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Abstract 

We investigate the impact of the intergenerational nature of services, via backward compatibility, on the 

adoption of multi-generational platforms. We consider a mobile Internet platform that has evolved over 

several generations and for which users download complementary services from third party providers. 

These services are often intergenerational: newer platform generations are backward compatible with 

respect to services released under earlier generation platforms. In this paper, we propose a model to identify 

the main drivers of consumers’ choice of platform generation, accounting for (i) the migration from older 

to newer platform generations, (ii) the indirect network effect on platform adoption due to same-generation 

services, and (iii) the effect on platform adoption due to the consumption of intergenerational services via 

backward compatibility. Using data on mobile Internet platform adoption and services consumption for the 

time period of 2001 – 2007 from a major wireless carrier in an Asian country, we estimate the three effects 

noted above. We show that both the migration from older to newer platform generations and the indirect 

network effects are significant. The surprising finding is that intergenerational services that connect 

subsequent generations of platforms essentially engender backward compatibility with two opposing 

effects. While an intergenerational service may accelerate the migration to the subsequent platform 

generations, it may also, perhaps unintentionally, provide a fresh lease on life for earlier generation 

platforms due to the continued use of earlier generation services on newer platform generations. 

 

Keywords: Platform economics, multi-generation diffusion, backward compatibility, lease on life, network 

economics 

 
 
 

1. Introduction 

Many IT platforms are being released in a multi-generational fashion, with the intervals between generation 

releases dwindling and multiple generations overlapping in the market over certain periods of time. For 

consumers, the value of a particular platform generation and the decision to adopt it are directly related to 

the value they can derive from complementary value-adding services (Gawer and Cusumano 2002). A large 

ecosystem of valuable compatible services makes a platform generation more attractive. Moreover, for 

customers considering an upgrade, the ability to continue to use various legacy services lowers the 
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switching costs associated with the migration. Hence, with each new platform generation release, it is quite 

common for platform producers to offer a smoother inter-generational transition for the consumers by 

implementing backward compatibility with respect to existing services. This, in turn, creates additional 

value for the new generation platform by carrying over the value of earlier generation complementary 

services to the new generation platform (Gandal et al. 2000, Claussen et al. 2012).1  

However, with backward compatibility, services become intergenerational, allowing for more 

complex interactions between adopters of different platform generations. Backward compatibility extends 

the useful life and potential market for older services, which in turn elevates the value of the older 

generation platforms that were compatible with such services all along. In addition, all other things equal, 

some users may prefer the older generation platforms in spite of all the new bells and whistles of the newer 

generations. This is due to the fact that many IT platforms exhibit no free disposal (Dewan and Freimer 

2003, Chellappa and Shivendu 2010) whereby more is not always better for some of the users – updates in 

functionality may complicate the interface, require additional resources, and may lead to integration 

breakdown. The backward compatibility for services, in parallel with price markdowns for older 

generations, may be enough to expand the market and bring in some of the potential adopters who did not 

deem any of the platform generations worthwhile in isolation before. Nevertheless, as discussed above, 

some of these new adopters may not choose the newer generation platform. As such, backward 

compatibility can also provide a lease on life for the older generation platform.  

Point in case, let us consider Microsoft Windows operating system. In April 2014, Microsoft ended 

support for Windows XP, its 12-year-old version of the operating system. Concurrently, Microsoft offered 

additional monetary incentives for users to upgrade from an XP system (Motti 2014) with a visible effort 

to direct them towards Windows 8 (with a free update to 8.1), the latest version of the operating system, 

which had just been released half a year earlier (Newman 2014). However, as of May 2014, many users 

                                                           
1 In the handheld video-game industry, it has been argued that new generation consoles (e.g., Game Boy Advance) 

were adopted faster because of backward compatibility (Claussen et al. 2012). Game Boy Advance was backward 

compatible with the games that were originally written for the earlier generation console, Game Boy Color. 
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still held on to Windows XP (25.27% of the market). Among those who decided to go with a newer version 

(new adopters or upgrading ones), more chose Windows 7, a 4-year-old version of the operating system, 

instead of Windows 8.1 (Net Applications 2015). In terms of market share, from April to May 2014, 

Windows 7 gained 0.79% while Windows 8.1 gained only 0.47%.2 Newer Windows versions exhibit 

extensive backward compatibility in terms of additional software that can run on top of the operating 

system. However, new features in Windows 8 “have polarized critics and alienated mouse-and-keyboard 

users, who feel Microsoft put too much emphasis on touchscreens” (Newman 2014). Due to backward 

compatibility, use cases and benefits of the two successive generations of Windows (7 and 8.1) overlapped 

greatly, which led some users to go with the older generation.  

 In this paper, we explore the adoption of multi-generational IT platforms over time, zooming in 

on the complex role played by backward compatibility of platforms with respect to services. While the 

impact of backward compatibility on newer platform adoption has been previously explored (e.g., Clemens 

and Ohashi 2005), the “shot in the arm” (lease on life) that backward compatibility gives to the older 

platform has not been analyzed in depth before. This research question is of great managerial interest to 

platform and services providers alike. Platform providers want to know how backward compatibility 

impacts the co-diffusion of multiple generations of the platform in the market, which in turn impacts their 

costs when quality assurance and tech support efforts are spread across many generations (e.g., development 

and release of security patches). Such insights influence both product design and retirement. On the other 

hand, backward compatibility influences the size of the installed base for each platform generation, 

affecting the strategies of services providers. For example, if adoption of a newer platform generation is 

slow but there is a strong loyal consumer base for the older generations, a service provider may choose to 

focus its efforts on older platform generations. If the platform provider removes backward compatibility, 

then the market size may become significantly smaller for a service provider which, in turn, may force it to 

move further away from platform provider exclusivity and embrace a multi-homing strategy. 

                                                           
2 The prices of Windows 7 Professional and Windows 8.1 Full version at Amazon.com in June 2014 were $119 and 

$105.69 respectively. 
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We frame our study in the context of a mobile Internet platform offered by a major wireless carrier. 

The wireless carrier, as a platform provider, designs and provides all the platform generations. Handset 

manufacturers produce devices for each platform generation based on the specifications of the wireless 

carrier. The supporting services for each platform generation are provided by third-party service providers. 

A newer-generation platform is backward compatible with the services originally developed for the earlier 

generations, i.e., services are intergenerational through backward compatibility; hence, a new generation 

platform user can always consume its own-generation services as well as earlier generation services. 

We propose a novel multi-generation adoption model that accounts for the complex tensions 

induced by backward compatibility on the diffusion process. One major contribution of this work is that we 

identify and quantify a significant lease on life effect on older platforms as a result of backward 

compatibility and consumption of intergenerational services on multiple platform generations. Hence, while 

intergenerational services foster the migration to newer generation platform for some of the user base, we 

confirm that they can, at the same time, lengthen the lifecycle of the earlier generation platforms. Through 

our model and results, we thus advance the understanding of multi-generational IT platform adoption.  

The rest of the paper is organized as follows. In Section 2, we position our paper in the context of 

the relevant literature. In Section 3, we discuss the conceptual model and assumptions. We describe the 

research context and data in Section 4, and empirical specification, methodology, and estimation results in 

Section 5. In Section 6, we discuss the detailed economic impact of backward compatibility and the 

managerial implications of the uncovered effects. We include the concluding remarks in Section 7.  

2. Literature Review 

Our study is related to several research streams. Our model and research question are framed in the 

context of the diffusion of multiple generations of IT platforms. In addition, we draw inspiration from the 

literature on planned obsolescence and no free disposal. 

The literature on multi-generational diffusion of technological innovation is well established (e.g., 

Blackman 1974, Norton and Bass 1987, Mahajan and Muller 1996, Islam and Meade 1997, Jun and Park 

1999, Kim et al. 2000, Danaher et al. 2001, Chu and Pan 2008, Zhang et al. 2008, Bohlin et al. 2010, Jiang 
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and Jain 2012). Many of these studies do not explicitly model the indirect network effects induced by 

complementary services and also do not account for backward compatibility. The models in Gupta et al. 

(1999), Nair et al. (2004), Li et al. (2006), Dewan et al. (2010), and Niculescu and Whang (2012) include 

the indirect network effects but do not dive deep into the exploration of interactions between generations.  

 The aforementioned literature has in most cases treated the adoption of multi-generational products 

across time as a generation handover - a technological substitution of the earlier generations by the newer 

ones. Once the new generation product is introduced, the adopters of the earlier generation products 

gradually migrate to the new generation product over time and eventually the demand for earlier generation 

products dies out. Backward compatibility, where accounted for, was considered to give an advantage to 

the newer generation, accelerating the migration process. Clemens and Ohashi (2005) considered backward 

compatibility in this flavor and their study is the closest to ours among extant research. In that study, the 

authors incorporate backward compatibility in their model and measure indirect network effects in the video 

game industry. Nevertheless, there are three major differences between our paper and theirs. First, in their 

model, backward compatibility affects newer platform generations but it does not affect older generations. 

Their study focuses on consoles and video games between 1994 and 2002. At that time, in general, games 

were issued to be played on a single console. So a PS2 user that was playing a game that was originally 

released for PS1, could not do so in a network with another PS1 user. As such, the fact that more PS2 users 

could play games compatible with PS1 would not directly increase the value of the PS1 consoles.  Thus, 

Clemens and Ohashi model newer generations of the consoles as competing with the older generations but 

not enhancing the value of the latter in any way. In contrast, in our model, through mobile data services, 

mobile platform users can interact with each other across platform generations. For example, platform users 

communicate to each other using text-based or multimedia-based messaging or can play a network game 

together. As such, if users of a new platform generation consume services released originally for an older 

generation, this gives them a way to interact with older platform generation users. Hence, older platform 

generation users benefit if newer platform generations exhibit backward compatibility with respect to the 

services. Therefore, we identify two effects of backward compatibility: (i) the (known) forward effects of 
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backward compatibility and (ii) the (new) backward effect of backward compatibility (the “lease on life”). 

To the best of our knowledge, our work is the first one to conceptualize the two effects of backward 

compatibility and to subsequently develop an empirical model that allows us to identify and measure the 

effect of the intergenerational nature of services (via backward compatibility) on generation handover. 

Because we account for how backward compatibility (of newer platform generations with respect to 

services initially released for older generations) impacts both older and newer generation platforms, unlike 

in Clements and Ohashi (2005), we do not implicitly assume that backward compatibility gives an edge to 

the newer generations. In our analysis, we let the data tell us the magnitude of each effect.  

Second, the model in Clements and Ohashi (2005) does not include direct network effects at 

platform level. In their paper, the utility from owning a particular console is not modeled to depend on the 

installed base of that particular console. In contrast, our model accounts for and estimates direct network 

effects for each mobile platform generation. Mobile platforms exhibit direct network effects as they have 

inter-user communication capabilities (Niculescu and Whang 2012). Third, Clements and Ohashi use the 

number of available game titles for each console to measure indirect network effects assuming a consumer 

values all available game titles equally. In contrast we use the actual consumption data (i.e., traffic volume 

downloaded by users). We believe that in our context such a measure is more accurate, especially taking 

into consideration the explosion in available services, apps, and downloadable pieces of content available 

for mobile platforms. Just as an example, as of June 2014, there were 1.2 million apps available for the iOS 

platform (Perez 2014). It is clear that in this sea of content and apps, there are many pieces that are 

substitutes and, moreover, due to obvious resource constraints (such as time, money, attention span, interest, 

etc.), users discover and tap only a fraction of what is available. As such, we believe that quantifying indirect 

network effects via traffic volume is more relevant in the mobile Internet context. If some services attract 

significant traffic, that makes them popular, which attracts potential new customers to the compatible 

platforms for such services. 

