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Abstract 

Does a provider’s technology support strategy influence its buyers’ post-adoption 
IT service use? We study this question in the context of cloud infrastructure 
services. The provider offers two levels of support, basic and full. Under basic 
support, the provider handles simple service quality issues. Under full support, the 
provider also offers education, training, and personalized guidance through two-
way interactions with buyers. Using unique data on public cloud infrastructure 
services use by 22,179 firms from March 2009 to August 2012, we find that buyers 
who receive full support use the service 34.85% more than other users. We further 
show that buyers who have full support deploy infrastructure services more 
efficiently, increasing the fraction of servers they run in parallel by 3.53 percentage 
points relative to those who do not. Furthermore, buyers who drop full support and 
switch back to basic support continue using 15.01% more of the service and have a 
proportion of servers running in parallel that is 2.82 percentage points higher 
compared to buyers who have never received full support. These findings provide 
suggestive evidence of buyer learning as a result of provider support. 
 
Keywords: IT service, organizational learning, IT use, cloud computing, 
Infrastructure-as-a-Service, technology support, service strategies.
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TECHNOLOGY SUPPORT AND POST-ADOPTION  
IT SERVICE USE: EVIDENCE FROM THE CLOUD 

 

1. Introduction and Motivation 

Businesses are increasingly shifting their information technology (IT) infrastructure from 
traditional on-premises deployment to the cloud. However, this shift is non-trivial from a technical 
standpoint. For example, many of the expected features of enterprise-grade servers, such as 
redundant components that ensure high availability and physical access to servers, are not present 
in the cloud. The cloud requires users to design for failure (Reese 2009) and consider how to keep 
an application running if any given server randomly disappears. Moreover, the cloud’s scaling 
capabilities can only be exploited if the applications scale out horizontally (i.e., employ several 
servers performing functions in parallel) rather than vertically (i.e., increasing capacity of single 
servers). The former scaling method involves a greater degree of technical sophistication than the 
latter. Thus, it is difficult for some of the buyers of cloud infrastructure services to overcome these 
knowledge barriers on their own. While faster access to infrastructure and greater scalability attract 
firms to cloud infrastructure,  it does not come as a surprise that the lack of in-house resources and 
expertise is reported as the prime challenge faced by firms attempting to place workloads in the 
cloud (RightScale 2016).  

It has been well-documented in the Information Systems (IS) literature that firms’ internal 
capabilities and technical know-how affect both the timing of new IT adoption (Attewell 1992; 
Bresnahan and Greenstein 1996; Forman et al. 2008) as well as the post-adoption usage 
(Parthasarathy and Bhattacherjee 1998; Zhu and Kraemer 2005; Zhu et al. 2006). In particular, 
firms are known to delay not only the adoption (initial purchase) but also the actual assimilation 
of a technology because of knowledge barriers (Åstebro 2004; Fichman and Kemerer 1997). While 
extant literature has shown the role of organizational learning in overcoming knowledge barriers 
(Attewell 1992; Chatterjee et al. 2002; Fichman and Kemerer 1997), much less is known about 
how providers’ knowledge transfer strategies affect buyers’ consumption of IT services. While a 
firm’s own internal efforts in learning are known to be associated with its post-adoption use of 
business IT systems (Åstebro 2004), to our knowledge there is little quantitative evidence on how 
a provider’s strategies to transfer knowledge to buyers affect the realized post-adoption 
consumption level for the offered service.  

In this study, we take steps towards filling this research gap. In the context of cloud 
infrastructure services, we focus on a strategy that directly facilitates interactions and knowledge 
transfer between providers and buyers – the offering of personalized technology support – and 
seek to measure its impact on service use in terms of volume and efficiency. In our research setting, 
the provider’s buyers use its hardware resources and choose between two levels of technology 
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support, basic or full. When receiving full support1, buyers have access to personalized guidance 
and training, and thus have the opportunity to learn through two-way interactions with the provider 
from the latter’s prior experience in deploying applications in the cloud. Through full support, the 
provider takes a proactive approach significantly beyond the level of basic support to lower the 
aforementioned knowledge barriers associated with the usage of cloud infrastructure services. Full 
support is different from pure outsourcing – where the provider does everything for the buyer and 
“takes the burden of learning off the back of a potential user” (Attewell 1992) – in that buyers 
remain in charge of implementing the business process and must acquire the knowledge to control 
and utilize the provider’s resources. Table 1 summarizes some attributes of buyers who may opt 
to use or switch between both support levels.  

 
Table 1.  Characteristics of Buyers Employing or Switching between each Support Level 

Support 
Level Used Basic Full 

Typical  
Buyer a 

Buyers who know what they are 
doing. If they break something, 
they know how to fix it themselves.  

Buyers who want to avoid the technicalities and 
want provider to help them with everything. They 
may not have a clear idea on what cloud 
infrastructure is or they know what it is yet do not 
know how to deploy applications on it. 

Why switch  
to this level  
of support? a 

Buyers feel they have learned 
enough to not need the provider’s 
safety net. Their willingness to pay 
the full support premium has fallen. 
Buyer-side budget cuts may also 
force buyer to drop full support. 

Buyers are in need of better skills and may find it 
more profitable to pay to access provider’s 
knowledge than to invest in internal team. They 
may still have in-house IT staff, but not system 
administrators with cloud knowledge. 

Examples of 
Software 
Applications a 

Proprietary software: Buyers who 
have developed their own in-house 
applications, implying they have a 
strong development team, and run 
these apps in the cloud. 

Standard or open source software: Buyers with 
standard retail applications (e.g., Magento) or 
some other CMS who want assistance in its 
deployment. 

Common 
Industries b 

IT Services, software, consulting, 
telecommunications. 

e-commerce, education, financial services,  
non –profit. 

Common Use 
Cases c 

SaaS offering, test and 
development environment. 

Corporate website, e-commerce site, social media 
site (blogging, social networking, etc.), marketing 
campaign or advertising, online publishing.  

a Insights on this table are the main points extracted from semi-structured interviews to provider executives, account managers, and support 
agents. 
b Insight based on optional single-selection sign-up survey item completed by basic support buyers and full support buyers who did not switch 
support level during their tenure. Common industries within each support level were identified as those where we find a significantly greater 
proportion of buyers belonging to that industry relative to the other support level. 
c Insight based on optional mark-all-that-apply sign-up survey item completed by basic support buyers and full support buyers who did not 
switch support level during their tenure. The survey item asked buyers their intentions for how they planned to use the service. Common use 
cases within each support level were identified as those where we find a significantly greater proportion of buyers selecting each use case 
relative to the other support level. 

                                                
1 While receiving (i.e., to be a recipient) may be interpreted as a buyer actively and continually interacting with the provider, the 
term can also be defined as the capability of receiving a service (recipient, a., 2017). Hence, it fits our research setting given that 
buyers who have access to or receive full support may or may not actively engage with the provider in a continuous fashion. 
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To test these assertions, we collected unique data from a major global public cloud provider 
of infrastructure services (computing power and storage). Our panel data consist of 22,179 firms 
that used the provider’s service at some point between March 2009 and August 2012. We find that 
buyers receiving full support use, on average, 34.85% more of the IT service relative to buyers 
who receive basic support. We also provide evidence that technology support helps buyers make 
better and more efficient use of the service by quantifying the effects that full support has on 
buyers’ deployment of horizontally distributed and scalable architectures. Buyers increase the 
fraction of servers they run in a parallel and horizontally scalable architecture by 3.53 percentage 
points after they switch from basic to full support. Given that the mean proportion of servers 
running in parallel in our sample is only 12%, this is an economically significant change in 
behavior.  

We also find evidence that full support’s effects persist even if buyers eventually drop full 
support and switch back to basic support. Former full support buyers continue using, on average, 
15.01% more of the service and have a proportion of servers running in parallel 2.82 percentage 
points higher compared to buyers who have never received full support. Since in our setting buyers 
who switch back to basic must redeploy their architectures on their own, the differentiated behavior 
between former full support buyers and those who never received support is suggestive of the 
durability of buyer learning.  

Last, we extend these models to allow the effects of receiving and dropping full support to 
vary over time. The difference in service use between buyers receiving full and basic support 
continues to increase over time from the moment the former adopted full support.  A potential 
reason for this is that buyers who have received full support are more capable of foreseeing new 
cloud deployment opportunities. Service usage diminishes little over time after the buyer drops 
full support, further suggesting buyer learning has taken place.  

To alleviate concerns of reverse causality and omitted variable bias, we probe the 
robustness of our results through the use of matched samples, instrumental variables, and a 
generalized methods of moments (GMM) estimation approach. Our results continue to 
qualitatively hold under these alternative approaches, supporting our initial analysis and theory.  

To our knowledge, this is the first study to quantitatively document how technology 
support can influence IT service use and offer suggestive evidence that technology support 
facilitates buyer learning. As such, our work not only informs the IS literature on post-adoption IT 
usage but also offers managers evidence of the importance of overcoming knowledge barriers to 
cloud infrastructure service use through two-way interactions with the provider. 
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2. Empirical Model 
2.1. IT Service Use 

We employ linear fixed effects dynamic panel data models to tease out the effects of receiving and 
dropping full support on IT service use. We model two dimensions of IT service use: volume and 
efficiency of use. 

In our setting, the provider bundles server capacity in terms of memory (GB of RAM), 
processing power (number of virtual CPUs), and storage (GB space of local hard disk). The three 
attributes are highly correlated in the offer menu; a server with more of one attribute has more of 
the other two. Since the servers are priced based on the amount of memory they have, and memory 
is the basis for buyers’ infrastructure sizing decisions, the amount of memory consumed over time 
is a direct measure of buyers’ volume of use of the cloud infrastructure service. We compute the 
average GB of RAM used by a buyer per month and denote it as 𝑀𝑒𝑚𝑜𝑟𝑦',). Then, given the 
strong positive skew in its distribution, following standard practice we compute 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) =
ln 𝑀𝑒𝑚𝑜𝑟𝑦',) + 1  and use it as our first dependent variable.  

