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Software producers are making greater use of customer error reporting to discover defects and improve the
quality of their products. We study how software development differences among producers (e.g., vary-

ing levels of process maturity) and software class and functionality differences (e.g., operating system versus
productivity software) affect how these producers coordinate software release timing and pricing to optimally
harness error reporting contributions from users. In settings where prices are fixed, we characterize the optimal
release time and demonstrate why in some cases it can actually be preferable to delay release when customer
error reporting rates increase. The manner in which a firm’s optimal release time responds to increases in soft-
ware functionality critically hinges on whether the added functionality enhances or dilutes user error reporting;
in both cases, the effect of added functionality on release timing can go in either direction, depending on both
firm and product market characteristics. For example, when processing costs are relatively large compared with
goodwill costs, firms with lower process maturity will release earlier when per-module error reporting contri-
butions become diluted and release later when these contributions become enhanced. We also examine how
a firm adapts price with changes in error reporting levels and software functionality, and finally, we provide
implications of how beta testing influences release timing.
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1. Introduction
Over the last decade, the world has achieved phe-
nomenal growth in broadband Internet penetration.
The United States rose from 4.4% penetration in
2001 to 27.7% in 2011—a sixfold increase (Organi-
sation for Economic Co-operation and Development
(OECD) 2012). The OECD also reports that, averaging
across the G7 countries, the penetration was approxi-
mately 18 times higher by the end of the decade.1 This
extensive growth in high-speed access internationally
has presented both newfound opportunities and chal-
lenges. With currently over 900 million interconnected
Internet hosts, over 2.2 billion Internet users, and

1 Globally, countries are continuing to make substantial investments
to further promote this growth and foster economic development.
As part of the American Reinvestment and Recovery Act in 2009,
the U.S. appropriated $7.2 billion toward expanding broadband
access in underserved areas, and the United Kingdom has also
made a commitment to delivering broadband into every household
by 2012 (Tryhorn 2009, Ransom 2010). Countries leading the way,
such as South Korea, already have much higher penetration and
can also offer significantly faster broadband speeds (Sutter 2010).

a projected 15 billion devices connected to Internet
protocol networks by 2015, the ease with which
businesses, individuals, and society at large can com-
municate and exchange information is unprecedented
(Cisco 2011, Internet Systems Consortium 2012, Inter-
net World Stats 2012). Notwithstanding these ben-
efits, the interconnectedness of computers and the
speed at which information disseminates across the
Internet are actively exploited by malicious individ-
uals and software designed to cause substantial eco-
nomic damages. According to RTI (2002), the annual
cost of faulty software to the U.S. economy alone
was $59.5 billion roughly a decade ago and has since
grown to an estimated $75 billion (Michaels 2008).
Hence, an ongoing challenge faced by both private
entities and the public sector is how to continue to
obtain increased value from this global interconnected
network while mitigating effects associated with soft-
ware quality.

Recently, software firms have begun to leverage con-
sumers’ connectedness to the Internet to enable their
users to contribute toward increasing the reliability
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and security of their software products. Applications
now routinely have built-in support for automatic
error reporting through which application failure
information is transmitted from users’ systems to
software firms. Microsoft’s Windows Error Report-
ing, AutoCAD’s Customer Error Reporting, Mozilla’s
Crash Reporter, and other similar implementations
all aim to harness the diverse user population’s
idiosyncratic environments and behavior to help
with software assurance (Markoff 2006). Through
these tools, software firms collect substantial input
from the user community regarding product fail-
ures in the field of operation. For example, Mozilla
gets 2.5 million crash reports per day (Thompson
2010). In many instances, software testers cannot
reproduce customer-discovered errors using identical
input because factors involving “invisible users” or
the interactions between the software and the cus-
tomer’s environment (operating system, file system,
and libraries) are the actual root cause (Whittaker
2001). Hence, error reports generated by users’ sys-
tems, which often include a snapshot of important
environment information, have a significant poten-
tial to reduce the costs of correcting bugs; these costs
can account for up to 50%–75% of software devel-
opment costs (Muthitacharoen and Saeed 2009). In a
memo to customers in October 2002, Steve Ballmer,
CEO of Microsoft, notes that “in Windows XP Service
Pack 1, error reporting enabled [Microsoft] to address
29 percent of errors involving the operating system
and applications running on it, including a large num-
ber of third-party applications. Error reporting helped
[Microsoft] to eliminate more than half of all Office XP
errors with Office XP Service Pack 2” (Ballmer 2002).