The multi-generational nature of product innovation is also discussed in the planned obsolescence 

literature. However, the literature has thought of planned obsolescence in the context of optimal durability 
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(Bulow 1986), R&D investment (Waldman 1996), and pricing decisions (Lee and Lee 1998) of multi-

generational products, rather than in the context of consumer adoption and migration. Furthermore, while 

several studies look at the role of compatibility in planned obsolescence, most studies do not explicitly 

model backward compatibility. Exceptions include Waldman (1993) and Choi (1994), who investigate the 

condition under which the firm makes a subsequent version incompatible (or compatible) and Ellison and 

Fudenberg (2000), who investigate the firm’s incentives to release a backward-compatible newer version. 

These studies, however, consider backward compatibility (or incompatibility) as a tool for planned 

obsolescence, i.e., by making a new version backward compatible (or incompatible) the firm gives it an 

advantage and makes an old version obsolete. In contrast, our main focus is identifying and quantifying the 

(hitherto undiscovered) lease on life effect of backward compatibility for an old version. Lastly, while many 

studies see planned obsolescence as a phenomenon that leads to less durability or more frequent updates 

than is socially optimal, Fishman et al. (1993) and Bharadwaj et al. (2013) highlight the positive outcomes 

of planned obsolescence (such as technological progresses) but do not explicitly discuss the role of 

backward compatibility in these positive outcomes. 

Last but not least, we also draw inspiration from the literature on no free disposal in the context of 

several IT platforms (Dewan and Freimer 2003, Chellappa and Shivendu 2010, Chellappa and Mehra 2013). 

In our model, net of any price effects, in the presence of backward compatibility some new adopters may 

choose the older platform generation.    

3. The Conceptual Model and Assumptions 

For expositional clarity, we first introduce the model and build the theory using a hypothetical market that 

has two generations of platforms (platform 1 and 2) and supporting/complementary services released for 

each of them (generation 1 and 2 services). The parameterization for the full model is discussed in Section 

5.1. Platform 2 is an update (a subsequent generation) of platform 1. Platform 2 exhibits backward 

compatibility in that platform 2 users can consume both generation 1 and 2 services, but platform 1 users 

can consume only generation 1 services. As an illustration, a newer generation of the iPhone can run all 

apps and services that older versions could run. However, Apple Pay, a service for iOS introduced shortly 
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after the release of iPhone 6 and 6 Plus, requires a near-field communication chip to pay for in-store 

purchases (Apple 2014). This technology is only embedded in the more recent versions of the hardware 

platform and, hence, Apple Pay cannot be used on older iOS devices to pay for in-store purchases.  

Let 𝑁𝑖(𝑡) be the installed base of platform 𝑖 by time 𝑡,  𝑇𝑟𝑖𝑗(𝑡) be the cumulative traffic volume 

(volume of data packets3) of generation 𝑗 services consumed by platform 𝑖 users by time 𝑡, and  𝑇𝑟𝑗(𝑡) be 

the cumulative traffic volume of generation 𝑗 services consumed by all compatible platforms (𝑗 and newer) 

by time 𝑡. Figure 1 illustrates the relationship between platforms and services, highlighting four effects:  

 

Note: 1. Migration; 2. Indirect network effect; 3. Forward effect of backward compatibility (FEBC); 

4. Backward effect of backward compatibility (BEBC) 

 

Figure 1. The relationship between platforms and services – two generations case 

 Effect 1: Migration. Platform 1 adopters may gradually migrate to platform 2 over time once the 

latter has been released. As such, at any given time, adopters of platform 2 consist of new (first-

time) adopters and those adopters who have migrated from platform 1. 

 Effect 2: Indirect network effect. A platform becomes more valuable (which is manifested in the 

form of a positive effect on adoption) when the consumption of its same-generation complementary 

services (those services compatible exclusively with this and subsequent platforms, but not with 

older ones) increases.  

                                                           
3 1 packet = 512 bytes of data. 
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 Effect 3: Forward effect of backward compatibility (FEBC). Since platform 2 is backward 

compatible with generation 1 services, the value of platform 2 is also associated with the value of 

generation 1 services, which in turn is related to their consumption (whether it originated on 

platforms 1 or 2). We call this effect of consumption of generation 1 services on the value of platform 

2 the forward effect of backward compatibility. 

 Effect 4: Backward effect of backward compatibility (BEBC). As more platform 2 users consume 

generation 1 services through backward compatibility, platform 1 gets additional value in the 

following ways. First, generation 1 services do not get discontinued due to the continued demand, 

which allows platform 1 users to continue to derive value from these earlier services. Second, 

through continued generation 1 services (i.e., intergenerational services), platform 1 users can 

interact with platform 2 users, which pushes the obsolescence of platform 1 further in the future. As 

such, through backward compatibility, platform 1 gets a backward-compatibility-induced lease on 

life which we call the backward effect of backward compatibility. 

Consistent with the relationship illustrated in Figure 1, 𝑁1(𝑡) and 𝑁2(𝑡) can be written as: 

𝑁1(𝑡) = �̂�1(𝑡) − 𝑀𝑖𝑔1(𝑡) + 𝐿𝑜𝑙1(𝑡), (1) 

𝑁2(𝑡) = �̂�2(𝑡) + 𝑀𝑖𝑔1(𝑡), (2) 

where �̂�𝑖(𝑡) is the estimated cumulative number of adopters of platform 𝑖 generation by time 𝑡 due to 

market expansion induced by the introduction of this platform generation, in the absence of newer platform 

generations, 𝑀𝑖𝑔1(𝑡) is the cumulative number of platform 1 adopters who have migrated to platform 2 by 

time 𝑡 net of traffic externalities, and 𝐿𝑜𝑙1(𝑡) is the cumulative lease on life for platform 1 by time 𝑡 

(measured as the cumulative number of additional adopters of platform 1 due to platform 2 adopters’ 

consumption of generation 1 services and to the price difference between platforms). 

 The (single-generation) diffusion literature introduced several functional forms for �̂�𝑖(𝑡) for 

various contexts (Mahajan and Muller 1979, Mahajan et al. 1990, Meade and Islam 2006). Most of those 

functional forms share the same underlying structure for a diffusion process. They assume that there is a 
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maximum number of potential adopters (i.e., the market potential) and that the adoption penetration rate 

(derived from a hazard rate function) follows a probability distribution curve (e.g., modified exponential, 

logistic, or Gompertz). Following the same underlying diffusion structure, we define �̂�𝑖(𝑡) as: 

�̂�𝑖(𝑡) = 𝑚𝑖𝐹𝑖(𝑡), (3) 

where 𝑚𝑖 is the maximum increase in the number of adopters for platform 𝑖  (i.e., the increase in the market 

potential due to the introduction of platform 𝑖), and 𝐹𝑖(𝑡) is the cumulative diffusion rate of platform 𝑖 by 

time 𝑡. Building on the generalized Bass model (GBM) introduced in Bass et al. (1994), we parameterize 

𝐹𝑖(𝑡) as: 
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where 𝜏𝑖 is the time at which platform 𝑖 was introduced in the market (generation 𝑖 services were introduced 

at or after 𝜏𝑖) and 1𝑡≥𝜏𝑖
 is the indicator function that equals 1 if 𝑡 ≥ 𝜏𝑖 and 0 otherwise. The derivation of 

the expression for the cumulative diffusion rate 𝐹𝑖(𝑡) is included in Appendix A. Consistent with the 

diffusion literature (Bass et al. 1994), we name 𝑧𝑖 the coefficient of innovation and 𝑞𝑖 the coefficient of 

imitation (often referred to as the measure for the direct network effect). As discussed in Appendix A, based 

on equation (A.3), 𝛽𝑖  measures the impact of the percent change in platform 𝑖  users’ consumption of 

generation 𝑖 services on the diffusion rate of platform 𝑖 - the indirect network effect. Similarly, 𝛾𝑖  measures 

the impact of the percent change in consumption of the older generation services (𝑘 < 𝑖) on the diffusion 

rate of the new generation platform (platform 𝑖), i.e. the magnitude of the FEBC.  

 The multi-generation diffusion literature (Blackman 1974, Norton and Bass 1987, Mahajan and 

Muller 1996, Jun and Park 1999, Kim et al. 2000, Chu and Pan 2008; Jiang and Jain 2012) extends (single-

generation) diffusion models by adding parameters to capture user migration to subsequent generations 

(similar to 𝑀𝑖𝑔1(𝑡) in equations (1) and (2)). These models generally assume that (i) adopters migrate from 
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earlier to new generations, but not vice-versa, and (ii) the install base for an earlier generation continues to 

shrink once it starts decreasing. Consistent with these assumptions, we define 𝑀𝑖𝑔1(𝑡) as: 

     𝑀𝑖𝑔1(𝑡) = 𝑚1𝐹1(𝑡)𝐹2(𝑡).          (5) 

The migration from platform 1 to 2 manifests in a stronger way when the installed base for platform 2 

increases (i.e., the attractiveness of platform 2 is proportional to the existing installed base) and the number 

of platform 1 adopters becomes zero when platform 2 is saturated (i.e., 𝐹2(𝑡) = 1). 

 Lastly, we model the lease on life for platform 1 (denoted 𝐿𝑜𝑙1(𝑡)) as follows:  
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where Δ𝑃1(𝑡) = 𝑝2(𝑡) −  𝑝1(𝑡) and 𝑝𝑖(𝑡) is the average of real prices of platform 𝑖 handsets. We measure 

the lease on life for platform 1 as its additional installed base due to (i) platform 2 adopters’ consumption 

of generation 1 services (backward-compatibility-induced lease on life) and (ii) the price difference between 

handsets supporting two successive generations of platforms (price-induced lease on life). 

Platform 2 users’ consumption of generation 1 services (made possible by backward compatibility) 

increases the value of platform 1 by extending the lifespan of generation 1 services and by allowing platform 

1 users to interact with platform 2 users. For instance, Microsoft Office 2007 introduced the new .docx 

format. Yet, Office 2007 was backward compatible with the old .doc format, i.e., it could read and edit .doc 

files, which gave one less reason for users to choose it over an earlier Office version (an older standard 

continued to be supported which made it less urgent to migrate to the new one). Furthermore, as more 

Office 2007 users wrote their documents in .doc format, an earlier Office version would have been even 

more attractive to some users since they could collaborate with Office 2007 users without many constraints. 

In general, users who were not considering the earlier platform in the absence of backward compatibility 

or price advantage may now consider this older platform even as a newer generation is released in the 

market – these adopters are the ones accounted under the lease on life effect. Correspondingly, we call 𝛼𝑖 

the coefficient of the backward-compatibility-induced lease on life for platform 𝑖 (measuring BEBC). 
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The lease on life for platform 1 can also be influenced by price. In markets for multi-generation 

products, it is quite common for an earlier generation platform to be marked down after a new generation 

platform is released and some adopters choose the earlier generation platform because of this discounted 

price (Zhang et al. 2008). In order to make sure that what we identify as the backward-compatibility-induced 

lease on life is identified separately from the price-induced lease on life, we control for the price effect by 

including the price difference Δ𝑃1(𝑡) between handsets supporting the two successive platform generations 

in equation (6). It has been discussed that the effects of marketing activities (e.g., price promotion) dissipate 

over time (Hanssens et al. 2001). Other studies (e.g, Niculescu et al. 2012), indicated that later adoption 

might be the result of valuation learning rather than price. Hence, we assume that the price-induced lease 

on life effect diminishes over time at the rate of 𝜂. In period 𝑡, as long as the consumption of generation 1 

services by platform 2 owners continues at a strong pace (i.e.,  𝑇𝑟21(𝑡) − 𝑇𝑟21(𝑡 − 1) is large enough) that 

overcomes the decay in the strength of the price effect, then the aggregate number of additional consumers 

of platform 1 increases. Otherwise it decreases. As platforms 1 and 2 age more, then backward compatibility 

induced traffic effect ends up dominating the price effect in the lease on life. We call 𝜁𝑖 the coefficient of 

the price-induced lease on life for platform 𝑖. 