As mentioned earlier, buyers who receive full support may learn from the provider through 
two-way interactions that enable them to make more efficient use of the cloud service. An 
advantage of our setting is that we can partially observe certain attributes of buyers’ deployments, 
some of which are diagnostic in assessing how proficient a buyer is in making use of the 
infrastructure. If full support helps buyers use the service better, one would expect that they employ 
architectures that can scale more efficiently, albeit at the cost of increased complexity. We explain 
this assertion below.  

Although the on-demand nature of the service along with its rapid elasticity provides firms 
with the opportunity to reduce idle computing capacity waste and eliminates the necessity of an 
up-front capital commitment in overprovisioning resources (Armbrust et al. 2010; Harms and 
Yamartino 2010), doing so requires firms to scale their infrastructure in a cost-efficient manner. 
There are two ways of growing an IT infrastructure: vertically and horizontally (Garcia et al. 2008; 
Michael et al. 2007; Reese 2009, p. 176). Scaling vertically is easy to execute since it only involves 
increasing the capacity of the single server performing a function. However, it does not allow the 
buyer to truly leverage the cloud’s scalability. For example, growth is capped by the maximum 
server capacity available. In contrast, scaling horizontally—with several servers performing 
functions in parallel—is complex.2 Although launching a single server is a trivial task for any 
system administrator, launching several of them in a horizontally scalable manner is non-trivial. 
However, horizontal scaling offers virtually unlimited growth potential plus it allows buyers to 
have a more resilient architecture through redundancies. 

                                                
2 The complexities include load balancing workloads and managing concurrent sessions across servers, among others (Casalicchio 
and Colajanni 2000; Cherkasova 2000, and interviews with cloud experts at IBM Thomas J. Watson Research Center, Yorktown 
Heights, New York, and a major technological research univeristy). 
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Given the benefits of scaling horizontally, we use the fraction of servers running in parallel 
as a measure that proxies for buyer efficiency in service use. This measure varies separately from 
memory use, our first dependent variable. For example, a buyer can consume a large volume of 
memory with none of its servers running in parallel, in which case the fraction is zero, or 
alternatively it can consume a small volume with all of its servers running in parallel, which makes 
the faction equal to 1. To compute this metric we scan the names of the servers used daily by 
buyers and count, to the extent possible, how many of them are performing the same functions.3 
The monthly average fraction of servers running in parallel is captured in our second dependent 
variable, 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',). A summary of these two dependent variables and all other variables 
used in this work is available in Table 2. 

 

2.2. Effects of Full Support on Service Use 

Our first model tests if receiving or having dropped full support is associated with greater 
volume and efficiency of use. Letting 𝑦',) ∈ {𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',), 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',)}, we have:4 

𝑦',) = 𝛼 + 𝛽	𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) + 𝛾	𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) + 𝜆B	𝑦',)CB

D

BEF

	+ 𝜇' + 𝜏) + 𝜈',) + 𝜀',) (1) 

Subscripts 𝑖 and 𝑡 index individual buyers (firms) and time periods (months) respectively. 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) is a binary variable that indicates if full support was adopted by buyer 𝑖	by time 𝑡, 
and is equal to one in all periods after the buyer adopts full support. Thus, 𝛽 identifies the effects 
on cloud use of receiving full support; we expect 𝛽 > 0. After adopting full support some buyers 
may opt to switch to basic support. 𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) is a binary variable that signals if buyer 
𝑖 has dropped full support by the end of the focal month 𝑡 but was using full support at the start of 
the focal month or in some prior month(s). The sum 𝛽 + 𝛾 identifies differences in use behavior 
between basic support buyers who received full support in the past and those who exclusively 
received basic support. If the effects of technology support are lasting then we should find that 
𝛽 + 𝛾 > 0. 

 

                                                
3 We develop an algorithm (available upon request) that compares the names of the servers being run by each buyer at the end of 
every day during our sample and check if we find servers with names very similar to each other. Our assumption is that if we find 
two or more servers with very similar names, they will very likely be performing the same function in parallel (e.g., 
web1.domain.com and web2.domain.com). 
4 We acknowledge that 𝐹𝑟𝑎𝑐𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',) ∈ [0,1] and that our model represents a linear approximation to a nonlinear model. 
However, in other settings with fractional dependent variables it has been shown that linear models offer similar estimates of the 
coefficients to those of more sophisticated models such as a fractional probit  (Papke and Wooldridge 2008). More importantly, 
whereas nonlinear models such as the cross-sectional fractional probit can be used with unbalanced panel data (Wooldridge 2011), 
they are unable to accommodate fixed effects and the use of lagged values of our variables as instruments. The latter are key 
elements of our empirical model.  
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Table 2.  Summary of Variables 
Variable Role Description 

𝑀𝑒𝑚𝑜𝑟𝑦',) Metric Average GB of RAM memory used by buyer 𝑖 during month 
𝑡. 

𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',)  Dependent 
variable 

= ln 𝑀𝑒𝑚𝑜𝑟𝑦',) + 1   

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑙',)  Dependent 
variable 

Average proportion of servers run in parallel by buyer 𝑖 
during month 𝑡. 

𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) Support choice 
status indicator 

Indicates if full support was adopted by buyer 𝑖	by time 𝑡. If 
buyer 𝑖 received full support for the first time in time period 
𝑧, then 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) = 1{)QR}. 

𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) Support choice 
status indicator 

Indicates if buyer 𝑖	dropped full support (i.e., switched to 
basic) by time 𝑡. If buyer 𝑖	switched from full to basic 
support in period 𝑤, then 𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) = 1{)QT}. 

𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) Support choice 
indicator 

Indicates if full support was adopted by buyer 𝑖	at time 𝑡. If 
buyer 𝑖 received full support for the first time in time period 
𝑧, then 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) = 1{)ER}. 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',) Support choice 
indicator 

Indicates if full support was dropped by buyer 𝑖	at time 𝑡. If 
buyer 𝑖 dropped full support (i.e., switched to basic) in 
period 𝑤, then 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',) = 1 )ET . 

𝜇'  Fixed effect Buyer fixed effect. A vector of dummies - one dummy per 
buyer 𝑖. 

𝜏)  Fixed effect Calendar time fixed effect. A vector of dummies - one 
dummy per calendar month 𝑡 in the data. 

𝜈',)  Fixed effect Buyer tenure time fixed effect. A vector of dummies - one 
dummy per each month in buyer 𝑖‘s tenure (i.e., months 
since adoption of cloud service). b 

𝜀',)  Error Term Assumed to be correlated only within individual buyers, but 
not across them 

𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)
Y  Instrument Fitted value of 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠') attained from probit models that 

use failure-related variables as covariates. 
𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒𝑁',) Instrument a Indicates if buyer 𝑖 has suffered at least 𝑁 service outage-

related failures by time 𝑡. 
𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑁',) Instrument a Indicates if buyer 𝑖 has suffered at least 𝑁 network outage-

related failures by time 𝑡.  
𝐹𝑎𝑖𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑁',) Instrument a Indicates if buyer 𝑖 has suffered at least 𝑁 physical 

hardware-related failures by time 𝑡.  
a Please see Online Appendix 0 for further details on the construction of all the exogenous failure-related instruments. 
b This is an alternative to having a discrete integer valued buyer tenure term (e.g., 𝑇𝑒𝑛𝑢𝑟𝑒',)). The 𝜈',) vector allows to control for the 
possibility that buyers’ use of the service may increase in a nonlinear fashion over time 𝑡. 

 
We additionally include lagged values of the dependent variables to control for persistence 

in use behavior, i.e., that buyers’ use in prior periods may strongly influence their use in the focal 
period. This approach suffers from dynamic panel bias as it fails the strict exogeneity assumption 
common to fixed effects panel models (Nickell 1981; Roodman 2009a). We address this bias 
through System GMM estimation (Anderson and Hsiao 1981; Archak et al. 2011; Arellano and 
Bond 1991; Arellano and Bover 1995; Blundell and Bond 1998; Ghose 2009). We show our main 
results using 𝑝 = 2 lags in Model (1) for comparability with our later System GMM estimations; 
however, our models are consistent (i.e., panels do not have unit roots) if we use fewer or more 
lags (e.g., 𝑝 = 1,3). We elaborate on our use of System GMM in Section 4.1. 
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Parameter 𝜇' is the buyer fixed effect and 𝜏) is a vector of calendar month fixed effects. 
We also include a vector of dummy variables, 𝜈',), indicating in what month of its tenure a buyer 
is when month 𝑡 starts. Finally, parameter 𝜀',) is our error term which we assume is correlated only 
within individual buyers, but not across them. 

Our fixed effects model allows us to difference out unobserved time-invariant buyer-level 
heterogeneity that may influence both the choice of support level and IT use. We also run our 
models using a matched sample constructed using a coarsened exact matching (CEM) procedure 
(Blackwell et al. 2010) – details are included in Section 0. CEM reduces the dependence of our 
estimates on our model specification and also reduces endogeneity concerns when making causal 
inferences (Ho et al. 2007).  

Despite these steps, our estimates may be influenced by time-varying unobserved factors 
correlated with the support decision and service use. To address this issue, we probe the robustness 
of our results to the use of instrumental variables. We use exogenous failure events experienced 
by buyers as an instrument for their decision to receive full support. We identify 3 types of failures: 

generalized outages across the cloud infrastructure service, network-related failures, and degraded 
performance issues due to hardware problems on the physical server host; please see Table 3 for 
their detailed descriptions. We employ a probit model that has the exogenous failures while 
receiving basic support as regressors to generate predicted values for 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',), which we 
denote	𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)

Y . We then use the fitted value, 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)
Y , as our instrument in a standard 

two-stage least squares (2SLS) estimation (Angrist and Pischke 2009, pp. 142-144; Imbens and 
Wooldridge 2007).  

 

Table 3.  Description of exogenous failure incidents used as instruments 
Failure Type Description of the Event 

Service outage 

Provider may suffer from generalized outages in different components of its 
service (e.g., memory leak in provider’s cloud management system). Such 
generalized problems are announced in the provider’s status webpage and/or 
announced to buyers. 

Network-related failure 
Some node in the provider’s infrastructure, generally belonging to some buyer, 
is suffering from a distributed denial of service attack (DDoS) or some 
networking hardware device has failed. 