With modern software assurance strategies that
leverage users’ systems and their interconnectedness,
a software firm must carefully select product release
dates that account for several important trade-offs.
On one hand, by releasing earlier, the firm’s prod-
uct is available for a longer time in the market before
it becomes outmoded, the firm reduces its cost of
detecting and fixing software bugs as a result of
error reporting, and the firm may even enjoy com-
petitive benefits associated with being first to market
(Cohen et al. 1996). On the other hand, earlier-released
software bears a lower initial quality, which has
several effects: users incur costs associated with secu-
rity attacks and poor application performance in the
interim; users, in turn, impose goodwill costs on
the firm; and the speed at which consumers adopt
the software, i.e., the rate of diffusion, is reduced
(Keizer 2007).

These aforementioned trade-offs will be strongly
influenced by the distinct characteristics of the firm,
its product, and the corresponding market. One par-
ticularly relevant characteristic of a software firm is

Table 1 The Relationship Between the Average Number of Defects
per Thousand Lines of Code (KLOC) and an Organization’s
Level Achievement in the Capability Maturity Model

CMM CMM CMM CMM CMM
Level 1 Level 2 Level 3 Level 4 Level 5

Defects/KLOC 7.5 6.24 4.73 2.28 1.05

Source. Davis and Mullaney (2003).

its software process maturity, which is “the extent to
which a specific process is explicitly defined, man-
aged, measured, controlled, and effective” (Paulk
et al. 1993, p. 4). The federally funded Software
Engineering Institute (SEI) established a set of Capa-
bility Maturity Models (CMMs) to help organiza-
tions improve processes with an emphasis on those
related to software development. Some of these basic
models were superceded by SEI’s Capability Matu-
rity Model Integration (CMMI), but the essence is
much the same. CMMI defines five levels of matu-
rity in software-producing organizations that range
from Level 1, which is characterized by ad hoc pro-
cesses that can complete goals, to Level 5, where pro-
cesses are already rigorously defined and managed in
a quantitative way and the focus now lies on opti-
mizing them (Software Engineering Institute 2006).
One useful aspect of the CMMI is that firms at the
same level tend to be similar on other dimensions as
well. For example, Table 1 illustrates the relationship
between a firm’s software process maturity and the
quality of its software, measured in terms of defects
per thousand lines of code. This positive relation-
ship between process maturity and quality as well as
other software development characteristics has also
been established in the academic literature (see, e.g.,
Harter et al. 2000, Harter and Slaughter 2003). Hence,
by understanding how bug density interacts with
the above-mentioned trade-offs that affect software
release, we can provide broad implications on how
firms at a given level of process maturity should man-
age software adoption and even identify the value
that underlies achieving a higher level of maturity.

A second important factor that affects how a
software firm manages adoption through its release
timing and price is the amount of software function-
ality built into a product. One observation is that,
over time, an increasing amount of functionality is
being included with each new version of a given
software product. For example, Microsoft Windows
versions NT 4.0, 2000 Professional, XP Professional,
and Vista have 16, 29, 40, and 50 million lines of
code, respectively (Henry 2007, Manes 2007). Addi-
tionally, different classes of software can be correlated
with different amounts of functionality. For example,
another mainstream operating system software, Red
Hat Linux 7.1, which was released around the same
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time as Windows XP, had a comparable 30+ million
lines of code (Wheeler 2001). Popular open source
database software products PostgreSQL and MySQL
are estimated to have approximately 900,000 lines of
code each (Babcock 2008, MST 2010).2

In this paper, using an analytical model, we for-
mally examine how a software firm adjusts its release
timing and pricing in a setting where it can harness
customer error reporting. In this context, we specifi-
cally study the influence of the firm’s pricing power,
its software process maturity, and the characteristics
of its product class, as well as its relative quality
within that class on its timing and pricing decisions.