Our model allows for the backward-compatibility lease on life for platform 1 to exist even in the 

absence of any price difference between platform generations. In general, newer platforms contain all 

features and capabilities of older platforms and then some more.  Nevertheless, for some economic goods 

(IT platforms included) and some consumer segments, it may be the case that less is better (beyond a certain 

point the consumer utility may decrease in the number of features or quantity of a given good) – a property 

commonly known in economics literature as “no free disposal” (e.g., Dewan and Freimer 2003, Chellappa 

and Shivendu 2010, Chellappa and Mehra 2013). Newer features may lead to design changes and increased 

complexity in the user interface. As discussed in the Introduction, new features added in Windows 8 (and 

subsequent 8.1 release) supporting touch screen devices have been a source of vast consumer complaints, 

leading to Windows 7 market share increasing more than that for 8 and 8.1 versions together in the period 

June 2014-June 2015 (Net Applications 2015). In addition, newer platforms may require additional 
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resources, which may congest or render completely obsolete the supporting technology. For example, in 

the case of iOS mobile operating system, versions 6.0 and beyond cannot be installed on the first generation 

of iPad hardware. Thus, for a user to adopt the newer generation of iOS, she would have to spend additional 

funds on supporting hardware as well. Last but not least, platform design updates may break down 

integration with other complementary products. For example, when Apple redesigned the connectivity for 

iPod, iPhone, and iPad to move away from 30-pin format to Lightning 8-pin format for the 

adaptors/connectors, this in turn made connectivity to older docking devices harder (consumers would have 

to buy adaptors to continue to use those complementary devices with the new Apple products).  

As illustrated in equations (4) and (6), the number of adopters of a platform is influenced by the 

consumption of its compatible services (whether they were released for this current platform or older 

platforms). At the same time, consumption of a certain generation of services could be influenced by the 

number of platform users whose platforms are compatible with these services. Hence, 𝑇𝑟𝑖𝑖(𝑡), 𝑇𝑟𝑘𝑖(𝑡) with 

𝑘 > 𝑖, and 𝑇𝑟𝑖(𝑡) could be endogenous to the model. To control for this potential endogeneity, along with 

the rest of the model, we jointly estimate the following two equations parameterizing traffic: 
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Following the diffusion literature (Griliches 1957), we assume that the cumulative consumption of services 

(𝑇𝑟𝑖𝑖(𝑡) and ∑ 𝑇𝑟𝑙𝑖(𝑡)𝑙>𝑖 ) grows following a logistic diffusion process while the susceptible consumption 

levels (𝑎𝑖 ∑ 𝑁𝑖(𝑠)𝑡
𝑠=𝜏𝑖

 and 𝑏𝑖 ∑ ∑ 𝑁𝑙(𝑠)𝑙>𝑖
𝑡
𝑠=𝜏𝑙

) are proportional to the installed base. 

 

4. Mobile Internet Market and Data  

4.1. Description of the Mobile Internet Platform 

We obtained monthly data on mobile Internet platform adoption and services consumption between May 

2000 and Dec. 2007 from a major wireless carrier in an Asian country with a highly developed mobile 
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telecommunication infrastructure. During this time period, the wireless carrier sequentially introduced four 

generations of the mobile Internet platform with backward compatibility.4 Here backward compatibility is 

unidimensional, covering only the platform side, i.e., the newer generation platforms were backward 

compatible with earlier generation services but newer generation services were not backward compatible 

with earlier generation platforms. Services supporting each platform were introduced by third-party 

providers via the wireless carrier’s distribution channels. Table 1 summarizes these platforms and services. 

 

 

Table 1. Summary of each platform and service 

Platform 

Generation 

Release 

date 
Novel Characteristics 

Complementary 

Services/Apps 

1st 
May 

2000 

Content based: The platform supports mobile web 

browsing and content downloading. 

Ringtones, wallpapers, 

and short-text-based 

instant messengers 

2nd 
Dec. 

2001 

Application based: The platform supports more 

sophisticated application-based services through the 

application embedded or installed on the platform.  

Mobile (network) games, 

mobile banking, and 

mobile stock trading 

3rd 
Apr. 

2002 

Enhanced communication: The platform provides 

enhanced mobile communication tools that enable 

users to send and receive long-text messages and 

attach images and/or video files on it. 

Multimedia Messaging 

Service (MMS) 

4th 
Feb. 

2003 

Streaming video: The platform supports mobile 

video streaming and uploading services. 

Live TV, Video on 

demand (VOD), and User 

generated video (UGV) 

 

 

4.2. Data Description 

In our dataset, we have monthly data for the time period 2001 – 2007 for (i) the installed base of platform 

𝑖 by time 𝑡 (denoted 𝑁𝑖(𝑡)), (ii) the cumulative traffic volume of service 𝑗 by time 𝑡 (denoted 𝑇𝑟𝑗(𝑡)), and 

(iii) the number of platform 𝑖 users who consume service 𝑗 in time period 𝑡 (denoted 𝑆𝑖𝑗(𝑡)). Figure 1 gives 

an overview of our data. Panel (a) describes the installed base for each platform. It shows some commonly 

observed features of multi-generational diffusion models such as the sequence of the rise and decline of the 

                                                           
4 After the 4th generation platform was introduced in February 2003, no new platform generation was introduced 

until 2008 when the smartphone platform was released (beyond the time window for this study). 
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installed base with the introduction of subsequent generations. On the other hand, it also shows some 

unusual characteristics that are not common in multi-generational models. For example, platform 1 actually 

never dies out and even experiences a revival at the end of the product cycle. In addition, platform 2 has 

markedly fewer adopters than all other platforms.  Panel (b) depicts the cumulative traffic for each service 

generation. Not surprisingly, generation 4 services traffic (video streaming) rises quickly and faster than all 

other service generations. Panels (c) – (f) describe the cumulative number of users of each service 

generation for each platform. These panels reveal that backward compatibility was utilized – new 

generation platform users consumed older generation services. 

For these data, some of the early time period points were missing. There are a few alternative ways 

to estimate the model when there is missing data (Grover and Vriens 2006). Following a regression 

substitution (imputation) approach, we first interpolate the missing data using available data via polynomial 

trend approximation methods and then estimate the model.5 Details about the imputation of the missing 

data are included in Appendix B.1.  

There are a few other categories of data that we have in our set which we do not use for the 

estimation of the main model but we use in the revenue sensitivity analysis in Section 6.5. To avoid any 

distraction in the flow of the presentation, we discuss these data in that section. 

 

4.3. Estimation of the Consumption of Each Service by Corresponding Platform Generation 

Using the cumulative traffic volume of service 𝑗 by time 𝑡 (𝑇𝑟𝑗(𝑡)) and the number of platform 𝑖 users who 

consume service 𝑗  in time period 𝑡  (𝑆𝑖𝑗(𝑡) ), we estimate the cumulative traffic volume of service 𝑗 

consumed by platform 𝑖 users by time 𝑡 (𝑇𝑟𝑖𝑗(𝑡)). We assume the following relationship between 𝑇𝑟𝑖𝑗(𝑡) 

and 𝑆𝑖𝑗(𝑡):  

   
 

 










,if 

,if    
1

jitS

jitS
tTrtTr

ijij

ijj

ijij



           (9) 

                                                           
5 An alternative approach would have been listwise deletion (i.e., ignore the observations with missing data and 

estimate the model with what remains). However, this approach is recommended only when the missing data is 

completely random. Furthermore, it has been discussed that the diffusion model parameters estimates can be biased 

(left-hand truncation bias) if early adoption data points are not available (Jiang et al. 2006). 
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(a)                                                                                   (b) 

   
(c)                                                                                   (d) 

   
(e)                                                                                   (f) 

 

Figure 1. (a) Installed base by platform (𝑁𝑖(𝑡)). (b) Cumulative traffic volume for each service 

generation (𝑇𝑟𝑗(𝑡)). (c) – (f) Cumulative users of each service generation by platform (∑ 𝑆𝑖𝑗(𝑡)𝑡 ). 
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where 𝜙𝑗  is the service multiplier (i.e., marginal same-generation service consumption) and 𝜑𝑖  is the 

platform (or backward compatibility) multiplier (i.e., 𝜙𝑗𝜑𝑖  represents the marginal consumption of 

generation 𝑗  services by platform 𝑖  users). We account for the fact that users might consume 

intergenerational services (via backward compatibility) and same-generation services at different rates. The 

intuition behind equation (9) is that the traffic volume of generation 𝑗 services consumed by platform 𝑖 

users in period 𝑡 is a function of the number of users on that platform who consume this service generation 

in this time period. Given that we know for each period of time exactly how many users of a specific 

platform use services of a given generation allows us to estimate the corresponding traffic volume. Using 

(9), from 𝑇𝑟𝑗(𝑡) − 𝑇𝑟𝑗(𝑡 − 1) = ∑ [𝑇𝑟𝑖𝑗(𝑡) − 𝑇𝑟𝑖𝑗(𝑡 − 1)]𝑖 , we have: 

       







 

 ji

ijijjjjj tStStTrtTr 1  (10) 

 
Note:    1)(  tTrtTrtTr

jjj
; We omitted (t) for brevity. 

Figure 2. The relationship between 𝑇𝑟𝑗(𝑡) and 𝑆𝑖𝑗(𝑡). 
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Table 2. Traffic fee rates 

Service/Application type 

Rate (Unit: local currency per packet; per message for 

Multimedia message) 

Before Feb. 2007 After Feb. 2007 

Text 6.5 4.55 

Application 2.5 1.75 

Multimedia Message 
0 – 100 packets: 200 

101 – 300 packets: 500 

Multimedia 1.3 0.91 

 

Figure 2 illustrates the relationship between 𝑇𝑟𝑗(𝑡) and 𝑆𝑖𝑗(𝑡) as defined in equation (10). We 

estimate the parameters – 𝜙𝑗 and 𝜑𝑖 – using simultaneous nonlinear regression (SNLR). Note that since 

there are four generations, we have a system of four equations, each corresponding to equation (10) for a 

different service generation. In general, estimates can be biased if there are price effects. However, in the 

particular case of the platform and services in our study, there was little change in per-packet traffic fees 

over the time window of our study. In addition, for the same service the same fee was charged to all users 

regardless of their platforms. All packet transactions that were sent and received by each user were charged 

by four different rates as described in Table 2. The rates for text, application, and multimedia packets were 

reduced by 30 percent in February 2007. 

 

For robustness, we also considered a more complex parameterization of the model including 

learning effects in equation (10) but those turned out not significant. Therefore, we dropped those 

parameters. Table 3 shows the parameter estimates and model fit. All parameters are significant and 

adjusted R-square values are considerably high. 

 

 

Table 3. Parameter estimates and model fits for the service and platform multipliers 

  Estimates Std. Err. Significance 

Service multiplier 𝜙1 0.2618 0.0248 *** 

 𝜙2 0.3416 0.0317 *** 

 𝜙3 0.1067 0.0096 *** 

 𝜙4 37.2788 1.0269 *** 
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Platform multiplier 𝜑2 1.6049 0.2674 *** 

 𝜑3 3.5549 0.3691 *** 

 𝜑4 12.7139 1.1863 *** 

Adj. R-Square 𝑇𝑟1(𝑡) − 𝑇𝑟1(𝑡 − 1) 0.9776 

 𝑇𝑟2(𝑡) − 𝑇𝑟2(𝑡 − 1) 0.9869 

 𝑇𝑟3(𝑡) − 𝑇𝑟3(𝑡 − 1) 0.8556 

 𝑇𝑟4(𝑡) − 𝑇𝑟4(𝑡 − 1) 0.8863 

Number of observations  93 

Note: *** p<0.01; ** p<0.05; * p<0.1. 
 

 

4.4. Price of Handsets 

We collected monthly handset store prices from online blogs and forums. For the earlier part of the time 

window of our study, prices are not publicly available and had to be imputed (details are included in 

Appendix B.2). Next, we derive the real average prices of platform 𝑖 handsets - 𝑝𝑖(𝑡) - by adjusting the 

observed and estimated average handset prices using the consumer price index using April 2000 as base. 