Hardware-related failure Buyer is suffering degraded service performance due to a hardware-related 
problem in the physical host in which the buyer’s virtual machine runs. 

 

These exogenous failures satisfy the criteria for an instrument. When unforeseeable 
problems occur (e.g., an unexpected failure on the provider’s hardware), the support interactions 
that take place between buyers and the provider can serve as a signal to buyers of the value of full 
support. Basic support buyers who, because of the failure, gain experience using the service with 
a greater involvement from the provider, may be more likely to upgrade to full support than buyers 
who do not have such experiences with the provider. However, such interactions on their own are 
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unlikely to alter use of the provider’s service. Since the failures are exogenous (i.e., can occur with 
equal probability to any server independent of the support choice), they are not directly related to 
the technical sophistication of the buyer. One potential concern is if failures are more prevalent for 
buyers who are using more servers or deploying a more complex architecture. The lags of our 
dependent variables in our model, which proxy for size and complexity, control for this.  

 

2.3. Time Varying Effects of Full Support 

Model (1) allows us to identify the overall effects of receiving each support level, but not how 
such effects may vary with the time elapsed since the switch between support types. Knowledge 
transfer is a potential cause for the change in buyer behavior, and, in turn, it is reasonable to expect 
that the amount of learning is linked in some way to the length of exposure (or lack thereof) to full 
support. To allow the marginal effect of switching to and from full support to vary in a flexible 
way over time, we employ lags of indicators of the adoption event, 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',), and the switching 
to basic support event, 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',). These variables are set to 1 only in the period when full 
support is adopted or when it is initially dropped, respectively. Thus, 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)Cb indicates if 
buyer 𝑖 adopted full support 𝑗 periods ago (counting from period 𝑡), and 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)Cd indicates 
if buyer 𝑖 dropped full support 𝑘 periods ago. We use these indicators in the following 
autoregressive distributed lag (ARDL) model (Greene 2008, pp. 681-689): 

𝑦',) = 𝛼 + 𝛽b𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)Cb
e
bEf + 𝛽g𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)C(eiF)  

+ 𝛾d𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)Cdk
dEf + 𝛾g𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)C kiF   

+ 𝜆B	𝑦',)CB
D
BEF 	+ 𝜇' + 𝜏) + 𝜈',) + 𝜀',).  

(2) 

 

We include 𝑞 = 𝑟 = 12 lags of 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) and 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',) so that our model identifies 
the effects of adopting or dropping full support during the 12 months (1 year) following the event. 
Our results are consistent with those under a different number of lags. We then leverage the 𝛽b and 
𝛾d coefficients to estimate the dependent variables’ impulse response function (Hamilton 1994, 
pp. 318-323) to the buyer’s decision to adopt or drop full support. The dummy variable 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)C(eiF)  controls for the effect of having adopted full support more than 𝑞 time periods 
ago; 𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)C kiF  does the same for having dropped full support more than 𝑟 
periods ago. 
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3. Data and Sample Construction 

Our data set includes 79,619 buyers that used the provider’s services at some point between March 
2009 and August 2012. When using the cloud infrastructure services, buyers under basic support 
only pay hourly rates contingent on server capacity and operating system. Buyers under full 
support pay a fixed price premium per server-hour used plus an additional fixed monthly fee 
(which is prorated on a daily basis). There are no sign-up or termination fees for the servers’ usage 
or the full support service. Online Appendix A offers further details about the provider’s cloud 
infrastructure services, their pricing, and the corresponding levels of technology support. To isolate 
the causal effects of full support, we restrict our baseline sample to buyers who are likely to have 
similar usage profiles over time, but for their adoption of full support. We exclude buyers who use 
the service very little or who do not change their cloud architecture configuration (i.e., do not 
resize their infrastructure).5 These buyers have very different time-varying profiles relative to full 
support buyers and, although we exclude them ex ante, it is likely that they would have also been 
excluded later by our CEM procedures. After these restrictions, our baseline sample includes 
22,179 buyers and 368,606 buyer-month observations. Table 4 provides descriptive statistics of 
the cloud use time-varying variables in our baseline sample, both in aggregate as well as contingent 
on buyers’ support choice 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) ; difference in means t-tests for all variables are 
significant at the 1% level. 

 
Table 4.  Descriptive Statistics of Time-Varying Variables (Baseline sample, 22,179 buyers) 
Support Type Used Full or Basic 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕 = 𝟎 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕 = 𝟏 
Observations 368,606 309,544 59,062 
Variable Mean S.D. Min Max Mean S.D. Min Max Mean S.D. Min Max 
𝑀𝑒𝑚𝑜𝑟𝑦',) 7.88 31.37 0 2,284.54 7.26 30.92 0 2,284.54 11.11 33.41 0 1,917.40 
𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) 1.35 1.04 0 7.73 1.30 1.01 0 7.73 1.62 1.15 0 7.56 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',) 0.12 0.27 0 1 0.12 0.26 0 1 0.13 0.28 0 1 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.16 0.37 0 1 0 0 0 0 1 0 1 1 
𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.01 0.09 0 1 0 0 0 0 0.05 0.22 0 1 
 

In addition to the buyers’ cloud use data, we have collected data from a survey administered 
to buyers upon sign-up of a new account from which we identify the buyers’ total employment 
and their intended use case for the cloud service. After joining the survey data with the cloud usage 
data, we match buyers who exclusively receive basic support (controls) to buyers who start with 
basic support and later upgrade to full support (treated) across six different attributes: (1) pre-
upgrade volume of IT use (i.e., memory use), (2) pre-upgrade efficiency of IT use or architecture 
                                                
5 We exclude buyers who only received basic support and averaged 512 MB RAM/hour or less during their first 6 months (excluding 
1st month) or made no adjustments to the size of their infrastructure during their first 6 months (excluding 1st month). An 
infrastructure resizing occurs in any launch, halt, or resizing of a server in the buyers’ cloud infrastructure. We do not consider 
their behavior during their 1st month in our threshold because most buyers are setting up their infrastructure during this time. Results 
without excluding these buyers are consistent with our main findings. 
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complexity (i.e., fraction of servers running in parallel), (3) pre-upgrade frequency of cloud 
infrastructure resizing (i.e., how often buyers launch a server, halt a server, or resize an existing 
one), (4) operating system of preference, (5) employment, (6) and intended use case for the cloud 
infrastructure service. The matching process yields our CEM-based sample of 1,525 buyers. 
Further details regarding the sign-up survey and the construction of our CEM-based sample are 
included in Online Appendix B. 

Finally, we have also collected data on the timing and content of all support interactions 
through online live chat sessions and support tickets between the buyers and the provider, starting 
from October 2009. We provide further details on these data when we describe our instrumental 
variables procedure. 

 

4. Results 

4.1. Effects of Technology Support on IT Use 

The results for Model (1) are shown in Table 5. We show results for both dependent variables and 
with both the baseline and CEM samples. The estimates across the two samples are very consistent 
with each other so hereafter we leave the results with the baseline sample as reference and discuss 
the results with the CEM sample. Moreover, we show results employing two lags of the dependent 
variables as covariates 𝑝 = 2  for consistency with our System GMM model results below, 
though the results are consistent if we use fewer or more lags (e.g., 𝑝 = 1,3,4). 

 
Table 5.  Main Results 
Column (1) (2) (3) (4) 
Dependent Variable 𝒚𝒊,𝒕 = 𝒍𝒏𝑴𝒆𝒎𝒐𝒓𝒚𝒊,𝒕 𝒚𝒊,𝒕 = 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝒊,𝒕 
Sample Baseline CEM Baseline CEM 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.297*** 0.299*** 0.032*** 0.035*** 

(0.008) (0.023) (0.002) (0.006) 
𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) -0.143*** -0.159*** -0.008* -0.007 

(0.018) (0.045) (0.004) (0.011) 
𝑦',)CF 0.953*** 0.967*** 0.897*** 0.885*** 

(0.006) (0.017) (0.005) (0.020) 
𝑦',)C� -0.149*** -0.190*** -0.165*** -0.127*** 

(0.005) (0.014) (0.004) (0.018) 
Observations 324,406 25,298 324,406 25,298 
Buyers 21,573 1,525 21,573 1,525 
R2 0.773 0.791 0.637 0.657 
Upgrade change 34.57% 34.85% 3.24 3.53 
Downgrade change 16.68% 15.01% 2.47 2.82 
𝛽 + 𝛾 = 0 test p-value  0.000 0.001 0.000 0.016 
All regressions include monthly calendar (𝜏)) and tenure dummies (𝜈',)). 
Robust standard errors, clustered on buyers, in parentheses. * 𝑝	 < 	0.10, ** 𝑝	 < 	0.05, *** 𝑝	 < 	0.01. 
In columns(1) and (2) upgrade and downgrade changes are computed as 𝑒𝛽 − 1 and  𝑒𝛽+𝛾 − 1 respectively. 
In columns(3) and (4) upgrade and downgrade changes are computed as 𝛽×100 and  𝛽 + 𝛾 ×100 respectively. 
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The results in column (2) indicate that buyers who receive full support use 34.85% more 
memory than buyers who receive basic support. In column (4), we find that full support is 
associated with an increase of 3.53 percentage points in the proportion of servers running in a 
parallel and horizontally scalable manner. Together, these results suggest the provider’s support 
has a positive and significant influence on buyer IT service use. Furthermore, column (2) suggests 
that buyers who drop full support continue consuming about 15.01% more relative to buyers who 
have never received full support. Similarly, former full support buyers have aproportion of servers 
functioning in parallel about 2.82 percentage points higher than those who never received full 
support. These outcomes are suggestive of buyer learning, especially if we consider that because 
of technical limitations in the service offering (during our observation period), buyers must 
redeploy their servers after they downgrade. Thus, the observed post-downgrade behavior is the 
outcome of buyers acting on their own without personalized guidance from the provider. 