2. Literature Review
This study is directly related to the literature on opti-
mal software release timing. A vast portion of the lit-
erature studies the firm’s strategy from a maintenance
cost minimization perspective, independent of soft-
ware demand. Examples include Okumoto and Goel
(1980), Koch and Kubat (1983), Yamada and Osaki
(1987), Kimura et al. (1999), Pham and Zhang (1999),
and Zheng (2002). Several studies (see, e.g., McDaid
and Wilson 2001, Ji et al. 2005, Jiang et al. 2012) extend
this framework and incorporate opportunity costs of
lost sales due to late release through a price-invariant
cost component that increases in the time to mar-
ket. More recently, Arora et al. (2006) implement a
total sales function that depends on release time and
patching levels. One common characteristic of extant
models in the literature is that the expected evolu-
tion of software adoption over time does not impact
the firm’s software release decision, and we relax this
assumption in our work. Whereas some more gen-
eral studies on innovation release (e.g., Kalish and
Lilien 1986) do account for the shape of the adop-
tion curve, we further advance our understanding
of this topic by focusing on the software industry
and its idiosyncrasies, including quality improvement
dissemination via patching, negligible reproduction
costs, and, importantly, customer error reporting.

Aiming to clarify and study the trade-off between
internal testing and debugging costs on one hand,
and revenues, goodwill penalties, and consumer error
reporting benefits on the other, we complement the
existing literature on optimal software release model-
ing by employing a continuous-time parameterization
of software demand and incorporating quality and
network effects on adoption. The shape of the adop-
tion curve impacts a firm’s profit in multiple ways.
First, it directly affects revenues. Second, it impacts
consumers’ aggregate contribution to bug detection.

2 The two studies use different metrics; for MySQL, a measure of
the effective lines of source code was utilized.

Many past studies on software release examine a
setting where the firm ceases to test the software
for flaws after bringing it to market and implicitly
incorporate consumers’ participation to error report-
ing by assuming a bug fixing cost associated with
flaws discovered in the field of operation, which, in
the absence of postrelease in-house detection efforts,
are reported only by users. Recently, Ji et al. (2005)
and Jiang et al. (2012) explicitly incorporate consumer
error reporting, and we extend their work by fur-
ther incorporating the effect of software demand on
this dimension. Specifically, we allow the consumers’
contribution to the bug detection rate to grow with
the installed base and parameterize the actual error
reporting rate to account for users opting out of crash
reporting because of privacy and other concerns.

Third, there is an explicit link between the cost
to firms of addressing postrelease software bugs and
how the network size evolves over time, which is
another important contribution of our work. Prior
models typically consider these costs as being linear
in the number of bugs that are detected after mar-
ket introduction. Some studies account for it more
abstractly as a function of time (Shantikumar and
Tufekci 1983), reliability (Pham and Zhang 1999), or
the number of remaining flaws (Ji et al. 2005). Ehrlich
et al. (1993) also introduce a cost to the software
firm resulting from consumer use that depends on the
software failure intensity at release, the usage period,
and an exogenous demand that is independent of the
model parameters. Beyond postrelease bug process-
ing and fixing costs, we further account for the fact
that the firm also incurs goodwill costs at a rate that is
proportional to both the current bug count and net-
work size. In this manner, we are able to capture the
fact that an error that is detected early after release,
when there are few adopters, is likely to be less costly
to the firm compared with an error that resides in the
code longer and generates greater damage to a larger
consumer base. Over time, the network size increases
and the number of resident errors decreases, generat-
ing an important dynamic with the goodwill cost rate
and how the firm controls adoption.