All of these handsets were locked on the network of the wireless carrier that we study. In the Asian country 

that we study marketing promotions were regulated by the government and fixed-term contracts were 

restrictively allowed. Therefore, the store price fairly represents what each consumer paid.  

 

5. The Impact of Backward Compatibility on Platform Adoption Decisions 

5.1. Empirical Specification 

In this section, extending the model in Section 3 to a four-generation model, we investigate the impact of 

backward compatibility on platform adoption decisions. Our model and analysis can be easily extended to 

an n-generation model. We illustrate in Figure 3 the relationship between platforms and services when there 

are four generations of each. As before, we are conceptualizing four effects: (1) the migration effect, (2) 

the indirect network effect, (3) the forward effect of backward compatibility, and (4) the backward effect 

of backward compatibility.  
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Figure 3. The relationship between platforms and services – four generations case 

 

Adjusting equations (3), (5), and (6) for 4 generations, the adoption model is captured by the 

following system of equations: 

𝑁1(𝑡) = 𝑚1𝐹1(𝑡)[1 − 𝐹2(𝑡)] + 1𝑡≥𝜏2
[𝛼1 ∑ 𝑇𝑟𝑙1(𝑡) + 𝜁1𝑒−𝜂(𝑡−𝜏2) ∑ ∆𝑃1(𝑠)

𝑡

𝑠=𝜏2𝑙>1

], (11) 

𝑁2(𝑡) = [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)[1 − 𝐹3(𝑡)] + 1𝑡≥𝜏3
[𝛼2 ∑ 𝑇𝑟𝑙2(𝑡) + 𝜁2𝑒−𝜂(𝑡−𝜏3) ∑ ∆𝑃2(𝑠)

𝑡

𝑠=𝜏3𝑙>2

], (12) 

𝑁3(𝑡) = [𝑚3 + [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)]𝐹3(𝑡)[1 − 𝐹4(𝑡)]

+ 1𝑡≥𝜏4
[𝛼3 ∑ 𝑇𝑟𝑙3(𝑡) + 𝜁3𝑒−𝜂(𝑡−𝜏4) ∑ ∆𝑃3(𝑠)

𝑡

𝑠=𝜏4𝑙>3

], 

 

(13) 

𝑁4(𝑡) = [𝑚4 + [𝑚3 + [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)]𝐹3(𝑡)]𝐹4(𝑡), 
(14) 

where 𝐹𝑖(𝑡) was given in (4). Further, equations (7) and (8) are included in the model in order to control 

for potential endogeneity as it is discussed in the context of the simplified illustrative model. Please note 

that equations (7) and (8) can be applied to a general model without an adjustment. 
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 While it is beyond the purpose of this paper, we also point out that our model allows us to 

distinguish between platform switching (from 𝑖 to 𝑖 + 1)  and platform leapfrogging (adopters who would 

have got platform 𝑖 in the absence of any newer generation but who, when facing multiple available options 

that co-exist in the market, choose a platform 𝑘 > 𝑖). Jiang and Jain (2012) explain how to differentiate 

between switching and leapfrogging by using multipliers6, while keeping intact the underlying structure of 

the Generalized Norton Bass model with respect to the adoption of each generation. Similar to their 

approach, in our model, the new adoption and migration terms (combined as first term in equations 11-14) 

are not lagged in terms of time, which allows leapfrogging to be accounted for. Among people who are 

considering adopting platform 𝑖 at time instant 𝑡, some of them will be instantaneously drawn to newer 

platforms (if they exist in the market) based on how popular the latter are by that moment.  We explain in 

detail in Appendix C how this can be conceptualized but omit this discussion here for brevity. 

5.2. Model Estimation 

We estimate a system of 11 simultaneous equations (equations (11) – (14) along with correspondents for 

(7) and (8) in the context of 4 generations) using non-linear system Generalized Method of Moments 

(GMM). We chose this method because it allows us to control for serial correlation in the error terms and 

heteroscedasticity of unknown forms.7  

 The GMM estimation requires instruments. We implemented our estimation using SAS 9.3. By 

default, in SAS, a constant term is added as instrument. In addition, we include the lags of the platform age 

for each generation platform. Arguably, the release of a new platform depends a lot on the ability of handset 

manufacturers to produce devices that support the new technology at reasonable prices, R&D efforts, the 

available infrastructure (towers), etc. As such, we believe that while the release of a new platform (and its 

age over time) influences platform adoption, this is not the case in the reverse direction. We use the lags of 

the platform age parameters as instruments for the platform ages. 

                                                           
6 Danaher et al. (2001) also use multipliers to account for leapfrogging in multi-generational diffusion. 
7  The heteroscedasticity and autocorrelation consistent (HAC) covariance matrix and corresponding parameter 

estimates and standard errors are computed using the approach proposed by Newey and West (1987) using the Parzen 

density kernel. Comprehensive explorations of GMM methods can be found in Hall (2005) and Wooldridge (2010).  
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 We also include two instruments representing the one-period lags of cumulative service (e.g., app) 

sales (monetary value) over all platforms of the other two competing wireless carriers in the market as 

instruments.8 We adjust sales to real values (at April 2000 base) using the consumer price index. In general, 

wireless carriers in this market charge service fees (for the sale of the service) and traffic fees per use of the 

service separately. A consumer who purchases (downloads) a service (accessible usually via an app) pays 

the price for the service first, and, based on packets she uses to download the service to her handset, she 

pays traffic fees. In addition, she may pay for traffic associated with using the service. Some services are 

sold for free and a heavier-traffic service is not necessarily more expensive. As such, for a given carrier, 

service sales are likely associated with the number of adopters of these carriers but not traffic pattern. We 

assume that the overall demand for services may be correlated between carriers and may be driven by 

consumer tastes and trends. Thus, the demand for paid services (proxied by sales) at the competitors’ end 

may be correlated with the demand for paid services at the firm that is the subject of our study, which, in 

turn, may be correlated with the overall installed base at the latter firm (across all platforms) but not 

necessarily with traffic volume (for the above mentioned reasons). To further ensure that traffic volume 

does not affect service sales, we take the lag of service sales as an instrument.  

 In addition, we include the lags of the three sums of average price differences for handsets over 

time (1𝑡≥𝜏𝑖+1
⋅ ∑ ∆𝑃𝑖(𝑠)𝑡−1

𝑠=𝜏𝑖+1
 with 𝑖 ≥ 1) as instruments for the sums of price differences in equation (6). 

The market for handset manufacturers is highly competitive and there are many devices compatible with 

each carrier platform. As such, the price of a handset device is not necessarily related to the performance 

of that device in the market. Moreover, we consider the average price of handsets rather than any particular 

handset price. Thus, we assume that these sums of price differences are to some degree exogenous to the 

model. Nevertheless, to further control for endogeneity, we use the lags of these variables as instruments.   

                                                           
8 During the period of this study, in the respective Asian country that we considered, precisely three wireless carriers 

(including the one that we study) provide mobile Internet services. We collected the monthly revenue from mobile 

Internet services for the two competing carriers from their websites.  
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 Last, we consider five more instruments: broadband Internet penetration, consumer expenditure on 

the telecom sector, the number of employees in the information and communication technology (ICT) 

industry, ICT production, and the total eCommerce transactions. These instruments are exogenous to the 

model. Broadband Internet penetration makes people more open to services and information being delivered 

over the Internet influencing the adoption of mobile Internet platforms but not impacting directly the traffic 

volume. The demand for the mobile Internet platforms is also impacted by ICT industry growth, captured 

by ICT production as well as R&D and service level (no. employees in the ICT industry). On the other 

hand, consumer expenditure on the telecom sector and total eCommerce transactions capture overall 

consumption patterns and, as such, may be correlated with the traffic.  

Table 4 shows the parameter estimates, model fit, and Hansen’s J Statistic. 9 The adjusted R-squares 

are noticeably high and the insignificant Hansen’s J statistic suggests that the instruments are valid. In the 

following sections, we discuss the estimation results regarding the diffusion parameters (market potential, 

innovation and imitation effects), indirect network effects, forward effects of backward compatibility, and 

backward effects of backward compatibility. 

 

 

Table 4. Parameter estimates and model fit  

  Estimates Std. Err. Significance 

Market potential  𝑚1 7.3527 0.2651 *** 

 𝑚2 1.7125 0.2747 *** 

 𝑚3 0.0025 0.1682  

 𝑚4 0.5779 0.1151 *** 

Innovation effect 𝑧1 0.0061 0.0008 *** 

 𝑧2 0.0047 0.0005 *** 

 𝑧3 0.0051 0.0004 *** 

 𝑧4 0.0003 0.0001 *** 

Imitation effect 𝑞1 0.1040 0.0069 *** 

(Direct network effect) 𝑞2 0.0947 0.0014 *** 

 𝑞3 0.0676 0.0013 *** 

 𝑞4 0.0362 0.0040 *** 

                                                           
9 For the estimation we used normalized values of 𝑁𝑖, 𝑇𝑟𝑗, 𝑇𝑟𝑖𝑗, and 𝑝𝑖 . We divided 𝑁𝑖 and 𝑆𝑖𝑗  by 106, 𝑇𝑟𝑗 by 109, and 

𝑝𝑖  by 100. 𝑇𝑟𝑖𝑗 is estimated using normalized 𝑇𝑟𝑗 and 𝑆𝑖𝑗  as it is discussed in Section 4.3. 
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Indirect network effect 𝛽1 37.1988 2.4667 *** 

 𝛽2 9.2535 1.6733 *** 

 𝛽3 42.9961 4.5564 *** 

 𝛽4 17.5798 2.6221 *** 

FEBC 𝛾2 4.9752 0.6132 *** 

 𝛾3 0.2839 1.0512  

 𝛾4 4.4954 5.0604  

BEBC 𝛼1 0.0029 1.9E-05 *** 

(Backward-compatibility-induced lease on life) 𝛼2 1.7E-5 0.0002  

 𝛼3 0.0023 0.0013 * 

Price-difference-induced lease on life  𝜁1 0.0247 0.0094 ** 

 𝜁2 0.6623 0.0622 *** 

 𝜁3 0.0030 0.0109  

Time control on price effect 𝜂 0.1881 0.0156 *** 

Other parameters 𝑎1 0.1079 1.7E-05 *** 

  𝑎2  0.0706 1.4E-05 *** 

 𝑎3 0.0383 8.0E-06 *** 

 𝑎4 8.2471 0.0063 *** 

 𝑏2 0.5070 0.0002 *** 

 𝑏3 0.4845 0.0001 *** 

 𝑏4 0.5978 0.0001 *** 

Adj. R-Square 𝑁1 0.9960 

 𝑁2 0.9974 

 𝑁3 0.9980 

 𝑁4 0.9762 

 𝑇𝑟11 0.9568 

 𝑇𝑟22 0.9423 

 𝑇𝑟33 0.9918 

 𝑇𝑟44 0.9620 

 𝛴𝑇𝑟𝑖1 0.9363 

 𝛴𝑇𝑟𝑖2 0.9848 

 𝛴𝑇𝑟𝑖3 0.9984 

Number of observations  92 

Number of instruments  15 

Hansen’s J statistic  52.61 

Degree of freedom  132 

P-value  1.0000 

Note: *** p<0.01; ** p<0.05; * p<0.1. 
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5.3. Diffusion Parameters and Indirect Network Effects  

The market potential of platform 1 (𝑚1) is 7.35 million and it is increased by 1.71 million for platform 2 

(𝑚2) and by 0.58 million for platform 4 (𝑚4). 𝑚3 is relatively small and not significant, which suggests 

that there is no significant increase in the market potential for platform 3. This is consistent with the 

observed action of the wireless carrier. Platform 3 was launched only four months after platform 2 and the 

difference between platforms 2 and 3 in terms of functionality and features was marginal (see Table 1). 