Instrumental Variables Approach: We use the support interaction data to identify when buyers 
suffer from exogenous failures when using the cloud service. These unforeseeable exogenous 
shocks force the buyer to interact with the provider, which serves as a useful signal of the 
provider’s service capabilities. Buyers may discover that by interacting more closely with the 
provider they can reduce their total cost of solving cloud-related problems. This motivates them to 
upgrade from basic to full support so that they can continue to have similar interactions. As noted 
above, the number of failures may be correlated with the number of servers a buyer is employing. 
It may also be correlated with the complexity of the architecture employed, however we believe 
this to be a less significant concern given the nature of the failures we consider. We instrument 
using lagged failures rather than concurrent failures and also include lags of our dependent 
variables as controls to mitigate the risk of the potential correlation between the failures and our 
metrics of IT use. Finally, although the failures can serve as instruments for the full support 
adoption decision, we lack an appropriate instrument for the switching to basic support decision. 
Hence, in this section we employ a reduced version of Model (1) that omits 𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',), 
letting 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) represent buyer behavior post-upgrade irrespective of a potential downgrade 
decision. 

The vectors of variables 𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒𝑁',), 𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑁',), and 𝐹𝑎𝑖𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒𝑁',), 
correspond to the types of exogenous failures described in detail in Table 3 and Online Appendix 
0. They consist of dummies that are turned on if buyers have experienced at least 𝑁 failures of 
each corresponding type by time 𝑡. In this section we comment on our results using 2 dummies for 
each failure type (i.e., 𝑁 = 1, 2), yet our results are consistent using 1 or 3 of them. 

Given our binary endogenous variable, we follow the approach suggested by Imbens and 
Wooldridge (2007) and Angrist and Pischke (2009, pp. 142-144) and first include the vector of 
failure-related indicators in a probit model with 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) as dependent variable. We use each 
failure type independently in columns (1) through (3) in Part A of Table 6, and all 3 types of 
failures in column (4). The results suggest that, as proposed, all failure types are positively 
associated with buyers’ likelihood of using full support. We use the probit model to generate fitted 
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values of 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',), which we denote as 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)
Y . The descriptive statistics of the fitted 

values are in Part B of Table 6. Next, we use 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)
Y  as our instrument for 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) in 

a 2SLS estimation procedure. 

 

Table 6.  Probit for 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕 and Descriptive Statistics for  𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕
𝒇  

Column (1) (2) (3) (4) 
Failure Types Outage Network Hardware All 3 
Part A. Coefficients of Probit with 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕 as dependent variable 
𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒1',)CF 0.871***   0.472*** 

(0.052)   (0.057) 
𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒2',)CF 0.619***   0.135 

(0.097)   (0.117) 
𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘1',)CF  1.169***  0.771*** 

 (0.088)  (0.101) 
𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘2',)CF  1.558***  1.181*** 

 (0.227)  (0.255) 
𝐹𝑎𝑖𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒1',)CF   1.084*** 0.925*** 

  (0.043) (0.045) 
𝐹𝑎𝑖𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒2',)CF   0.438*** 0.302*** 

  (0.076) (0.081) 
Constant -0.674 -0.674 -0.956 -0.909 

(0.681) (0.681) (0.801) (0.775) 
Observations a 26,629 26,629 26,629 26,629 
Pseudo-R2 0.115 0.103 0.146 0.164 

Part B. Descriptive Statistics of 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕
𝒇  

Mean 0.099 0.099 0.099 0.099 
Std. Dev. 0.094 0.086 0.111 0.117 
Min 0.000 0.000 0.000 0.000 
Max 0.913 0.956 0.900 0.988 
Probit regressions in Part A include monthly calendar (𝜏)) and tenure dummies (𝜈',)).  
a Number of observations in these models is slightly larger than in others (e.g., 26,629 here vs. 25,298 elsewhere) 
since these models only employ 1 lag of the covariates whereas other models employ 2 lags of the dependent  
variables (used as covariates), thus altering the number of observations available. 
Robust standard errors, clustered on buyers, in parentheses. * 𝑝	 < 	0.10, ** 𝑝	 < 	0.05, *** 𝑝	 < 	0.01. 

 

The first stage results for 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) are reported in Part B of Table 7. The values of the 
F-statistic for the excluded instruments range between 65.73 and 79.61, and in all cases are 
significant at the 1% level. The second stage results are reported in Part A of the same table. 
Column (1) is the fixed effects specification of Model (1) (no instruments) excluding 
𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) and is included for comparison purposes. The results across all models with 
instruments and those in column (1) are highly consistent with each other. They suggest the 
adoption of full support increases the volume of service consumption by 35.53% to 49.99%.  
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Table 7.  Two-Stage Least Squares Estimation for Volume of IT Use 
Column (1) (2) (3) (4) (5) 
Failure Types None Outage Network Hardware All 3 
Part A. Second Stage Results for 𝒍𝒏𝑴𝒆𝒎𝒐𝒓𝒚𝒊,𝒕 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.304*** 0.405*** 0.389** 0.353*** 0.367*** 

(0.023) (0.141) (0.170) (0.105) (0.096) 
𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',)CF 0.943*** 0.931*** 0.933*** 0.937*** 0.935*** 

(0.024) (0.030) (0.034) (0.028) (0.027) 
𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',)C� -0.171*** -0.170*** -0.170*** -0.170*** -0.170*** 

(0.020) (0.020) (0.020) (0.020) (0.020) 
Observations 25,298 25,297 25,297 25,297 25,297 
Buyers 1,525 1,524 1,524 1,524 1,524 
R2 0.782 0.733 0.733 0.734 0.734 
Upgrade change (𝑒� − 1) 35.53% 49.99% 47.59% 42.27% 44.37% 

Part B. First Stage Regression of Fitted 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕
𝒇  on Real 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕 

𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)
Y   0.400*** 0.437*** 0.423*** 0.439*** 

 (0.087) (0.066) (0.074) (0.061) 
𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',)CF  0.124*** 0.126*** 0.122*** 0.121*** 

 (0.010) (0.010) (0.010) (0.010) 
𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',)C�  -0.017*** -0.014** -0.018*** -0.021*** 

 (0.007) (0.007) (0.007) (0.007) 
Observations a  25,297 25,297 25,297 25,297 
Buyers a  1,524 1,524 1,524 1,524 
R2  0.112 0.112 0.123 0.130 
First Stage F-Statistic  65.73 70.66 71.13 79.61 
All regressions include monthly calendar (𝜏)) and tenure dummies (𝜈',)). Robust standard errors, clustered on buyers, in parentheses. 
a 2SLS models with instruments in columns (2) through (4) drop 1 singleton buyer with a single observation.  
* 𝑝	 < 	0.10, ** 𝑝	 < 	0.05, *** 𝑝	 < 	0.01. 

 

We turn to Table 8 for the results with 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',) as the dependent variable. The 
first stage results again suggest 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)

Y  is positively associated with 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',). The F-
statistics have lower values than before but remain statistically significant at the 1% level. Moving 
to Part A of the table, we again have in column (1) results based on Model (1) omitting the 
downgrade indicator. With the exception of column (3) that only employs the network-related 
failures as instrument and where 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) does not have a statistically significant coefficient, 
the remaining specifications are consistent with each other. They suggest that receiving full 
support is associated with an increase of 3.01 to 7.89 percentage points in the proportion of servers 
running in parallel. In sum, the results of the 2SLS estimations are consistent with those of our 
prior specification in Table 5. 
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Table 8.  Two-Stage Least Squares Estimation for Efficiency of IT Use 
Column (1) (2) (3) (4) (5) 
Failure Types None Outage Network Hardware All 3 
Part A. Second Stage Results for 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝒊,𝒕 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.030*** 0.079** 0.021 0.056** 0.047** 

(0.005) (0.035) (0.044) (0.023) (0.022) 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',)CF 0.901*** 0.893*** 0.903*** 0.897*** 0.898*** 

(0.020) (0.021) (0.022) (0.021) (0.021) 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',)C� -0.144*** -0.145*** -0.144*** -0.145*** -0.145*** 

(0.018) (0.018) (0.018) (0.018) (0.018) 
Observations 25,298 25,297 25,297 25,297 25,297 
Buyers 1,525 1,524 1,524 1,524 1,524 
R2 0.661 0.640 0.645 0.643 0.644 
Upgrade change (𝛽×100) 3.01 7.89 2.14 5.56 4.75 

Part B. First Stage Regression of Fitted 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕
𝒇  on Real 𝑭𝒖𝒍𝒍𝑺𝒕𝒂𝒕𝒖𝒔𝒊,𝒕 

𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)
Y   0.545*** 0.498*** 0.547*** 0.554*** 

 (0.097) (0.069) (0.076) (0.063) 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',)CF  0.153*** 0.168*** 0.153*** 0.151*** 

 (0.030) (0.031) (0.030) (0.030) 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',)C�  -0.011 0.001 -0.009 -0.017 

 (0.020) (0.020) (0.019) (0.019) 
Observations a  25,297 25,297 25,297 25,297 
Buyers a  1,524 1,524 1,524 1,524 
R2  0.035 0.028 0.051 0.062 
First Stage F-Statistic  21.38 28.83 28.18 37.18 
All regressions include monthly calendar (𝜏)) and tenure dummies (𝜈',)). Robust standard errors, clustered on buyers, in parentheses.  
a 2SLS models with instruments in columns (2) through (4) drop 1 singleton buyer with a single observation. 
* 𝑝	 < 	0.10, ** 𝑝	 < 	0.05, *** 𝑝	 < 	0.01. 

 
System GMM Estimation and Endogenous Switching Decisions: While the failure events 
identified through the support interactions are completely unexpected to the buyer, their 
exogeneity can still be questioned if buyers with a greater number of servers or more complex 
architectures are more likely to suffer failures in any of their servers. To address this concern, we 
employ System GMM estimation methods that consider IT use and support choice as endogenous 
and use their lagged values as their instruments. The use of system GMM will also allow us to 
address concerns that our use of a lagged dependent variable violates the strict exogeneity 
assumption in panel data models.6  

We first find the minimum number of lags of the dependent variables that we can use while 
finding a valid specification that passes the Hansen (1982) J test of overidentifying restrictions and 
does not suffer from serial correlation (Arellano and Bond 1991). The tests’ outcomes are similar 
for both dependent variables and suggest the minimum number of lags we can use of each is two 
(𝑝 = 2). Then, we find the minimum number of lags of the covariates that we can use as 

                                                
6 In addition to estimating system GMM, we note that the number of time periods in our regressions is large and that any bias from 
violating the strict exogeneity assumption asymptotically goes to zero as the number of time periods increases (Hsiao 2003).  
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instruments to avoid the problem of overfitting the model with too many instruments (Roodman 
2009b). Finally, we run our models first relying solely on the lags of the covariates as instruments 
and then augmenting our instrument matrix with the exogenous failure-based instruments used in 
column (4) of Table 6. The results of these estimations are shown in Table 9; the table’s footer has 
details of the specific instruments used in each model. 