3. The General Model
A firm offers a software product licensed for per-
petual use and supports it until discontinuation
time T > 0.3 Beyond T , consumers who have already

3 In the rapidly evolving software industry, this discontinuation
time is often exogenously determined by the rate of technological
advance. In other cases, because of future major releases of a prod-
uct that are developed in parallel, the discontinuation time can be
the result of planned functional obsolescence. For simplicity, in our
model, we take T as fixed and focus attention on how community
contributions (error reporting) toward quality improvement affect
a software producer’s release timing and pricing.
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purchased may continue to use the software, which
still has value, but the firm ceases all quality
improvement efforts.4 The software product’s extent
of features and overall complexity is related to its soft-
ware class, ranging from enterprise software to simple
end-user applications. We denote the software prod-
uct’s complexity as Y > 0, which can be interpreted
as the size of the product’s codebase or its num-
ber of basic units of code (e.g., modules, functions).
Stemming from the CMMI and its implementation in
industry, a standard measure of software quality is
the inverse of defect density, i.e., defects per thousand
lines of code (Weszka 2003, Siemens Information Sys-
tems Ltd. 2003). We assume that the software product
has B̄ bugs or defects at the earliest moment it can
feasibly be released, denoted as t = 0, which is often
considered to be the beginning of the release candi-
date stage, where features are no longer being added
and the focus turns to final testing and debugging
(Petreley 1998). Therefore, using this standard mea-
sure, initial software quality is given by Y/B̄.5

We denote the software process maturity of the
firm as � ∈ 60117. Recent empirical studies (Harter
et al. 2000, Krishnan et al. 2000, Harter and Slaughter
2003, Harter et al. 2012) document a positive rela-
tionship between process maturity and software qual-
ity and further identify in which circumstances the
effect of maturity is relatively even greater. Following
both industry evidence and convention in the liter-
ature, we also assume this relationship, B̄/Y = �4�5,
exists, where we use defect density for convenience
and �4�5 has the following properties: ¡�/¡� < 0,
�405= �̄ <�, and �415 = 0. Taken together, firms
with more mature software development processes
(higher �) arrive at the release candidate stage with
lower bug density (i.e., B̄/Y is decreasing in �). Both
the product’s life cycle, 0 < T < �, and the market
potential, 0 <m4Y 5≤m̄ <�, are finite, the latter being
weakly increasing in the complexity or level of func-
tionality provided by the software.

Let D4t5 denote the number of unique bugs de-
tected and reported by time t ≥ 0, with the initial
condition D405 = D̄ < B̄. Analogous to the relation-
ship between B̄ and Y , we assume that previously
detected bugs satisfy D̄ = ��4�5Y , where 0 ≤ � < 1.
We assume that the bug detection process satisfies

4 In particular, consumers no longer impose goodwill costs on the
firm after T . In reality, consumers could still impose some goodwill
penalties on the firm after this point in time, but these costs would
be limited in comparison to those imposed as a result of poor qual-
ity due to software defects during the active life of the product.
Beyond T , most consumers have moved on to either newer versions
of the product or possibly different technologies, which further lim-
its any goodwill costs.
5 Initial bug density, the inverse of initial software quality, is
thus B̄/Y .

properties of the mean of the classic nonhomogeneous
Poisson process model for software reliability in Goel
and Okumoto (1979), whereby at any given time t,
the rate at which previously undiscovered bugs are
detected is proportional to the number remaining
in the code.6 In particular, the detection process is
given by

¡D4t5

¡t
= �4t5× 4B̄−D4t551 (1)

where �4t5 can be interpreted as the overall rate of
detection per undiscovered bug.7 Both the firm and
existing users can contribute to the bug detection pro-
cess. The firm contributes �f > 0 to the overall rate by
incurring testing effort, and any adopter who chooses
to provide quality feedback contributes �u4Y 5 ∈ 401 �̄u7.
We assume consumers use the software uniformly
over time and across functions and that their usage
varies with the software’s level of functionality Y ,
which, in turn, affects the detection rate. Because
consumer error reporting is usually optional and
some users elect not to participate because of con-
cerns over privacy and possible work disruption
(Muthitacharoen and Saeed 2009), we denote the por-
tion of users who do participate as � ∈ 40117.

