0 0041 — — —
4. SequenceByMileage(↓5i 0019 0004 0008 0006 —
5. SequenceByMileage(↑5i 0046 0034 0003 0010 — —
6. SequenceByMileagei = 0 0035 0006 0004 0025 — — —
7. SequenceByCondition4↓5i 0035 0025 0003 0007 0004 0025 0006 —
8. SequenceByCondition4↑5i 0013 0004 0005 0004 0006 0004 0004 — —
9. SequenceByConditioni = 0 0053 0016 0008 0029 0009 0018 0026 — — —

10. SequenceBySupply4↓5i 0027 0016 0004 0007 0005 0016 0006 0012 0003 0011 —
11. SequenceBySupply4↑5i 0022 0009 0006 0007 0007 0009 0006 0007 0005 0010 — —
12. SequenceBySupplyi = 0 0051 0019 0005 0027 0006 0021 0024 0016 0005 0031 — — —

Notes. The number of sales events is 65,718. The standard deviation, median, min, and max are withheld for economy of presentation. Because each variable
is binary, the min and max are always 0 and 1; the median is 1 if the mean > 0.5, 0.5 if the mean = 005, and 0 otherwise; and the standard deviation is
√

4n∗�∗41 −�55/4n− 15, where � is the mean and n = 651718.
aThese figures represent the proportion of sales events in which both patterns are evident. For example, in 25% of the sales events, there was a negative

relationship between RunNumberij and Valuationij (pattern 1) and a negative relationship between RunNumberij and Conditionij (pattern 7).

for object m when there are x bidders, i.e., when there
are x draws from the Fm4 · 5 distribution. We denote this
as Pricem4x5 = �x−12 x. To prove concavity, we need the
following:

�x−12 x −�x2 x+1 >�x−22 x−1 −�x−12 x1

2�x−12 x >�x−22 x−1 +�x2 x+10 (4)

We will use the following order statistics relation (David
and Nagaraja 2003, p. 45):

�r2 x =

x
∑

i=r

4−15i−r 4i− 15!
4r − 15!4i− r5!

x!

i!4x− i5!
�i2 i0

After applying that relation to Equation (4), the condition
for concavity is as follows:

x4−�x−22 x−2 + 3�x−12 x−1 − 3�x2 x +�x+12 x+15

> 4−�x−22 x−2 + 2�x−12 x−1 −�x2 x50 (5)

Recall that the distribution of bidder valuations has an
increasing hazard rate. We know from Barlow and Proschan
(1966) that the normalized spacing for distributions with
increasing hazard rates have decreasing stochastic orders
(also, see Kochar and Kirmani 1995, p. 48). This, in turn,
implies that the expectations for the normalized spacing sat-
isfy the following:

D∗

i = 4�− i+ 154�i2 � −�i−12 �5

≥D∗

i+1 = 4�− i54�i+12 � −�i2 �5 (6)

for i = 11 0 0 0 1�− 1.
By setting i = x − 1 and � = x + 1 in Equation (6) and

using that relation in Equation (5), we get

x4−�x−22 x−2 + 3�x−12 x−1 − 3�x2 x +�x+12 x+15

> 4−�x−22 x−2 + 2�x−12 x−1 −�x2 x5

+4−�x−12 x−1 + 2�x2 x −�x+12 x+150 (7)

Note that Huang (1998) shows that the summation of
terms within each set of parentheses is positive. This allows

us to remove the second parenthetical term from Equa-
tion (7). This yields Equation (5) and completes the proof.

A.3. Seller Sequencing Strategies
Table A.4 summarizes the SequenceBy… variables discussed
in §4.2.1. Table A.4 shows substantial heterogeneity in how
sellers sequence vehicles, which is consistent with Grether
and Plott (2009). For example, sellers sequenced vehicles
from high to low Valuationij in 44% of the sales events and
from low to high in 15%. In the other 41% of the sales
events, they appear to have ignored Valuationij . In this case,
they sometimes sequenced vehicles by Mileageij instead:
16% of sales events have SequenceByValuationi = 0 and either
SequenceByMileage4↓5i = 1 or SequenceByMileage4↑5i = 1 (see
the 4th and 5th rows, 3rd column in Table A.4). There
are 9,542 sales events (14.5%) in which RunNumberij is not
related to the other variables, i.e., in which there is no dis-
cernible pattern.
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