 
Table 9.  System GMM Estimation Results 
Column (1) (2) (3) (4) 
Dependent Variable 𝒚𝒊,𝒕 = 𝒍𝒏𝑴𝒆𝒎𝒐𝒓𝒚𝒊,𝒕 𝒚𝒊,𝒕 = 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝒊,𝒕 
Failure-based IVs No Yes No Yes 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.076*** 0.088*** 0.020** 0.021** 

(0.028) (0.030) (0.009) (0.009) 
𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) 0.124 0.100 0.048 0.046 

(0.108) (0.099) (0.034) (0.033) 
𝑦',)CF 0.813*** 0.800*** 0.763*** 0.762*** 

(0.078) (0.075) (0.054) (0.056) 
𝑦',)C� 0.152* 0.159* 0.055 0.055 

(0.087) (0.085) (0.057) (0.057) 
Observations 25,298 25,298 25,298 25,298 
Buyers 1,525 1,525 1,525 1,525 
Total Number of IVs 259 265 455 461 
Hansen J Statistic p-value 0.654 0.381 0.592 0.399 
Upgrade change 7.94% 9.25% 1.95 2.06 
Downgrade change 22.13% 20.68% 6.73 6.68 
𝛽 + 𝛾 = 0 test p-value 0.054 0.048 0.032 0.030 
All regressions include monthly calendar (𝜏)) and tenure dummies (𝜈',)). 
Results for 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) in columns (1) and (2) have AR(2), and hence use the 2nd lag of the first difference of all covariates  
as their instruments for the levels equation. They also use the 3rd lag of 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) and 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) as well as the 3rd to 8th lags of  
𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) as instruments for the differences equation. Upgrade and downgrade changes are computed as 𝑒𝛽 − 1 and  
𝑒𝛽+𝛾 − 1 respectively. 
Results for 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',) in columns (3) and (4) have AR(2), and hence use the 2nd lag of the first difference of all covariates  
as their instruments for the levels equation. They also use the 3rd to 8th lags of 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) and 𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) as well as the 3rd to 7th 
lags of 𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) as instruments for the differences equation. Upgrade and downgrade changes are computed as 𝛽×100 
and  𝛽 + 𝛾 ×100 respectively. 
Models in columns (2) and (4) augment the instruments matrix by considering the same vector of exogenous failure-related instruments 
shown in in columns (4) of Table 4. 
Robust standard errors using Windmeijers’ (2005) finite sample correction.   * 𝑝	 < 	0.10, ** 𝑝	 < 	0.05, *** 𝑝	 < 	0.01. 

 

Columns (1) and (2) show the results for the volume of IT use. The coefficients for 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) suggests an increase in memory usage of 7.94% to 9.25%. The coefficients for 
𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',) do not show evidence of a change in buyer consumption after the 
downgrade decision, and the volume of usage is statistically greater than that of buyers who had 
never received full support. Columns (3) and (4) present the results for the efficiency of IT use. 
The upgrade to full support is associated with an increase of 1.95 to 2.06 percentage points in the 
fraction of servers running in parallel. Meanwhile, the downgrade action, if anything, appears to 
be associated with a further increase in the proportion. Overall, the outcomes are qualitatively 
similar to those attained before. 
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4.2. Time Varying Effects of Full Support 

The estimation results for Model (2) employing both the baseline and CEM samples are shown in 
Table 10. The coefficients do not change much if we employ a different number of lags for the 
support indicators (𝑞	and 𝑟) or the dependent variables (𝑝). Nevertheless, in this model computing 
the marginal effects of adopting and dropping full support on 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',) and 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',)	is not straightforward. 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) and 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',) (and their lags) 
influence our dependent variables in two ways. First, they influence behavior directly through the 
coefficient estimates on those variables. Second, they influence behavior indirectly through their 
effects on the lags of the dependent variables. Thus, while the results in Table 10 indicate that the 
direct effects of 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) and 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',) may decrease in absolute value over time, the 
marginal effects (i.e., the combination of the direct and indirect effects) cannot be read off the 
coefficient estimates in the table.  

 

Table 10. Results with Lags of Full Support Adoption Indicators 
 (1) (2) (3) (4) 
Dependent Variable 𝒚𝒊,𝒕 = 𝒍𝒏𝑴𝒆𝒎𝒐𝒓𝒚𝒊,𝒕  𝒚𝒊,𝒕 = 𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝒊,𝒕 
Sample Baseline CEM Baseline CEM 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) 0.458*** 0.482*** 0.033*** 0.026*** 

(0.017) (0.047) (0.004) (0.009) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)CF 0.432*** 0.418*** 0.052*** 0.049*** 

(0.015) (0.041) (0.005) (0.012) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.217*** 0.182*** 0.025*** 0.016** 

(0.010) (0.033) (0.003) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.222*** 0.201*** 0.025*** 0.020*** 

(0.009) (0.029) (0.003) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.234*** 0.221*** 0.028*** 0.018** 

(0.009) (0.028) (0.002) (0.008) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.236*** 0.265*** 0.028*** 0.026*** 

(0.009) (0.029) (0.002) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.248*** 0.233*** 0.031*** 0.024*** 

(0.009) (0.031) (0.002) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.259*** 0.259*** 0.033*** 0.018** 

(0.009) (0.028) (0.003) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.256*** 0.262*** 0.031*** 0.027*** 

(0.009) (0.034) (0.003) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)C� 0.263*** 0.228*** 0.034*** 0.041*** 

(0.010) (0.028) (0.003) (0.011) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)CFf 0.270*** 0.263*** 0.033*** 0.024*** 

(0.010) (0.031) (0.003) (0.007) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)CFF 0.272*** 0.267*** 0.032*** 0.030*** 

(0.011) (0.041) (0.003) (0.011) 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)CF� 0.275*** 0.296*** 0.034*** 0.033*** 

(0.011) (0.032) (0.003) (0.007) 
𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)CF� 0.291*** 0.274*** 0.035*** 0.030*** 

(0.010) (0.031) (0.003) (0.008) 
Table 10 continues on next page. 
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𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',) -0.066*** -0.074** -0.008*** -0.015** 
(0.006) (0.034) (0.002) (0.007) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)CF -0.176*** -0.251** -0.004 -0.010 
(0.028) (0.109) (0.007) (0.022) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.029 -0.015 0.007 0.031 
(0.021) (0.082) (0.005) (0.023) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.002 0.094 0.007 0.014 
(0.027) (0.171) (0.007) (0.017) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.041* -0.013 0.004 0.043 
(0.023) (0.054) (0.008) (0.047) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.082*** -0.083 -0.005 0.038 
(0.022) (0.056) (0.007) (0.031) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.075** -0.070 -0.003 -0.012 
(0.031) (0.075) (0.007) (0.017) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.077*** -0.012 -0.000 -0.007 
(0.027) (0.069) (0.007) (0.017) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.075*** -0.193** 0.001 0.024 
(0.026) (0.094) (0.007) (0.022) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)C� -0.019 0.087 0.006 -0.005 
(0.030) (0.155) (0.007) (0.019) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)CFf -0.041 -0.195*** 0.009 0.015 
(0.040) (0.050) (0.008) (0.018) 

𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)CFF -0.124*** -0.209*** 0.001 -0.003 
(0.041) (0.057) (0.015) (0.015) 

𝐷𝑟𝑜𝑝 -0.091** -0.038 0.005 -0.013 
(0.037) (0.121) (0.011) (0.018) 

𝐹𝑜𝑟𝑚𝑒𝑟𝐹𝑢𝑙𝑙𝑆𝑡𝑎𝑡𝑢𝑠',)CF� -0.091*** -0.152 -0.007 0.008 
(0.027) (0.118) (0.007) (0.013) 

𝑦',)CF 0.953*** 0.971*** 0.897*** 0.925*** 
(0.006) (0.017) (0.005) (0.020) 

𝑦',)C� -0.144*** -0.181*** -0.165*** -0.167*** 
(0.005) (0.014) (0.004) (0.017) 

Observations 324,406 25,298 324,406 25,298 
Buyers 21,573 1,525 21,573 1,525 
R-Squared 0.774 0.795 0.638 0.670 
All regressions include monthly calendar (𝜏)) and tenure dummies (𝜈',)). 
Robust standard errors, clustered on buyers, in parentheses. * 𝑝	 < 	0.10, ** 𝑝	 < 	0.05, *** 𝑝	 < 	0.01. 

 
To show the time-varying effects of support we plot the impulse response functions (IRFs) 

of the dependent variables to the switch in the support type (i.e., a unit change in a binary variable) 

(Hamilton 1994, pp. 318-323). Specifically, we estimate and plot ���,�
���,���		

 𝑦',) ∈

𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',), 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',) , 𝑥',) ∈ 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',), 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)  over time 𝑗 to show 
how current service usage is influenced by the switch events from 𝑗 periods ago. We describe the 
estimation procedure in detail in Online Appendix D. 
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In Figure 1, we show the IRFs of the dependent variables with respect to the adoption and 
dropping of full support.  Panels (a) and (b) suggest that, following the adoption of full support, 
buyers’ service consumption grows month-over-month compared to similar buyers who only 
receive basic support. The same is true of the proportion of servers that run in parallel. The results 
hold in both in the baseline and CEM samples. Therefore, the difference in service use between 
buyers receiving full and basic support continues to increase over time from the moment the former 
adopted full support. 