Denoting the time at which the software is released
as t0, we make a simplifying assumption that the
firm ceases detection at t0 and that all contributions
to detection come from the user base going forward.
Thus, if N4t5 denotes the number of existing users at
time t, then the overall detection rate per undiscov-
ered bug is given by

�4t5=

{

�f if t < t01

�N4t5�u4Y 5 if t ≥ t00
(2)

As a result, �4t5 is time inhomogeneous and can
increase substantially after t0 due to adoption. That is,
user-supplied detection rates, �N4t5�u4Y 5, can exceed
�f as adoption increases. Analogous to the benefit of
increasing eyeballs with open source software devel-
opment to find bugs, early release strategies benefit
the firm by leveraging an increased number of testers
(Raymond 1999).

6 This assumption is widely supported and built on in other mod-
els (see, e.g., Okumoto and Goel 1980, Ehrlich et al. 1993, Pham
and Zhang 1999, Jiang et al. 2012). Although other models of bug
detection do exist, we follow the above tradition while utilizing a
deterministic variant that maintains tractability and focus; such an
approach is typical when the stochastic nature of the bug detection
process is not critical to the research questions being studied (see,
e.g., Ji et al. 2005, 2011; Arora et al. 2006).
7 This model implicitly captures bug heterogeneity with regard to
detection. Starting with B̄ bugs initially, some bugs will surface
quickly whereas others will take longer to be detected; some will
even go undetected for the entire planning horizon. Furthermore,
software complexity (Y ) affects both B̄ = �4�5Y and �4t5 through
its effect on user contributions �u4Y 5, as seen in (2).
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We denote the number of bugs still resident (either
undetected or detected but unfixed) in the code as
B4t5 with the initial condition B405 = B̄. Once a bug
is reported, it is assigned to a pool of bugs that
have been detected but not yet fixed. At time t, this
pool contains D4t5 − 4B̄ − B4t55 reported defects, and
the firm works toward addressing them by issuing
patches at a rate � per unfixed defect. Hence, the rate
of change for remaining bugs in the code is given by

¡B4t5

¡t
= −� × 4D4t5− B̄+B4t550 (3)

We implicitly capture the property that bugs are likely
to be heterogeneous in the amount of effort required
for each to be resolved (Giger et al. 2010). In par-
ticular, by the dynamics in (3), once detected, some
bugs will be patched fast, others will take longer to
be fixed, and some known flaws will not be removed
from the code prior to product discontinuation.

Drawing on the vast literature on innovation diffu-
sion sparked by Bass’s (1969) model, we parameterize
the evolution of the cumulative installed base of users
N4t5 through a continuous-time hazard rate model as
follows:

¡N4t5

¡t
= 4m4Y 5−N4t55

(

a+b
N4t5

m4Y 5
−c

B4t5

Y

)

w4p51 (4)

over t ∈ 6t01T 7, where a > 0. Adoption is influenced by
both positive network effects associated with the soft-
ware and quality effects determined by its reliability.8

The relative strength of the network effects is given
by b > 0. Similarly, we denote the extent to which
poor software reliability affects adoption as c > 0. For
example, in recent years, Microsoft’s release of Service
Pack 2 (SP2) for Windows XP was plagued by com-
patibility issues that led to a significantly slower rate
of adoption (Rooney 2004, Oswald 2005). Similarly,
when Microsoft released Vista a few years later, its
product suffered from instability and, in some cases,
slower performance than XP, which again led to slug-
gish adoption (O’Neill 2008).