All the estimates for the coefficients of innovation (𝑧𝑖 ) and imitation (𝑞𝑖 ) are positive and 

significant, as expected. Similarly, all the estimates for the indirect network effect coefficients (𝛽𝑖) are also 

positive and significant, confirming that the value of a platform, and thereby, the number of adopters of a 

platform increase as the percent change in traffic volume of its supporting services increases. While the 

indirect network effect is relatively strong for generation 1 (𝛽1= 37.1988) and generation 3 services (𝛽3= 

42.9961), it is relatively weak for generation 2 (𝛽2= 9.2535) and generation 4 services (𝛽4= 17.5798). This 

result is consistent with the service offerings introduced for each platform. While generation 3 services 

(e.g., multimedia messaging service) and some portion of generation 1 services (e.g., short-text-based 

instant messengers) require extensive communication between users, a big portion of generation 2 services 

(e.g., single-player mobile games, banking, and stock trading) and generation 4 services (e.g., live TV and 

video on demand) require relatively little communication between users. This suggests that the services that 

require more communication between users induce stronger indirect network effects on the diffusion rate 

of a platform compared to other services that require less communication between users. 

5.4. FEBC 

While 𝛾2 (= 4.9752) is significant, 𝛾3 and 𝛾4 are not. That is, via backward compatibility, generation 1 

services add significant value to platform 2 yet consumption of earlier generation services on platforms 3 

and 4 does not impact their adoption in a significant way. Given that the indirect network effect of 

generation 2 services (𝛽2) is relatively weaker than that of other service generations, this result suggests 

that backward compatibility carries over the value of the earlier generation services (intergenerational 
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services) to the new generation platform if the indirect network effect of same-generation services is not 

sufficiently strong. If the indirect network effect of same-generation services is sufficiently strong then the 

additional value that the intergenerational services provide to a new generation platform is likely to be 

marginal and not significant. 

5.5. BEBC 

As discussed in Section 3, there are two components of lease on life: backward-compatibility-induced and 

price-induced. Controlling for the impact of the price difference between two successive generations of 

handsets (which is statistically significant for between platforms 1 and 2) allows us to isolate the backward-

compatibility-induced lease on life, which is the BEBC. The major finding of this study is the confirmation 

that BEBC is significant for platform 1 (𝛼1= 0.0029) and platform 3 (𝛼3= 0.0023). For platform 2, the effect 

is not significant. Paired with the relatively weaker indirect network effect for generation 2 services (𝛽2), 

this indicates that generation 2 services (whether consumed on platform 2 or newer platforms) may be 

inducing to a lower degree inter-user communication compared to other service generations and, as such, 

may provide a smaller-magnitude added incentive for users to join platform 2.  

 The lack of significance of the price-induced lease on life between platforms 3 and 4 indicates that 

the price difference alone is not enough to dissuade users from platform 4. The substantial upgrades (e.g., 

catering to faster data transfer technologies, better screen resolution, and more mainstream integration of 

cameras with video capabilities in the handsets) that platform 4 provides along with backward compatibility 

in fact separate the market. While some users find it worth to pay a premium for these upgrades, some other 

users do not. Backward compatibility (i.e., the platform 4 users’ consumption of generation 3 services) 

induces this latter user group to choose platform 3.  

 

6. The Economic Effects of Backward Compatibility and Managerial Insights  

In this section, we focus on the economic impact of backward compatibility (i.e., intergenerational nature 

of services) in the platform market. In particular, in Sections 6.2 and 6.3, we perform a sensitivity analysis 

of both BEBC and FEBC by simulating adoption scenarios when 𝛼1 or 𝛾2 change, while keeping all other 
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parameters as derived in Table 4 (with the statistically insignificant terms normalized to 0). In order to 

better highlight the impact of backward compatibility on adoption, we focus on platform 1. In Sections 6.4 

and 6.5, we extend this analysis, considering the overall impact of backward compatibility (both BEBC and 

FEBC) on adoption and revenue. 

6.1.  Description of the Adoption Simulation 

Because we are dealing with a system of simultaneous nonlinear equations for traffic and adoption, teasing 

out the overall magnitude of the effects of backward compatibility (BEBC and FEBC) on adoption is a very 

involved process. Adoption depends on traffic, traffic in turn depends on adoption, and platform generations 

are inter-related via the consumption of services due to backward compatibility. As such, a change in one 

parameter has a very complex ripple effect on how platform adoption and service consumption would 

unfold in the future for each generation. 

To get a measure of these effects, we did the following. First, we simulated the benchmark adoption 

trajectories using exactly the parameter estimates in Table 4. Then we simulated what happens if we change 

𝛼1 (or 𝛾2) by making them either 0 or double the value in Table 4. The impact of the changes on the adoption 

of platform 1 is illustrated in Figure 4. We estimated adoption and traffic progressively, one period at a 

time as illustrated below: 

 At time 𝑡 = 1, we only have platform 1 and generation 1 services. As such, the only unknown 

values to simulate are 𝑁1(1) and 𝑇𝑟11(1). There are no lease on life, FEBC, or migration. We 

substitute equation (7) into the reduced form equation (11), basically substituting traffic into 

𝐹1(1) in equation (4). Then equation (11) becomes a reduced-form non-linear equation in 

𝑁1(1) which we solve. Then, we construct 𝑇𝑟11(1) from equation (7). 

 At every time period 𝑡 ≥ 2, we take the simulated traffic and adoption from all past periods. 

Subsequently, we fit them into equations (8) and (9) for all platform generations. We then 

obtain a set of equations where traffic at time 𝑡 depends on past simulated numerical values of 

platform adoption and traffic (for periods 1, 2, …, 𝑡 − 1) as well as the yet-unknown install 
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base values 𝑁1(𝑡)-𝑁4(𝑡). We substitute these traffic parameterizations into equations (11-14). 

We end up with a system of 4 non-linear equations with 4 unknowns (𝑁1(𝑡)-𝑁4(𝑡)). We finally 

solve this system and compute simulated installed base values for each platform at time 𝑡. From 

there, using equations (7) and (8), we construct simulated traffic for each service at time 𝑡. 

Then we move to the next time period, all the way until we reach the end of the time window 

of our simulation. 

In order to isolate the impact of backward compatibility from other random or unobserved shocks 

in consumer behavior, we measure effects with respect to the simulated benchmark curve instead of real 

adoption (solid line in Figure 4). This simulated adoption for platform 1 is very similar to the real one (see 

Figure 1.a). Note that in Figure 4 we only report simulated 𝑁1 in order to keep the figure simple – we point 

out that these simulated curves for 𝑁1 were derived together with the simulated curves for 𝑁2-𝑁4 (which 

are just omitted).  

    
 
 

Figure 4. (a) BEBC sensitivity analysis. All parameter values except 𝛼1 are as in Table 4. All simulated 

curves are derived as described in Section 6.1. (b) FEBC sensitivity analysis. All parameter values except 

𝛾2  are as in Table 4. In both panels, the benchmark curve is simulated using all values (including 𝛼1 and 

𝛾2) from Table 4.  
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6.2. Market Impact of Forward Effect of Backward Compatibility (FEBC) 

Intergenerational services (via backward compatibility) motivate (i) more potential new (first-time) 

adopters to choose a newer generation platform earlier and (ii) more existing and potential adopters of an 

earlier generation platform to migrate to the new generation platform faster. A higher 𝛾2 translates into a 

faster adoption of platform 2 (as can be seen from Appendix A), which, in turn, accelerates the migration 

away from platform 1. Compared to the benchmark scenario, if there was no FEBC (𝛾2 = 0), within one 

year after platform 2 was launched (by the end of December 2002), an additional 0.91 million consumers 

would have chosen to adopt or continue to use platform 1 (a 17.86% increase). On the other hand, if the 

FEBC was twice as strong (𝛾2 twice the benchmark value), then the installed base for platform 1 would 

have decreased by 1.21 million customers, who would have migrated to future generations (a 52.3% 

decrease).  

We point out that FEBC is stronger early on after the introduction of a subsequent platform, because 

at that stage there is a considerably-sized pool of potential migrators (from earlier generations) or new 

adopters. Thus, accelerating adoption of newer generations has a strong impact on the older generation. As 

time passes, this pool decreases in size and the impact of FEBC diminishes. As can be seen from panel (b) 

of Figure 4, eventually (6 years after the release of platform 2), the impact of FEBC on platform 1 adoption 

is negligible as its installed base would have reached that point pretty much with or without it. Many users 

would have migrated gradually based on the attractiveness of newer platforms alone (following the pattern 

in the original Norton and Bass model). Nevertheless, faster migration to future generations will alter the 

pattern of services consumption, significantly affecting the net present value of the revenue stream.  

6.3. Market Impact of Backward Effect of Backward Compatibility (BEBC) 

The consumption of intergenerational services on newer platforms via backward compatibility prolongs the 

lifespan of earlier generation platforms (platforms 1 and 3). On average, per time period, every 1 million 

packets of generation 1 services consumed on platforms 2, 3, or 4, attracted 2.9 additional adopters to 
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platform 1. Similarly, per time period, every 1 million packets of generation 3 services consumed on 

platform 4 attracted 2.3 additional adopters to platform 3.10 

 By December 2007, via BEBC, intergenerational services had allowed platform 1 to gain 0.67 

million additional adopters. Compared to when the platform reached its peak installed base, this represents 

11% recovery of the consumer base. Stronger BEBC leads to even higher adoption of platform 1 as can be 

seen from Figure 4 (a). This illustrates the impact of the BEBC on enhancing the value and extending the 

useful life of an older generation platform.  

 

6.4. The Combined Impact of Backward Compatibility 

For illustration purposes, we consider in more depth the impact of the FEBC and BEBC on the lifespan and 

overall adoption of various platforms. Note that the impact of FEBC and BEBC cannot be easily compared 

in the benchmark case when both effects are significant (in the case of platform 1). Once one effect is 

removed, the adoption unfolds in a different way which affects the magnitude of the other effect as well. In 

Figure 4, we quantified one effect at a time, simulating again all adoption paths over time when one 

parameter was changed. This allowed us to see what would be different if one of the effects were not 

present. As we saw in Figure 4, FEBC is strong earlier in the adoption, while BEBC tends to be strong later 

in the adoption of the product. FEBC represents accelerated adoption and migration and its overall impact 

is significant if there are many potential customers that can still migrate and many new customers that did 

not adopt yet. BEBC on the other hand gets stronger when there is a lot of consumption of services of a 

particular generation on newer platforms, which happens once there number of adopters of newer platforms 

grows significantly.  

 The above discussion suggests that FEBC will dominate BEBC for platform 1 in the beginning 

(shortly after the release of platform 2) but the trend might reverse later on. To actually see the net effect 

                                                           
10 An average Apps/contents size of a generation 1 service 1 is 100 – 150 packets, and hence, 1 million packets of 

service 1 consumption is equivalent to 6,500 – 10,000 Apps/contents downloaded. The traffic of generation 3 services 

consists mainly of multimedia messages (MMS) sent and received. Our data shows that the average size of one MMS 

message during the time that we study was 61 packets; hence, 1 million packets of generation 3 services consumption 

is equivalent to about 16,000 MMS messages sent or received. 
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of backward compatibility and get a better sense of how both effects simultaneously impact adoption, we 

compare the benchmark simulated case with a simulated scenario without any backward compatibility 

effects (no BEBC or FEBC – all 𝛼𝑖 and 𝛾𝑗 equal to 0). The simulated adoption paths are included in Figure 

5. We look in particular at the adoption of platform 1, where both effects were significant. Indeed, compared 

to the benchmark case, as mentioned before, in the absence of any backward compatibility effects, the 

adoption of platform 1 is stronger immediately following the release of platform 2, suggesting that in the 

beginning FEBC is the dominant of the two effects. However, with time, the migration induced by FEBC 

dwindles as there are fewer remaining consumers of platform 1. At the same time we see more adoption of 

platforms 3 and 4. Consumers with newer handset platforms consumer on average more of generation 1 

services and, with time, the overall consumption of generation 1 services increases, as can be seen from 

Figure 1(b). This helps BEBC become stronger over time, and we see that this effect dominates during 

2006-2007, with the benchmark simulated curve riding above the simulated curve without backward 

compatibility. 