 

 

 
Continuous lines represent point estimates of rational lags of ARDL and dashed lines are the 5th and 95th percentiles.  
In panels (a) and (b) value 0 in vertical axes represents behavior of basic support buyers who do not upgrade to full support. 
In panels (c) and (d) value 0 in vertical axes represents behavior of full support buyers who do not switch back to basic support. 
Figure 1. Impulse Response Functions (IRF) of Service Use to  

Adoption or Dropping of Full Support 
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While panels (a) and (b) show that full support positively impacts usage growth over time, 
panels (c) and (d) tell a somewhat different story when buyers drop full support. Panels (c) and (d) 
show that after dropping full support, buyers do not radically alter their usage compared to buyers 
who continue using full support. When looking at the CEM sample, for most part, the 90% 
confidence interval of the estimates of the IRF contains value 0, which represents the behavior of 
full support buyers who do not downgrade. The upper bound of the confidence interval falls below 
0 at the very beginning and towards the end of the time frame of the IRF evaluation in panel (c), 
indicating a mild decline in use. When looking at the complexity of deployment (panel (d)) we do 
not find any statistically significant evidence of behavioral change after dropping full support. 
When looking at the baseline sample, panel (c) shows a slight decline in use after dropping full 
support, but panel (d) does not show a significant change in complexity of the deployment. Along 
with our prior results related to buyer behavior after dropping full support (i.e., 𝛽 + 𝛾 from Model 
(1)), the figure suggests buyers continue leveraging what they have learned from the provider even 
after ending two-way communications. 

 

5. Conclusion  

To our knowledge, this note provides the first empirical evidence of how a service provider’s 
technology support influences a buyer’s post-adoption IT use. We show that enhanced technology 
support increases volume and efficiency of usage, and also provide suggestive evidence that buyer 
learning from the provider may be responsible for these patterns. Our results call for a more 
complete and fully integrated theory of organization learning and post-adoption usage in the IS 
literature. 

Our study has important managerial implications. From the provider’s perspective, our results 
highlight the impact of full support on user behavior. Before our study, the provider who is the 
subject of our study was unsure of the precise economic value of offering full support (costs were 
understood but the impact on the revenue stream was unclear). A rough estimate of the profit gains 
for the provider from having a buyer under basic support vs. full support suggests the switch yields 
at least 147% increase in profits after considering revenue and support cost increases (see Table 
11). Due to their commoditization, cloud services have been perceived as being fully self-service, 
on-demand offerings with minimal necessity for interactions between buyers and service providers 
(Mell and Grance 2011). For example, Amazon, the largest provider of cloud infrastructure 
services, initially did not offer technology support. Our findings suggest that the buyers’ 
continuous access to full support has significant, quantifiable and sustainable business value. Thus, 
our research adds to other recent findings about the value of service and support in the cloud 
setting. For example, Retana et al. (2016) show that proactively providing customers with 
information about the value of a service during the customer onboarding process decreases both 
customer attrition and the number of costly support interactions. 
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Table 11. Estimate of Net Profit Gain from Full Support vs. Basic Support per Buyer 

Item Support Type Units Calculation Basic Full 
Support Costs 
Number of Chats 0.366 0.702 Quantity / month Mean number of chats / month 
Cost of a Chats $2.73 $5.24 $ / month Quantity × $7.46 a 
Number of Tickets b 0.117 0.650 Quantity / month Mean number of tickets / month  
Cost of a Tickets $4.31 $23.95 $ / month Quantity × $36.83 a 
Cost of Support $7.04 $29.19 $ / month Costs of Chats + Cost of Tickets 
Cloud Server Profits 
Estimated Usage c 1,440.0 1,941.8 GB RAM/month For full, median usage × 1.3485 
Server Hourly Rate d $0.045 $0.090 $ / GB RAM / hour Based on AWS pricing. 
Estimated ARPU e $64.80 $174.77 $ / month Estimated Usage × Hourly Rate 
Estimated Profits $51.84 $139.81 $ / month ARPU × 80% f 
Difference in Profits 
Net Profits $44.80 $110.63 $ / month Server Profits – Support Costs 
Net Profits Gains (abs.) $65.83 $ / month $110.63 – $44.80  
Net Profits Gains (%) 147% % $110.63 / $44.80 – 1 
a These are the estimated costs per chat session and ticket given to us by the provider. 
b We only count buyer-initiated (inbound) tickets. We exclude (outbound) announcements by provider through tickets. 
c Median usage under basic support is 2 GB RAM/hour; we multiply by 720 hours/month to get monthly usage under basic 
support. For full support we consider a 34.85% increase in usage from estimate in column (2) of Table 5. 
d During our sample period, Amazon Web Services’ (AWS) Elastic Compute Cloud (EC2), the public IaaS with the largest 
market share and thus with the dominant price-setting position, offered small 1.7 GB RAM servers at $0.08/hour and medium 
3.75 GB RAM servers at $0.16/hour (source: aws.amazon.com). Based on these rates, we compute the mid-point price for 1 
GB RAM / hour at $0.045. This is the price under basic support. For full support, even though the provider adds $0.12 to the 
hourly rate, we only add $0.045 to attain a conservative estimate. We also ignore the fixed monthly fee charged by the 
provider to buyers under full support. See Online Appendix A for more details on pricing. 
e Average Revenue per User. 
f The provider estimates their server-related variable costs are around 20%. These include server and datacenter depreciation 
expenses, datacenter rent, power and cooling, and non-infrastructure related items like credit card fees and bad debt 
expenses. 

 

Our research has included a range of analyses used to isolate the effects of full support on 
IT service use. However, as in any empirical study, our research has limitations. In particular, 
while our analyses of user decisions to use horizontally scalable architectures provide suggestive 
evidence of learning, we do not directly observe learning using our current research design. 
Further, while we have sought to address concerns related to omitted variable bias through a range 
of approaches, we recognize the inherent challenges of identification given the nature of decisions 
we study and our use of observational data.  

Such limitations offer exciting opportunities for future research. For example, better data 
on the productivity of service use would help researchers to more precisely isolate the effects of 
provider interactions on buyer learning. More broadly, we believe that future work should use 
transactional data such as ours to gauge the impact of other buyer interactions with third parties, 
such as traditional outsourcing firms and individuals in online communities of practice, to assess 
their impact on the manner and effectiveness with which firms use IT. We hope our findings will 
encourage additional work in this important area.  
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ONLINE APPENDIX FOR 
 

TECHNOLOGY SUPPORT AND POST-ADOPTION  
IT SERVICE USE: EVIDENCE FROM THE CLOUD 

 

 

A. Provider Cloud Infrastructure Service and Technology Support Offerings 

This appendix offers additional details to those presented in section 0 of the manuscript in relation 
to the research context and the provider’s service characteristics. In our particular setting, the cloud 
provider has recognized that the novelty of the service plus the complexities involved in deploying 
distributed architectures that best leverage the cloud’s scalability may pose significant knowledge 
barriers to buyers attempting to use the service. In response to this, the provider offers them the 
option to contract and receive full support. We discuss first the pricing and terms of the cloud 
infrastructure service offering, and then elaborate on what characterizes full support. 

One of the essential characteristics of cloud infrastructure services is that they are offered 
on-demand (Mell and Grance 2011). Buyers only pay for what they use, and nothing else: there 
are no sign-up fees, no minimum spending requirements, no periodical subscription fees and – 
since buyers can choose not to use their service as well – there are no contract termination penalties 
either. Moreover, in the particular case of our provider, the computing resources are offered to 
buyers at fixed hourly rates that increase in server size or capacity, generally in a linear fashion. 
Servers’ capacity is defined in terms of memory (GB of RAM), processing power (number of 
virtual CPUs), and local storage (GB space of local hard disk). During our observation period, the 
three capacity metrics tend to vary together as a bundle, meaning that more of one is generally 
associated with more of the other two, yet prices are set and buyers usually make infrastructure 
sizing decisions in terms of memory. Prices also vary depending on the operating system chosen 
for a server (e.g., Windows servers cost more than Linux servers), yet such heterogeneity does not 
alter our main findings. The results considering operating system heterogeneity are available upon 
request. 

Buyers in our context can launch as many servers and of any size they want, when they 
want. However, as is discussed in section 2.1, there are important technical challenges in deploying 
horizontally scalable configurations where several cloud servers work in parallel. These challenges 
may in turn limit buyers’ ability to use many servers at once. Finally, there are no usage caps, with 
the only exceptions to this being that the provider may have limited hardware installed at its data 
centers or may take security measures to prevent misuse of its service (e.g., spamming). In other 
words, for legit buyers, there is no pre-defined cap or limit to how much they can choose to use 
the service.  
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The provider complements its infrastructure offering with full support, which is offered for 
a fixed price premium per server-hour used plus an additional fixed monthly fee. For instance, 
instead of paying $0.10 per hour for a 2GB RAM Linux server under basic support, a full support 
buyer would pay $0.12 more, i.e., $0.22 per hour. Similarly, for the 4GB RAM server priced at 
$0.20 per hour under basic support, the full support buyer would pay $0.32 per hour. The monthly 
fee is paid as a monthly subscription, which is a fee high enough to deter buyers with very low 
willingness to pay (i.e., bloggers that use a single very small server). There are no sign-up or 
termination fees for the full support service. The only explicit switching cost from one support 
level to another is technical rather than monetary: when downgrading from full support to basic 
support, because of technical limitations in the service offering (during our observation period), 
buyers must redeploy their servers on their own under the new support regime. The redeployment 
will involve launching new servers with virgin operating systems (i.e., “out of the box”), and then 
installing and configuring their business applications on them. 