Consumer price sensitivity is reflected by a mul-
tiplicative price response function w4p5 satisfying
(i) w4p5 > 0, (ii) w′4p5 < 0, (iii) limp→� pw4p5 = 0, and
(iv) w′′4p5 ≥ 0. Our choice of a multiplicatively sepa-
rable price effect is consistent with the literature on
the diffusion of innovation (see, e.g., Robinson and
Lakhani 1975, Kalish 1983, Bass et al. 1994, Krishnan
et al. 1999, Sethi and Bass 2003). The third condition
implies that for any level of functionality above a cer-
tain price point, both revenues and adoption are neg-
ligible. As an example, price response functions of the

8 Network effects are captured in various models applied to
IT products and services (see, e.g., Zhang and Seidmann 2010,
Niculescu et al. 2012, Dou et al. 2013).

form �e−p� with �1 � > 0 satisfy all assumed proper-
ties on w4 · 5.9

The firm incurs four types of costs: testing, error
report processing, bug fixing, and goodwill, which
we discuss in order. First, we assume that the firm
broadly tests the entire codebase, which is to say it
does not know a priori where the defects are located.
The firm will incur a total cost rate of CT × �f × Y ,
where CT ≥ 0, to induce a bug detection rate (result-
ing from the firm’s effort) of �f×4B̄ − D4t55 through
the testing of all Y units of the codebase. Thus, the
total testing cost is given by

TC =CT × �f ×Y × t00 (5)

Second, we assume that the firm incurs error pro-
cessing costs associated with analyzing error reports,
assessing the extent of any given defect, and assign-
ing its reparation to an appropriate development
team. Bug triaging is far less automated and relies on
developers and project managers to actually examine
reports and classify them. For example, in a recent
effort to reduce memory leaks in Firefox, Mozilla
launched an initiative called MemShrink, part of
which involves weekly bug triage meetings (Keizer
2011). User-generated reports usually vary in the
quality of information provided and may require
additional effort in terms of interpreting a report
and reproducing an error (Hooimeijer and Weimer
2007, Zimmermann et al. 2010). For these reasons,
we denote the per-report processing costs as CP1f ≥ 0
and CP1u ≥ 0, depending on whether the report orig-
inates from the firm’s testing or users’ reporting,
respectively, with CP1f <CP1u. Contemporary auto-
mated error reporting systems can help reduce the
gap between these two cost rates but do not com-
pletely eliminate it (Glerum et al. 2009). In light
of consumer protection laws and potential liability,
we assume that the firm processes all error reports
(Kennealy 2000, Cusumano 2004, Otto 2009). The total
processing cost is given by

PC =CP1f 4D4t05− D̄5+CP1u4D4T 5−D4t0550 (6)

Third, the firm incurs quality improvement costs
by allocating effort to resolve bugs that have been
reported but are still unfixed at a cost rate CF ≥ 0.
For simplicity, we assume that the firm works con-
currently on fixing all D4t5− B̄ + B4t5 defects. By (3),
some fixes are issued quickly, whereas others become
delayed. As a result, the firm can receive duplicate
error reports that must be cross-checked with the bug
tracking system at a cost CD ≥ 0 before being dis-
carded. For example, in one study’s data, researchers

9 This functional form is used by Robinson and Lakhani (1975).
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found that it can take over 20 minutes to recognize
that a bug report is a duplicate (Cavalcanti et al.
2010). While pending resolution, any detected but
unresolved bug can still be redetected (sometimes
with substantially different symptoms) at a rate �4t5,
resulting in a duplicate report cost rate of CD × �4t5×
4D4t5− B̄+B4t55. Therefore, the total bug fixing cost is
given by

FC =

∫ T

0
4CF + �4t5CD5× 4D4t5− B̄+B4t55 dt0 (7)