 

Figure 5.  Adoption curves 𝑁𝑖
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 with 𝑖 ∈ {1,2,3,4} are simulated using parameter values as in 

Table 4. Adoption curves 𝑁𝑖
𝑛𝑜 𝐵𝐶 with 𝑖 ∈ {1,2,3,4} are simulated in the absence of any backward 

compatibility effects (no BEBC and no FEBC, i.e., 𝛼1 =  𝛼3 =  𝛾2 = 0). 
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  We also note that the other adoption curves shift. Note that the impact of removing 𝛼3 is less visible 

(BEBC on platform 3 adoption). That is due to the fact that the consumption of generation 3 services on 

newer platforms (platform 4) did not yet have a chance to get very strong by the end of 2007. Given that 

only 𝛾2 was significant before, we see adoption curves for platforms 3 and 4 shifting slightly in response 

to how platforms 1 and 2 were affected. Basically, in the absence of backward compatibility, there will be 

less migration out of platform 1, which in turn results in fewer adopters for  platforms 3 and 4 too (as these 

platforms would also benefit from migration out of older platforms). This rippling effect is almost entirely 

due to FEBC (the fact that BEBC induces additional consumers to adopt platform 1, which in turn affects 

the consumption of generation 1 services, does not have a direct impact on platforms 3 and 4 since 𝛾3 and 

𝛾4 were not significant).  

 By the end of December 2007, we can see that in the absence of backward compatibility (more 

precisely, in the absence of BEBC), platform 1 would lose almost all of its installed base. So while in the 

short run backward compatibility accelerates migration, in the long run it does extend the life of older 

platform generations.  

 

6.5. The Impact of Backward Compatibility on Revenue 

In this section, we analyze the impact of backward compatibility on the revenue from the consumption of 

services (excluding any revenue from the sales of handsets, accessories, and SMS).11 We picked the window 

between the release of platform 2 (Dec. 2001) and the last period of our sample (Dec. 2007) because this 

analysis is relevant when there are at least two platform generations in the market. We considered the 

following two scenarios: 

 Scenario A – corresponding to the benchmark case in the paper where both BEBC and FEBC exist.  

 Scenario B – in this case there is no backward compatibility (𝛼1 = 𝛼3 =  𝛾2 = 0,  and all other 

values as in Table 4 in the paper). We assume that the average percentage of platform 2 users who 

                                                           
11 We do not observe the purchase of handsets (customers can replace handsets frequently but may not change 

platform). Thus, we cannot directly compute the revenue from handsets. 
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consumer generation 1 services and generation 2 services (there can be overlap between these) 

stays consistent with the benchmark case. 

Using our dataset, for any given period 𝑡 we can compute the fraction of platform 𝑖 adopters that consume 

generation 𝑗 services as 𝜎𝑖𝑗(𝑡) =
𝑆𝑖𝑗(𝑡)

𝑁𝑖(𝑡)
.  

During the window of our extensive study (2000-2007), service revenue came from traffic fees 

(upload and download) as well as fees for particular services. For example, customers paid for an app and 

then paid an additional amount for the data traffic to download the app. To be able to estimate the revenue, 

we came up with a rough estimate for the average revenue per packet due to traffic and the average revenue 

due to the purchase of services. For simplicity, we assume that the average per-packet fee for traffic 

associated with the consumption of generation 1 services is, on average, similar to that for generation 2 

services (there are many types of traffic, including text-related, app-related, etc.). We lack the data to create 

more precise estimates that are generation specific. We compute the per-packet fee estimate during period 

𝑡 as 𝑝𝑝𝑎𝑐𝑘𝑒𝑡(𝑡) =
𝑟𝑡𝑟(𝑡)

𝑡𝑟1(𝑡)+𝑡𝑟2(𝑡)+𝑡𝑟3(𝑡)+𝑡𝑟4(𝑡)
 , where 𝑟𝑡𝑟(𝑡) is the revenue from all traffic (on all platforms) 

during period 𝑡 , and 𝑡𝑟𝑗(𝑡) = 𝑇𝑟𝑗(𝑡) − 𝑇𝑟𝑗(𝑡 − 1)  is the traffic associated with the consumption of 

generation 𝑗 services on any platform during period 𝑡. These data (𝑟𝑡𝑟(𝑡) and 𝑡𝑟𝑗(𝑡)) are available in our 

dataset.  

Last, we compute 𝑆𝐴𝑅𝑃𝑈𝑖𝑗(t), the average revenue during period 𝑡 per adopter of platform 𝑖 from 

the purchase of generation 𝑗 services (aside from any traffic fees).  To do so, we make an additional 

assumption that the percentage of the revenue from the purchase of generation 𝑗 services that originates 

from platform 𝑖 users is the same as the percentage of traffic associated with consumption of generation 𝑗 

services that originates from platform 𝑖  users (𝑡𝑟𝑖𝑗(𝑡)/𝑡𝑟𝑗(𝑡)). Then 𝑆𝐴𝑅𝑃𝑈𝑖𝑗 (t) = 
𝑡𝑟𝑖𝑗(𝑡)

𝑡𝑟𝑗(𝑡)
⋅

𝑟𝑠𝑗(𝑡)

𝑆𝑖𝑗(𝑡)
, where 

𝑟𝑠𝑗(𝑡) is the overall revenue from the purchase of generation 𝑗 services (aside from any traffic fees) during 

period 𝑡. All the data points necessary for this computation are in our dataset as well.  
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One last simplifying assumption for this exercise is to consider 𝜎𝑖𝑗(𝑡),  𝑝𝑝𝑎𝑐𝑘𝑒𝑡(𝑡), and 𝑆𝐴𝑅𝑃𝑈𝑖𝑗(t) 

exogenous to the adoption process (and we utilize them also for Scenario B). All these quantities are 

estimated using the benchmark case in the paper and the available dataset. Under each scenario 𝑍 ∈ {𝐴, 𝐵}, 

the service revenue between Dec. 2001 (after the introduction of platform 2) and Dec. 2007 is computed 

according to the following formula: 

𝑅𝑍 = ∑ [𝑝𝑝𝑎𝑐𝑘𝑒𝑡(𝑡) ∑ 𝑡𝑟𝑗
𝑍(𝑡)

4

𝑗=1

+ ∑ 𝑁𝑖
𝑍(𝑡) (∑ 𝜎𝑖𝑘(𝑡)𝑆𝐴𝑅𝑃𝑈𝑖𝑘(𝑡)

𝑖

𝑘=1

)

4

𝑖=1

]

𝐷𝑒𝑐,2007

𝑡=𝐷𝑒𝑐,2001

,      ∀ 𝑍 ∈ {𝐴, 𝐵}. 

To compute the revenue under Scenario A, we use the simulated benchmark adoption. For Scenario 

B, we simulate 𝑁𝑖
𝐵(𝑡) and 𝑡𝑟𝑗

𝐵(𝑡) as discussed in Section 6.4 in the paper.  

After performing all simulations and computations, in adjusted units, we obtain 𝑅𝐴 = 1259 and 

𝑅𝐵 = 1123. By introducing backward compatibility, the provider is able to obtain an overall increase of 

12% in revenues from the consumption of services during the explored period. While this simple exercise 

does not take into account the difference in costs incurred by the provider under the two scenarios, the 

increase in revenues alone is quite significant warranting the need for close consideration of a backward 

compatibility strategy.  

 

6.6. Additional Managerial Insights  

While backward compatibility positively impacts service revenues, its backward effect (BEBC) does extend 

the life of older platforms and the need to maintain their obsolete infrastructure (e.g., the mobile networks) 

and the distribution channels for the supporting services. Moreover, older generation handsets and 

accessories generate less profit for the firm compared to newer ones. In addition, the service revenue per 

user is usually lower for older generation platforms. A provider might find it more profitable to speed up 

the obsolescence of an old platform by discontinuing it or by removing backward compatibility once enough 

migration occurred. Perhaps in order to escape from the negative consequence of BEBC, IT platform 

providers often take drastic measures in the later phase of lifecycle, discontinuing legacy products and 

services. In January 2008, the wireless carrier that we study merged the distribution channels for generation 
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1 and 4 services into one and in early 2012 it terminated the 2G mobile network that supported the earlier 

generation platforms and services. Several other industry examples mirror this approach. Microsoft also 

recently shut down the support for probably the most popular operating system of all times, Windows XP, 

due to the continuous demand. Similarly, Sony designed PlayStation 3 (PS3), the video game console 

released in 2006, such that only the first models are 100% backward compatible with the game titles for its 

previous version console, PlayStation 2 (Reeves 2014). Subsequently, after benefitting from FEBC, the 

backward compatibility was reduced and eventually removed, which not only limited BEBC, but also 

reduced production cost.12 If backward compatibility is not strategically planned considering both forward 

and backward effects, by catering extensively to the needs of users of older technology the firm may divert 

vital resources and attention away from platform R&D and infrastructure improvement, failing to sustain 

the pace of innovation and technological disruption needed to retain competitive advantage in the market 

(Christensen 2013). Several studies in the planned obsolescence literature highlight that planned 

obsolescence is a necessary condition for the technological progress (Fishman et al. 1993) and fundamental 

to a firm’s competitive success and survival under digital business conditions (Bharadwaj et al. 2013). 

The unintended or unplanned BEBC can also cause significant tension within the ecosystem of a 

platform provider. One example in the mobile Internet domain that can illustrate such consequences of an 

unintended BEBC can be seen in the fragmentation of the Android platform. While Android is commonly 

thought of being ‘owned’ by Google, the Android platform is actually sponsored by the Open Handset 

Alliance (OHA), which includes all the main wireless providers as well as handset manufacturers. Due to 

this shared control, Android as a platform has experienced a high level of fragmentation. New generation 

handsets and high-end handsets are equipped with the latest version of Android, while older generations 

and low-end handsets are equipped with earlier versions of Android that offer fewer functionalities.13 Since 

                                                           
12 See http://www.semperthree.com/backwards-compatibility.html 
13 Google, who competes against Apple’s iOS ecosystem, has a vital interest in having as many handsets as possible 

updated to the latest generation of Android. This makes the platform more secure and perhaps more importantly, it 

reduces the effort of App developers to manage different platforms. However, handset producers and wireless 

service providers do not share that interest at the same level since an update of Android is associated with many 

testing procedures, an increase in customer service demands and very little, if any, additional revenue.   
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the vast majority of apps work on many different generations of Android, handset producers often do not 

adopt the newest version of Android and consumers often opt for handsets with earlier versions of Android. 

They do so, knowing well that they will still be able to interact, communicate, and share content with users 

that own newer generations of Android. In other words, they exploit the BEBC. As a consequence, more 

than 75 % of Android devices do not use the latest version.14 

Apple’s iOS platform can serve as a point in contrast. Since Apple is the sole provider of the 

platform, it is not burdened by considerations of other handset makers (there are none) or wireless service 

providers. Consequently, Apple has experienced problems with fragmentation to a much lesser degree. 

About two weeks into the release of iOS 8, nearly half of all devices were running the newest version of 

the operating system (Whittaler 2014). Apple clearly considers low fragmentation as an advantage; this 

makes the iOS platform more attractive to developers. Perhaps not surprisingly, Apple has been known to 

actively nudge consumers to the newest iOS platform to minimize the BEBC for earlier versions through 

automatic downloads and by blocking the ability to revert to an older version of iOS, once a newer version 

has been installed.15 

 

7. Concluding Remarks 

Nowadays, we are becoming more and more accustomed to seeing products and platforms diffusing in the 

market in a multi-generational pattern with simultaneous versions co-existing alongside each other. This 

pattern is even more visible in the context of IT platforms that are regularly enhanced to harness the 

extraordinary pace of IT innovation in the industry. We propose a novel model for the adoption dynamics 

of multi-generation IT platforms over time that allows us to investigate in previously-unexplored depth the 

impact of the intergenerational nature of complementary services (via backward compatibility) on the 

platform diffusion process. On the modeling side, we contribute to two streams of literature. On one hand, 

we complement the diffusion literature by incorporating both the indirect network effects of complementary 

                                                           
14 https://developer.android.com/about/dashboards/index.html. 
15 http://appadvice.com/appnn/2013/09/apple-is-automatically-pushing-out-ios-7-to-holdout-devices. 
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services and the migration in one model. Most prior literature focuses on either of those but not both. On 

the other hand, we also complement the subset of the diffusion literature that accounts for backward 

compatibility by investigating both forward and backward effects of backward compatibility. In contrast, 

many of the earlier models include only the forward effects of backward compatibility. Our model goes 

hand in hand with our theoretical contribution as we propose a theory on how backward compatibility, 

while affecting the speed of migration to newer generation platforms (by carrying over the value of earlier 

generation services), can also have a possibly unintended consequence by extending the life of an older 

generation platform. Our main finding in this study is the empirical confirmation, in the context of a multi-

generational mobile Internet platform, of the existence of this two-sided impact of backward compatibility 

(with respect to services) on platform adoption. As discussed in the Introduction and Section 6, this insight 

has rich managerial implications. 