A prime goal of full support is to educate buyers on how to best use the cloud infrastructure 
service and adapt it to their idiosyncratic business needs. When receiving full support, buyers 
receive personalized guidance and training, and thus have the opportunity to learn directly from 
the provider’s prior experience in deploying applications in the cloud. Buyers not willing to pay 
the price premiums will only receive a basic level of support that has limited scope in the sense 
that it is intended to aid buyers with issues concerning account management or overall performance 
of the infrastructure service. For example, while a full support buyer may be personally guided 
step by step on how to deploy a web server through phone conversations, live chat sessions or 
support tickets, basic support buyers will be referred to a knowledge base. Similarly, if a server 
failed, which happens much more frequently than in traditional datacenter settings given the 
commodity hardware employed and the multi-tenant architecture (i.e., multiple organizations’ 
virtual servers are hosted in the same and shared physical server), the provider would work together 
with full support buyers in solving the issues, while basic support users would only be notified 
about the failure, if anything. Thus, basic support buyers do not have fluid access to external 
knowledge from the provider and have to rely mostly on their internal capabilities to make use of 
the service. 
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B. Description of CEM Procedure and Sample Construction 

B.1. Overview of CEM Procedure 

We run our models on subsamples defined using a coarsened exact matching (CEM) procedure 
(Blackwell et al. 2010; Iacus et al. 2012). For matching purposes, we consider buyers who adopted 
full support at any point in their tenure as treated and those that relied exclusively on basic support 
as controls. Matching reduces endogeneity concerns (Ho et al. 2007), and CEM has been used 
extensively in recent work to improve the identification of appropriate control groups in 
difference-in-differences estimation (e.g., Azoulay et al. 2011; Azoulay et al. 2010; Furman et al. 
2012).  

CEM is particularly convenient for our setting because it is a nonparametric procedure that 
does not require the estimation of propensity scores. This is useful because, aside from the 
exogenous failures, we have limited data that would allow us to directly predict the likelihood of 
full support. Each unique vector formed by combinations of the coarsened covariates describes a 
stratum. Since the number of treated and control observations in each strata may be different, 
observations are weighted according to the size of their strata (Iacus et al. 2012). The differences 
in means between the treated and the controls across the various matching variables are almost all 
statistically significant. However, once we apply the CEM weights the samples are perfectly 
balanced and any mean differences are eliminated. All our regressions with the CEM-based sample 
employ these weights. When exact matching is possible, such that for every treated observation 
there is a control observation identical to the first one across all possible covariates except for the 
treatment, a simple difference in means of the dependent variables would provide an estimate of 
the causal effect of interest. Nonetheless, since it is nearly impossible to use exact matching in 
observational data and thus there is always a concern about the influence of omitted variables, we 
continue using our fixed effects panel data model to control for them. 

We match buyers based on six attributes: (1) pre-upgrade volume of IT use (i.e., memory 
use), (2) pre-upgrade efficiency of IT use (i.e., fraction of server running in parallel), (3) pre-
upgrade frequency of cloud infrastructure resizing (i.e., how often buyers launch a server, halt a 
server, or resize an existing one), (4) operating system of preference, (5) employment, (6) and 
intended use case for the cloud infrastructure service. The first four attributes are derived directly 
from firms’ observed usage of the cloud service. The latter two attributes come from an optional 
sign-up survey. 

The survey is optional and administered as part of the online sign-up web form; the 
response rate is 43.4%, and we have not found systematic differences between respondents and 
non-respondents. The survey was first administered in June 2010, and we have all buyers’ 
responses until February 2012. Although there can only be one survey response per account, since 
buyers can have multiple accounts, we may also have multiple responses per buyer. In our data we 
have 6,152 survey responses from 5,565 different buyers in the baseline sample, 431 of which 
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changed their response to at least one item across their surveys. However, for 42.3% of the buyers 
with varying responses the time gap between the survey responses is too short (i.e., less than 3 
months) as to suggest that the variance is due to changes in firms’ sizes or goals. Given this, we 
do not rely on variance across responses for our analysis and rather only consider the 5,134 buyers 
that either have a single survey response or that have consistent responses across all their 
submissions. Further, we have not considered firm attributes in the survey as controls in our models 
since they do not vary over time and thus would be absorbed by the firm fixed effect.  

For the matching process, we only consider treated buyers who started using the cloud 
service with basic support and upgraded to full support later on. This allows us to match the 
upgraders to controls based on their usage behavior before they adopted full support, had the 
controls adopted full support in the same month of their tenure. This approach, which is similar to 
the one implemented by Azoulay et al. (2010) and Singh and Agrawal (2011), ensures to the extent 
possible that treated firms do not exhibit differential usage behavior before they adopt full support 
relative to controls. Among the 5,134 buyers for which we have all this data (i.e., they answered 
the sign-up survey), 1,259 are treated and 3,875 are potential controls. Using the six criteria 
described above, we develop a weighted matched subsample. As part of our research we ran our 
models with varying permutations of matching criteria which, in addition to the six already 
mentioned, included buyer industry. Our results were consistent across the various subsamples and 
are available upon request. 

 

B.2. CEM Matching Criteria 

Six different attributes of firms were used to match treated and controls. In this section we describe 
each of them. They are summarized in Table B.1. 

 
Table B.1. Summary of Matching Criteria used in CEM Procedure 

Name Description # of 
Categories Categories 

Memory Use Memory usage in GB of RAM in 
months before upgrade 9 <0.5, 0.5-1, 1-2, 2-4, 4-8, 8-16, 16-32, 32-

64, >64 
Architecture 
Complexity 

Fraction of servers running in 
parallel in months before upgrade 5 0.00, 0.00-.25, .25-.50, .50-.75, .>75 

Adjustments Frequency of infrastructure resizing 
in months before upgrade 5 0, 1-2, 3-9, 10-43, >43 

OS Preference Primary OS before upgrade 6 Linux, Windows, RedHat, SQL, Mix 
Employment Employment 5 0-10, 11-50, 51-100, 101-250, >250 

Use Case General use cases (can have more 
than 1) 5 High variance, low variance, back office, 

hosting, test & development 
 
 

IT Use, Architecture Complexity and Frequency of Infrastructure Sizing Adjustments: In 
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regards to overall use (i.e., memory use) and frequency of infrastructure resizing, when creating 
our baseline sample we had already discarded basic support users with very small and/or rather 
static deployments over the early periods of their tenure. We excluded buyers who averaged 512 
MB RAM/hour or less during their first 6 months (excluding 1st month) or made no adjustments 
to size of their infrastructure during their first 6 months (excluding 1st month). Nonetheless, even 
among the remaining buyers there is considerable variation in these two variables.  

The average memory usage, fraction of servers running in parallel (as a proxy for the 
architecture complexity of the deployment), and the frequency of infrastructure resizing actions 
used to match treated and controls were computed as follows. Assume that a given treated buyer 
adopted the service with basic support in some period tf and switched from basic to full support 
in a later time period, t��,  t�� > tf. Then, we consider the set of controls (i.e., buyers who 
exclusively used basic support) who also adopted the service in month tf and used the service (i.e., 
did not churn) at least up to t��. This ensures all buyers were using the service during the same 
calendar time frame and have very similar tenure by period t��. For the treated group and all these 
controls, we compute the average memory usage, fraction of servers running in parallel,  and 
frequency of scaling actions in the periods during which all buyers were using basic support: from 
tf up to t��CF. Finally, we use this metric, which represents their pre-upgrade behavior, to match 
buyers. 

For average memory usage, we set our cutoff points at standard server sizes: 512MB, 1GB, 
2GB, 4GB, 8GB, 16GB, 32GB and 64GB of RAM. For the fraction of servers running in parallel, 
we opted to create 5 bins. Its distribution has a strong mass at zero, which justified the first bin 
with all observations with zero value. Afterwards we built 0.25-width bins which are close to the 
25th, 50th and 75th percentiles of the non-zero values. For frequency of infrastructure resizing, we 
base our cutoff points on percentiles of the distribution: the 25th percentile is a single change to the 
size of the deployment, the 50th percentile is 3 changes, the 75th percentile is 9 changes, and the 
95th percentile is 43 changes. In total, as shown in Table B.1, we have 9 categories for memory 
use, 5 categories for fraction of servers running in parallel, and 5 categories for the frequency of 
infrastructure resizing to match on. 

Operating System (OS) Preference:  During the time span of our data, the provider offered its 
servers running 4 different OS and we observe which OS each individual server used: 

1. Linux: Several distributions, although we do not observe which. 

2. Windows: Several versions of Windows Server, although we do not observe which. 

3. Red Hat Enterprise Linux. 

4. SQL Server: This is really a Windows Server running SQL Server, yet it was offered under 
its own price scheme and hence is considered another operating system for this exercise. 

Even though there were multiple OS available, as we show in Table B.2, most buyers either 
exclusively or at least primarily used a single OS. To determine if a buyer is a user of a particular 
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OS, we computed the proportion of the total amount of GB RAM-hours consumed by each buyer 
over its observed tenure that were consumed of each of the 4 different OS. Then, using arbitrary 
yet high thresholds (e.g., from 85% up to 100%), we flag a customer as user of a certain OS if the 
proportion of service use with that OS is greater or equal than the defined threshold. Using these 
proportions of workloads under each OS and varying thresholds, we populated each column of 
Table B.2 as follows: 

• Threshold: Indicates the percentage of total usage using a specific OS used to flag a buyer 
as a user of that OS.  

• Linux, Windows, Red Hat and SQL: Indicate the proportion of buyers who used at least 
as much as the threshold of their total usage under each corresponding OS. For example, 
57.35% of buyers in the baseline sample used at least 99% of all their GB RAM-hours on 
Linux servers. 

• Only 1: Given a certain threshold, it shows the proportion of total buyers that used only a 
single OS. The column is the sum of the 4 different OS columns to the left. 

• Mixed: Given a certain threshold, it shows the proportion of total buyers that used a mix 
of more than a single OS. The “Only 1” column and this column add up to 100%. 

The main takeaway from Table B.2, and in particular form the “Only 1” column, is that 
most customers primarily use a single OS. For instance, 66.96% of buyers in the baseline sample 
ran all their servers using a single OS, and 80.13% ran at least 95% of their workloads using a 
single OS. 