 Our framework and analysis can be applied beyond mobile Internet platforms to any multi-

generational platform with complementary value-adding services where backward compatibility can be 

implemented. In this manuscript we did allude to a few other examples (operating systems, productivity 

software, video-game consoles, etc.). In all these cases, once a new platform generation was introduced, 

there was, to some degree, continued demand for the older platform when backward compatibility and 

supporting services were present. Many of these platforms may exhibit both BEBC and FEBC.  

While this analysis does not include the effect of competition (due to lack of some of the necessary 

data), we strongly believe that the competition would not change our results significantly since the mobile 

Internet platform market in the Asian country during the time period that we study was relatively stable in 

market share. There were three platform providers and the average market share of the one that we study 

during the time period 2001 – 2007 was 32.3 percent with a standard deviation of only 0.67 percent over 

the entire period. Also, note that our diffusion model as depicted in detail in equation (4) and Appendix A 

does not incorporate marketing mix variables. If marketing mix variables change at a relatively constant 



   38 

 

rate over time, the GBM model works well without specifying them (Bass et al. 1994).16 As shown in 

Section 4.4 and Appendix B.2, the prices of handsets were decaying at a relatively constant rate over time. 

Moreover, while the wireless carrier does not report the marketing expenses for each platform generation, 

it does report overall marketing expenses. Our data confirmed that the rate of change of wireless carrier’s 

overall marketing expenses over time had been approximately constant. 17  Thus, we believe that 

incorporating marketing mix variables directly in the GBM formula, while potentially slightly shifting some 

of the parameter values, would not have changed the nature of our results.  

 Our study presents several research directions in which it can be extended. With a richer dataset, 

the impact of the complementary services on adoption could be explored in more depth, controlling for the 

service variety growth over time for all platforms and service intensities of usage (number of Apps used on 

average by a user of a specific platform). One could also classify digital services by content and purpose 

and measure the lease on life effect for each class. It would be very interesting to see if lease on life is 

affected more by utilitarian consumption (e.g. mobile banking , messaging, weather reports, news) vs. more 

hedonic consumption (ringtones, online music, etc.). With individual-level adoption and consumption data 

one could potentially measure also by how much the time gap between hardware purchases (platform 

upgrades) is increased for different demographic groups in response to backward compatibility. 
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a similar fit, because the effect would be absorbed in the other constants of the model (as can be seen given the 

formulation of equation (A.1)). 
17 Using the wireless carrier’s overall marketing expenses for the time period 2001 – 2007, we estimated the following: 

𝐴𝐷(𝑡) = 𝜓 ⋅ 𝐴𝐷(𝑡 − 1), and obtained an estimate for 𝜓 of 1.19. The p-value of the estimate was 2.72E-05 and R-

square was 0.9559. The estimation results suggest that the percentage change of the overall marketing expenses over 

time were approximately constant (about 20 percent increase every year). 
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A. Derivation of Equation (4) Based on the Generalized Bass Model 

The Generalized Bass Model (GBM) introduced in Bass et al. (1994) is specified as 𝑁(𝑡) =  𝑚𝐹(𝑡) with 

𝑓(𝑡) =
𝜕𝐹(𝑡)

𝜕𝑡
= [1 − 𝐹(𝑡)] ∙ [𝑧 + 𝑞𝐹(𝑡)] ∙ 𝑥(𝑡), (A.1) 

with 𝐹(0) = 0. Through 𝑥(𝑡), one can account for various additional effects on the adoption rate 

(including the effects of marketing mix variables such as price and advertising). Let 𝑋(𝑡) = ∫ 𝑥(𝑠) 𝑑𝑠
𝑡

0
. 

Then, Bass et al. (1994) show that 

𝐹(𝑡) =
1 − 𝑒−(𝑧+𝑞)∙[𝑋(𝑡)−𝑋(0)]

1 +
𝑞

𝑧
𝑒−(𝑧+𝑞)∙[𝑋(𝑡)−𝑋(0)]

 . (A.2) 

Define 𝑡𝑟𝑖𝑖(𝑡) =
𝜕𝑇𝑟𝑖𝑖(𝑡)

𝜕𝑡
 and  𝑡𝑟𝑖(𝑡) =

𝜕𝑇𝑟𝑘(𝑡)

𝜕𝑡
 as consumption rates of services. Then, following the steps 

of the derivation on page 207 in Bass et al. (1994), if we consider 

𝑥𝑖(𝑡) = 1 + 𝛽𝑖

𝜕𝑡𝑟𝑖𝑖(𝑡) 𝜕𝑡⁄

1 + 𝑡𝑟𝑖𝑖(𝑡)
+ 𝛾𝑖

𝜕 ∑ 𝑡𝑟𝑘(𝑡)𝑘<𝑖 𝜕𝑡⁄

1 + ∑ 𝑡𝑟𝑘(𝑡)𝑘<𝑖
, (A.3) 

then we obtain 

http://dx.doi.org/10.1287/isre.2015.0615
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𝑋𝑖(𝑡) = 𝑡 + 𝛽𝑖 log[1 + 𝑡𝑟𝑖𝑖(𝑡)] + 𝛾𝑖 log [1 + ∑ 𝑡𝑟𝑘(𝑡)
𝑘<𝑖

]. (A.4) 

Considering the discrete-time approximations  𝑡𝑟𝑖𝑖(𝑡) ≈ 𝑇𝑟𝑖𝑖(𝑡) − 𝑇𝑟𝑖𝑖(𝑡 − 1)  and 𝑡𝑟𝑘(𝑡) ≈ 𝑇𝑟𝑘(𝑡) −

𝑇𝑟𝑘(𝑡 − 1), we obtain equation (4). Coefficients 𝛽𝑖 and 𝛾𝑖 represent the impact of the percent change in 

traffic (of generation 𝑖 services on platform 𝑖 devices vs. generation 𝑘 services altogether), where traffic is 

adjusted by adding one packet to ensure that the object of the log function is always greater or equal to 1. 

 

 

B. Interpolation of Missing Data 

B.1. The early time period data for 𝑵𝒊(𝒕), 𝑻𝒓𝒋(𝒕), and 𝑺𝒊𝒋(𝒕) 

The following table summarizes the available data and interpolated time period for each variable. 

Table B.1. Available data and interpolated time period for each variable 

Variable Available data Interpolated time period 

𝑁1(𝑡) Jan. 2001 - Dec. 2007 May 2000 - Dec. 2000 

𝑁2(𝑡) Dec. 2001 - Dec. 2007 None 

𝑁3(𝑡) Apr. 2002 - Dec. 2007 None 

𝑁4(𝑡) Feb. 2003 - Dec. 2007 None 

 𝑇𝑟1(𝑡) Jan. 2003 - Dec. 2007 May 2000 - Dec. 2002 

 𝑇𝑟2(𝑡) Jan. 2003 - Dec. 2007 Dec. 2001 - Dec. 2002 

 𝑇𝑟3(𝑡) Apr. 2003 - Dec. 2007 Apr. 2002 - Mar. 2003 

 𝑇𝑟4(𝑡) Apr. 2003 - Dec. 2007 Feb. & Mar. 2003 

𝑆11(𝑡) Jan. 2002 - Dec. 2007 May 2000 - Dec. 2001 

 𝑆21(𝑡),  𝑆22(𝑡) Jan. 2002 - Dec. 2007 Dec. 2001 

 𝑆31(𝑡),  𝑆32(𝑡) Jan. 2003 - Dec. 2007 Apr. 2002 - Dec. 2002 

 𝑆33(𝑡) Apr. 2003 - Dec. 2007 Apr. 2002 – Mar. 2003 

 𝑆42(𝑡),  𝑆42(𝑡),  𝑆43(𝑡),  𝑆44(𝑡) Feb. 2004 - Dec. 2007 Feb. 2003 - Jan. 2004 

 

We interpolate missing data for each variable using a polynomial trend function (i.e., 𝑌(𝑡) = ∑ 𝜆𝑘𝑡𝑘
𝑘 , 

where 𝑌(𝑡) ∈ {𝑁𝑖(𝑡), 𝑇𝑟𝑗(𝑡), 𝑆𝑖𝑗(𝑡)} ). For interpolation, we use 𝑁𝑖(𝑡) = 𝑇𝑟𝑗(𝑡) = 𝑆𝑖𝑗(𝑡) = 0  for 𝑖 ≥ 𝑗 

when 𝑡 <  𝜏𝑖 and 𝜏𝑗. For 𝑁𝑖(𝑡), 𝑇𝑟𝑖(t), and most of 𝑆𝑖𝑗(𝑡), we choose 𝑘 that gives the highest adjusted R-

square while keeping all 𝜆𝑘 significant.  
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For 𝑆31(𝑡), 𝑆32(𝑡), and 𝑆33(𝑡), given the very slow start in the adoption of platform 3 followed by 

a relatively rapid increase in adoption afterwards, polynomial approximations using all the existing data 

lead to negative estimates around introduction time. As such we employed a different approach for these 

particular sets of missing data points. We assumed that 𝑆31(𝑡), 𝑆32(𝑡), and 𝑆33(𝑡) follow an accelerating 

trajectory in the early adoption stages similar to traditional S-curve models such as the Bass model. As 

such, until the (first) inflection point, adoption usually displays a convex increasing pattern. Hence, we used 

a quadratic polynomial trend fitted on data points only up until the first inflexion point. With this approach, 

most of the estimates of missing early data points came positive. There were still 3 points that came with 

negative estimates (𝑆31(𝜏3 + 1), 𝑆33(𝜏3 + 1), and 𝑆33(𝜏3 + 2)). To generate non-negative estimates for 

these points, we used linear interpolation between 𝑆31(𝜏3) = 0 < 𝑆32(𝜏3 + 2)  and 𝑆33(𝜏3) = 0 <

𝑆33(𝜏3 + 3). We also imposed a constraint 𝑆𝑖𝑗(𝑡) ≤ 𝑁𝑖(𝑡) for all 𝑖, 𝑗 with 𝑖 ≥ 𝑗 because 𝑆𝑖𝑗(𝑡) is always a 

subset of the installed base for platform 𝑖.   

In all, across 18 main variables of our study, we interpolated 10 percent of data (167 out of 1,674 

observations). There is no clear guideline in the literature regarding the acceptable amount of missing 

observations for valid statistical inferences; however, the literature (Little and Rubin 2002, Saunders, et al. 

2006) suggests that 20 percent or less would be acceptable. 

B.2. Prices of Handsets 

We impute the missing data by employing the following strategy. It is often observed that the prices of new 

technologies decrease at a constant rate over time (Bass et al. 1994). Accordingly, using the collected data, 

we first test if there is an evidence to believe that the average handset prices of each platform generation 

also decrease at a constant rate in the context of this study by estimating the following equation 

𝑝𝑖
𝑛(𝑡) = 𝜔𝑖 ⋅ 𝑝𝑖

𝑛(𝑡 − 1), (B.1) 

 where 𝑖 ∈ {1,2,3,4} and 𝑝𝑖
𝑛(𝑡) is the average nominal price of platform 𝑖 in time period 𝑡. If 𝜔𝑖 parameters 

are estimated to be statistically significant, then it would be plausible to expect that the price pattern of 

handsets is consistent with the observed price pattern of new technologies in the literature, and thereby, 
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equation (B.5) could be used to reasonably impute the missing data. The following table reports the 

parameter estimates and model fit.  

Table B.2. Parameter estimates and model fits for the price pattern of each platform generation 

 Platform generation 

 1st

 
2nd

 
3rd

 
4th

 

𝜔𝑖 
0.9934*** 

(0.0072) 

0.9879*** 

(0.0045) 

0.9900*** 

(0.0076) 

0.9931*** 

(0.0017) 

n 22† 24 24 24 

Adj R-Sq. 0.9988 0.9995 0.9986 0.9999 

Note: *** p<0.01; ** p<0.05; * p<0.1; Approx. standard errors in parentheses; † The price of generation 1 

handset for February 2007 was unavailable. 

 

Adjusted R-squares are noticeably high and all 𝜔𝑖 parameter estimates are statistically significant at the 

0.01 percent confidence level. This result suggests that the average nominal handset prices of each platform 

generation indeed have decreased at a constant rate. Therefore, using equation (B.1), we obtain the average 

nominal handset prices of each platform generation. We then derive the real average prices of platform 𝑖 

handsets 𝑝𝑖(𝑡) by adjusting the observed and estimated nominal average handset prices using the consumer 

price index using April 2000 as base, as illustrated in the following figure. 

 
 

Figure B.1. Average handset prices, adjusted to US $.  
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C. Leapfrogging and Switching 

Several studies (Danaher et al. 2001, Jiang and Jain 2012) separate the migration into leapfrogging and 

switching by defining multipliers for each. We illustrate here how we can also achieve this separation in 

the context of our model by employing the multiplier-based approach in Jiang and Jain (2012) which retails 

the underlying diffusion structure in the Norton and Bass (1987) model intact. In our paper, the initial 

adoption and migration corresponding to the Norton and Bass (1987) model are coupled in the first terms 

in equations (11)-(14). We define platform switching as moving from being an adopter of platform 𝑖 to 

being an adopter of platform 𝑖 + 1 (existing users who upgrade to the very next generation). Different from 

switching, we say that a customer leapfrogs over platform 𝑖 if she would have got platform 𝑖 in the absence 

of any newer generation but, when facing multiple available options that co-exist in the market, chooses a 

platform 𝑘 > 𝑖. Note that each generation expands the market introducing new adopters. However, these 

are not leapfroggers as they never considered prior generations when these existed in the market. 

 Abstracting from the lease on life effect, let us consider the following notation for the instantaneous 

rates of adoption, switching, and leapfrogging (corresponding to a continuous-time version of the Norton 

and Bass model): 

 �̂�𝑖(𝑡) = 𝑚𝑖𝑓𝑖(𝑡) – the rate of adoption for platform 𝑖 at time 𝑡 due to the market expansion induced 

by this platform generation in the absence of newer generations, where  �̂�𝑖(𝑡) =
𝜕 �̂�𝑖(𝑡)

𝜕𝑡
. 

 𝑙𝑝𝑓𝑖,𝑛𝑜𝑛𝑒−𝑡𝑜−𝑘(𝑡) – the rate of leapfrogging into platform 𝑘 ≥ 2 for consumers who were not 

adopters before but had considered the product starting with platform 𝑖 < 𝑘 (i.e., being part of 𝑚𝑖). 

 𝑙𝑝𝑓𝑖−𝑡𝑜−𝑘(𝑡) – the rate of leapfrogging from being a user of platform 𝑖 (regardless of how the 

consumer ended up adopting 𝑖) directly to being a user of platform 𝑘 ≥ 𝑖 + 2, skipping all the 

generations in between. 
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 𝑠𝑖,𝑖+1(𝑡) - the rate of switching from being a user of platform 𝑖 to being a user of platform 𝑖 + 1 

(upgrading to the immediately subsequent generation) 

 𝑛𝑖𝑛𝑖(𝑡) – the consumer net inflow rate into platform 𝑖 at time 𝑡. If the net inflow is negative, that 

means the installed base of the platform is shrinking.  

All the above adoption “streams” capture customer flow rates into given platform installed bases and they 

all depend on which platform generations are in the market at a given time. Following the model in Jiang 

and Jain (2012), we detail below these rates in the context of 4 generations. 

 

i. 𝜏1 ≤ 𝑡 <  𝜏2. 

Platform 1: 

𝑛𝑖𝑛1(𝑡) =  �̂�1(𝑡), 

 �̂�1(𝑡) = 𝑚1𝑓1(𝑡). 

 

ii. 𝜏2 ≤ 𝑡 < 𝜏3. 

Platform 1:  

𝑛𝑖𝑛1(𝑡) =  �̂�1(𝑡) −  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) −  𝑠1,2(𝑡), 

 �̂�1(𝑡) = 𝑚1𝑓1(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡).   

 𝑠1,2(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡). 

Platform 2: 

𝑛𝑖𝑛2(𝑡) =  �̂�2(𝑡) +  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) +  𝑠1,2(𝑡), 

 �̂�2(𝑡) = 𝑚2𝑓2(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡).   

 𝑠1,2(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡). 
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iii. 𝜏3 ≤ 𝑡 <  𝜏4. 

Platform 1: 

𝑛𝑖𝑛1(𝑡) =  �̂�1(𝑡) − 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2 (𝑡) −  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) − 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡) − 𝑠1,2 (𝑡) 

 �̂�1(𝑡) = 𝑚1𝑓1(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2 (𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)[1 − 𝐹3(𝑡)]   

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)𝐹3(𝑡)  

 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)𝐹3(𝑡)   

 𝑠1,2 (𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)[1 − 𝐹3(𝑡)]  

Platform 2: 

𝑛𝑖𝑛2(𝑡) =  �̂�2(𝑡) +  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) +  𝑠1,2(𝑡) − 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) − 𝑠2,3(𝑡), 

 �̂�2(𝑡) = 𝑚2𝑓2(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)[1 − 𝐹3(𝑡)]   

 𝑠1,2(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)[1 − 𝐹3(𝑡)]  

 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚2𝑓2(𝑡)𝐹3(𝑡) 

 𝑠2,3(𝑡) = [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)𝑓3(𝑡) 

Platform 3: 

𝑛𝑖𝑛3(𝑡) =  �̂�3(𝑡) +  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) +  𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) + 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡) +  𝑠2,3(𝑡) 

 �̂�3(𝑡) = 𝑚3𝑓3(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)𝐹3(𝑡)  

 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚2𝑓2(𝑡)𝐹3(𝑡) 

 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)𝐹3(𝑡)  

 𝑠2,3(𝑡) = [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)𝑓3(𝑡) 

iv. 𝜏4 ≤ 𝑡. 

Platform 1: 
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𝑛𝑖𝑛1(𝑡) =  �̂�1(𝑡) − 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2 (𝑡) −  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) − 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) − 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡)

− 𝑙𝑝𝑓1−𝑡𝑜−4(𝑡)−𝑠1,2 (𝑡) 

 �̂�1(𝑡) = 𝑚1𝑓1(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2 (𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)[1 − 𝐹3(𝑡)]   

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)𝐹3(𝑡)[1 − 𝐹4(𝑡)]  

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)𝐹3(𝑡)𝐹4(𝑡) 

 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)𝐹3(𝑡)[1 − 𝐹4(𝑡)] 

 𝑙𝑝𝑓1−𝑡𝑜−4(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)𝐹3(𝑡)𝐹4(𝑡)   

 𝑠1,2 (𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)[1 − 𝐹3(𝑡)]  

Platform 2: 

𝑛𝑖𝑛2(𝑡) =  �̂�2(𝑡) +  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) +  𝑠1,2(𝑡) − 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡)

− 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) − 𝑙𝑝𝑓2−𝑡𝑜−4(𝑡) − 𝑠2,3(𝑡), 

 �̂�2(𝑡) = 𝑚2𝑓2(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−2(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)[1 − 𝐹3(𝑡)]   

 𝑠1,2(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)[1 − 𝐹3(𝑡)]  

 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚2𝑓2(𝑡)𝐹3(𝑡)[1 − 𝐹4(𝑡)] 

 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) =  𝑚2𝑓2(𝑡)𝐹3(𝑡)𝐹4(𝑡)  

 𝑙𝑝𝑓2−𝑡𝑜−4(𝑡) =  [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)𝑓3(𝑡)𝐹4(𝑡) 

 𝑠2,3(𝑡) = [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)𝑓3(𝑡)[1 − 𝐹4(𝑡)] 

Platform 3: 

𝑛𝑖𝑛3(𝑡) =  �̂�3(𝑡) +  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) +  𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) + 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡)  +

 𝑠2,3(𝑡)  −  𝑙𝑝𝑓3,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) −  𝑠3,4(𝑡)  

 �̂�3(𝑡) = 𝑚3𝑓3(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)𝐹3(𝑡)[1 − 𝐹4(𝑡)]  

 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−3(𝑡) = 𝑚2𝑓2(𝑡)𝐹3(𝑡)[1 − 𝐹4(𝑡)] 
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 𝑙𝑝𝑓1−𝑡𝑜−3(𝑡) = 𝑚1𝐹1(𝑡)𝑓2(𝑡)𝐹3(𝑡)[1 − 𝐹4(𝑡)]  

 𝑠2,3(𝑡) = [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)𝑓3(𝑡)[1 − 𝐹4(𝑡)] 

 𝑙𝑝𝑓3,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) = 𝑚3𝑓3(𝑡)𝐹4(𝑡) 

 𝑠3,4(𝑡) = [𝑚3 +  [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)]𝐹3(𝑡)𝑓4(𝑡) 

Platform 4: 

𝑛𝑖𝑛3(𝑡) =  �̂�4(𝑡) +  𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) +  𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) + 𝑙𝑝𝑓3,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡)

+  𝑙𝑝𝑓1−𝑡𝑜−4(𝑡)  +  𝑙𝑝𝑓2−𝑡𝑜−4(𝑡) +  𝑠3,4(𝑡) 

 �̂�4(𝑡) = 𝑚4𝑓4(𝑡). 

 𝑙𝑝𝑓1,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) = 𝑚1𝑓1(𝑡)𝐹2(𝑡)𝐹3(𝑡)𝐹4(𝑡) 

 𝑙𝑝𝑓2,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) =  𝑚2𝑓2(𝑡)𝐹3(𝑡)𝐹4(𝑡)  

 𝑙𝑝𝑓3,𝑛𝑜𝑛𝑒−𝑡𝑜−4(𝑡) = 𝑚3𝑓3(𝑡)𝐹4(𝑡) 

 𝑙𝑝𝑓1−𝑡𝑜−4(𝑡) =  𝑚1𝐹1(𝑡)𝑓2(𝑡)𝐹3(𝑡)𝐹4(𝑡) 

 𝑙𝑝𝑓2−𝑡𝑜−4(𝑡) =  [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)𝑓3(𝑡)𝐹4(𝑡) 

 𝑠3,4(𝑡) = [𝑚3 +  [𝑚2 + 𝑚1𝐹1(𝑡)]𝐹2(𝑡)]𝐹3(𝑡)𝑓4(𝑡) 

Using the parameter estimates in Table 4, we can compute all the leapfrogging and switching rates 

above. To obtain the overall aggregate switchers or leapfroggers in one particular category over an 

interval of time, all we have to do is to integrate the particular rates over that period of time. For example, 

the overall leapfrogging from being a platform 1 adopter to being a platform 3 adopter, skipping platform 

2, computed in the interval [𝑡, 𝑇] such that 𝜏3 ≤  𝑡 < 𝑇, is given by ∫ 𝑙𝑝𝑓
𝑇

𝑡 1−𝑡𝑜−3
(𝑟)𝑑𝑟. 

 