 
Table B.2. Proportion of Buyers Using each OS under Different Thresholds 

Threshold Proportion of Buyers using OS 
Linux Windows Red Hat SQL Only 1 Mixed 

100% 52.38% 10.47% 2.31% 2.13% 66.96% 33.04% 
99% 57.35% 13.29% 2.81% 2.36% 75.49% 24.51% 
95% 60.07% 14.78% 3.09% 2.52% 80.13% 19.87% 
90% 61.60% 15.89% 3.24% 2.65% 83.05% 16.95% 
85% 62.79% 16.78% 3.42% 2.83% 85.49% 14.51% 

 
To put this proportion into perspective, recall the median buyer in the sample consumes an 

average of 0.5 GB RAM (or 512 MB RAM) per hour over its tenure. Thus, over a month, a median 
buyer consumes 0.5	𝐺𝐵	𝑅𝐴𝑀/ℎ		×	24		ℎ/𝑑𝑎𝑦	×	30	𝑑𝑎𝑦𝑠/𝑚𝑜𝑛𝑡ℎ = 360	𝐺𝐵	𝑅𝐴𝑀/𝑚𝑜𝑛𝑡ℎ. If a 
buyer uses the same OS for at least 95% of its workload, then it is using some other OS for at most 
18 GB RAM during a month. This level of usage is equivalent to running a very small, 256 MB 
RAM (0.25 GB RAM) server for 3 days of the month (i.e., 72h). Even for a threshold of 85%, the 
remaining 15% is 54 GB RAM during the month, or 9 days of a very small 256 MB RAM server. 

We feel that such levels of usage (e.g., a very small server during 9 days per month) are 
inconsistent with running production applications, even if they are only used for short time spans. 
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Even a small blog would run in that 256 MB RAM server but for an entire month (i.e., 30 days), 
not 9 days, and any standard application will traditionally at least need a 512 MB RAM server, 
twice as large as this one. In other words, we are confident that customers who use at least 85% or 
more of their workloads on a single OS can be characterized as users of that OS. We find this is 
the case for 85.49% of the buyers in the baseline sample and 89.44% of the buyers in the CEM 
subsample described below. For our matching process, we employ the 85% threshold to flag 
buyers as users of each of the 4 different OS or a mix of any of the 4, resulting in 5 categories. 

Employment: The employment and intended use case data are collected from the sign-up survey. 
The proportions of buyers falling into the relevant categories within these two attributes are shown 
in Table B.3. For the employment cutoff points, we broadly rely on the ranges used in the survey. 
Among the buyers with consistent survey responses across all their accounts, 65.60% indicated 
they have 10 or fewer employees. Another 19.75% indicated they have between 11 and 50 
employees. We subdivide the remaining 15% of buyers in three bins each accounting for roughly 
5% of our sample: from 51 to 100, from 101 to 250, and more than 250. 

 

Table B.3. Proportion of Buyers per Category  
Buyer Role All Buyers Controls Treated 
Number of Buyers 5,134 3,875 1,259 
Employment 
  10 or less 65.60% 69.19% 54.57% 
  11 to 50 19.75% 18.68% 23.03% 
  51 to 100 5.03% 4.36% 7.07% 
  101 de 250 3.66% 3.02% 5.64% 
  More than 250 5.96% 4.75% 9.69% 
Use Case 
  High Use Uncertainty 46.34% 46.86% 44.72% 
  Low Use Uncertainty 59.14% 57.34% 64.65% 
  Back Office Applications 18.85% 19.48% 16.92% 
  Hosting 9.17% 9.29% 8.82% 
  Test & Development 29.31% 32.26% 20.25% 

 

Intended Use Case: The intended use case is collected by a multiple choice question (i.e., “Mark 
all that apply”) that asked buyers to “Please indicate what solution(s) you intend to use [the cloud 
infrastructure service] for.” The 20 options available to buyers are very specific, and finding 
matches across such specific use cases would be extremely hard. Instead, we group the specific 
use cases into 3 more general use cases based on two dimensions: if the use case is related to back 
office or front office applications, and, in the latter case, if it is likely that the volume of usage for 
the use case is predictable or not. Our first general use case, which we call “High Use Uncertainty”, 
includes customer-facing websites that are prone to unpredictable variance in their volume of 
usage. Examples of such use cases are social media sites, online gaming sites, online publishing 
sites, rich media sites (e.g., audio or video), and other Software-as-a-Service (SaaS) offerings. Our 
second general use case, “Low Use Uncertainty”, includes customer-facing websites used for 
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regular operation of the firm that have steady or at least predictable use levels. Examples are 
corporate websites, collaboration platforms, online portals, and e-commerce sites. We chose to 
include e-commerce sites in this general use case since, although it may have a high variance, 
seasonality makes the peaks and valleys of the demand fairly predictable. Finally, our “Back Office 
Applications” general use case includes applications or systems used internally for business 
operations. Examples are a company’s intranet and systems used for accounting, customer 
relationship management, human resources, supply chain management, or backup. We 
additionally consider web hosting services and running test and development environments as 
additional general use cases. Altogether, we have 5 general use cases. 

 

B.3. CEM Sample 

To construct our CEM sample we started off with our entire dataset which has a total 
79,619 different buyers. However, as noted in the main text we do not employ all buyers in our 
baseline sample. For the baseline sample we have excluded buyers who (1) only received basic 
support and (2) averaged 512 MB RAM/hour or less during their first 6 months (excluding 1st 
month) or (3) made no adjustments to size of their infrastructure during their first 6 months 
(excluding 1st month). We do not consider their behavior during their 1st month in our threshold 
because most buyers are setting up their infrastructure during this time. The baseline sample has 
22,179 buyers. 

From the baseline sample, we can only include in our CEM sample those buyers for which 
we have a survey response, which are 5,134, and for whom we observe at least two months of 
tenure. This is so that we can match buyers based on their behavior in the period before upgrading 
from basic to full support. This leaves us 4,200 buyers for the matching process. 

The CEM procedure leaves in our sample 1,525 buyers, of which 1,303 are controls who 
exclusively used basic support and 222 are treated buyers who started with basic support and 
upgraded to full support. There are on average 5.86 control buyers per treated buyer. 
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C.  Support Interactions and Construction of Instruments 

The content of the support interactions between the provider and its buyers was used to identify 
three types of exogenous failures experienced by buyers. The descriptions of the failure events can 
be found in Table 3 in the manuscript. The following are the keywords and phrases used to identify 
each of these types of support interactions. All support interactions that matched some keyword or 
phrase were visually examined to rule out false positives. 

 

Table C.1.  Keywords and Phrases Searched for Support Interactions Coding 

Failure Type Variable Name List of keywords or phrases used for identification of failure 

Service outage 𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒 Providers’ service status URL, cloud status, outage, scheduled maintenance, 
undergoing maintenance 

Network-related 
failure 𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘 Server does not respond to ARP requests, faulty switch, network issue in our 

data center, lb in error state, load-balancer hardware nodes, DDoS 

Hardware-related 
failure 𝐹𝑎𝑖𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 

Hardware failure, degraded hardware, drive failing, drives failing, server outage, 
host failure, server is down, server down, is hosted on has become 
unresponsive, problem with our server, host server, physical host, physical 
hardware, physical machine, host machine, failing hardware, hardware failure, 
imminent hardware issues, migrate your cloud server to another host, queued 
for move, issue on the migrations, host server of your cloud servers 

 

 
Once we identified the occurrence of the failures through the coding process, we calculated 

the accumulated number of them occurring over time for each buyer and each failure type. Letting 
𝐹 ∈ 𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒, 𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝐹𝑎𝑖𝑙𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒  represent a type of support interaction, 
whenever the count reached 𝑁 incidents we turn the corresponding 𝐹𝑁 indicator on. For example, 
variable 𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒2',) will be equal to 1 if buyer 𝑖 has accumulated at least 2 support interactions 
that have been coded as type 𝐹𝑎𝑖𝑙𝑂𝑢𝑡𝑎𝑔𝑒 by month 𝑡.  
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D. Impulse Response Functions 

An impulse response function represents the response of a dependent variable to a (one-time) unit 
change in some covariate while all other variables dated 𝑡 or earlier are held constant (Hamilton 

1994, pp. 318-323). In our case, we compute and plot difference quotients ���,�
���,���

 

𝑦',) ∈ 𝑙𝑛𝑀𝑒𝑚𝑜𝑟𝑦',), 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙',) , 	𝑥',) ∈ 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',), 𝐶𝑒𝑎𝑠𝑒𝐹𝑢𝑙𝑙',)  over time to 
show how current memory usage or current fraction of servers running in parallel is influenced by 
adoption or dropping of full support 𝑗 periods ago. 

These difference quotients are the coefficients of the associated rational lag model (Greene 
2008, pp. 683-686). The rational lags identify the effect that each lag of the covariate, on its own, 
has on the dependent variable. Since we used two lags (𝑝 = 2) of the dependent variables in our 
estimations of Model (2), the early lags (i.e., 𝑗 ≤ 1) of 𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',)Cb or 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)Cb have a 
specific formulation, while the later lags (i.e., 𝑗 ≥ 2) follow a recursive form. The approach is very 
similar to that of example 20.4 in Greene (2008, pp. 685-686). The rational lag coefficients, which 
we denote 𝛿b, are computed as follows (we show 𝛽b coefficients as those multiplying the 
𝐴𝑑𝑜𝑝𝑡𝐹𝑢𝑙𝑙',) lags, but algebra is identical for the 𝛾d coefficients multiplying lags of 𝐷𝑟𝑜𝑝𝐹𝑢𝑙𝑙',)): 

 

𝛿f =
𝛥𝑦)
𝛥𝑥)

				= 𝛽f 

𝛿F =
𝛥𝑦)
𝛥𝑥)CF

= 𝛽F + 𝜆F𝛿f 

𝛿� =
𝛥𝑦)
𝛥𝑥)C�

= 𝛽� + 𝜆F𝛿F 		+ 𝜆�𝛿f 

𝛿b =
𝛥𝑦)
𝛥𝑥)Cb

= 𝛽b + 𝜆F𝛿bCF + 𝜆�𝛿bC�,			2 ≤ 𝑗 ≤ 𝑟.	

	

As an additional step, we use Monte Carlo simulation and draw 100,000 random samples 
of the vectors of the fitted 𝛽b and 𝜆B coefficients using their estimates and their variance-covariance 
matrix. For each draw we compute and record the fitted rational lags 𝛿b, and use their distributions 
to estimate their 90% confidence interval. In Figure 1, the dashed lines represent the 5th and 95th 
percentiles of the distribution of each 𝛿b. 
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