Finally, the firm incurs goodwill costs from expos-
ing its users to buggy software. Software crashes typi-
cally generate damage to users only when they occur.
However, not all flaws lead to crashes or system
alerts. For example, security breaches can go unde-
tected without any system interruption, and malicious
hackers can exploit security vulnerabilities repeatedly
before they are detected and patched. More broadly,
what we call “goodwill costs” can be thought of
as the cost of quality, which may even include the
cost of helping users recover from software failure.
We denote the average cost incurred per each user
and unit of time as CG × B4t5/Y , where CG ≥ 0, and
the total expected goodwill costs are given by

GC =

∫ T

t0

CG ×N4t5×
B4t5

Y
dt0 (8)

Because software is a digital good, we make the
traditional assumption that there are no capacity con-
straints and the marginal cost of reproduction is 0.
Given that our time frame starts where all func-
tionality has already been coded, development costs
are considered sunk. Revenues are generated at each
point in time when a user adopts the product; hence,
the firm’s profit can be written as

ç4t01 p5= pN4T 5− 4TC + PC + FC +GC50 (9)

Using the framework laid out in this section, we can
begin to explore how firms of varying process matu-
rity and that offer different classes of software prod-
ucts should manage adoption through release timing
and pricing.

Throughout the paper and proofs, for clarity in
exposition, we will simplify notation for B̄4�1Y 5,
D̄4�1Y 5, m4Y 5, �u4Y 5, and w4p5 by omitting the argu-
ments (i.e., using B̄, D̄, m, �u, and w, respectively)
whenever the arguments are not relevant to the dis-
cussion or analysis at hand. To avoid trivialities, we
focus on parameter regions where the firm yields
profits above a minimum, positive value. Further-
more, for simplicity, we assume no discounting, but
all of the insights presented in this paper extend to a
case with discounting.10

10 See Arora et al. (2006) and Jiang et al. (2012) for a similar assump-
tion in cases where discounting does not play a central role.

4. Managing Adoption and
Error Reporting

Prior to software release at t0, the dynamics of the
detected and resident bugs, D4t5 and B4t5, respec-
tively, can be characterized as follows. By (1) and (2),
the number of unique bugs that have been detected
by the firm by time t ∈ 601 t07, whether fixed or not, is
given by

D4t5= B̄+ 4D̄− B̄5× e−�f t0 (10)

Using (3) and (10), the number of bugs still remaining
in the software, either undetected or detected but not
yet fixed, exhibits the following trajectory over time:

B4t5=
1

� − �f
× 4�4B̄−D̄5e−�f t + 4D̄�− B̄�f 5e

−�t5 (11)

for 0 ≤ t ≤ t0.11

After software release at t0, adoption can begin, and
by (4), a necessary condition is that the hazard rate
must be positive; i.e., a ≥ cB4t05/Y . Using (11) and
the relationship between software maturity and ini-
tial bug density, this condition is equivalent to a ≥

c�4�5â4t05, where

â4t5
4

=
1

B̄4� − �f 5
× 4�4B̄− D̄5e−�f t + 4D̄� − B̄�f 5e

−�t50

Because â4t5 is decreasing and â405= 1, adoption can
commence at t = 0 if a ≥ c�4�5. Otherwise, because
limt→� â4t5 = 0, there exists a unique bound t̃ satis-
fying a = c�4�5â4t̃5 such that adoption can start pro-
vided t0 ≥ t̃. In summary, the release time must satisfy

t0 ≥ L4�5
4

=

{

0 if a≥ c�4�51

t̃ otherwise1
(12)

where L4�5 is a constraint on release time similar to
other constraints on software reliability/quality seen
in papers such as Yamada and Osaki (1987), Kimura
et al. (1999), and Zheng (2002). L4�5 is decreasing;
software firms with higher maturity can release their
products earlier.

The characterization of D4t5 and B4t5 over t ∈ 601 t07
in (10) and (11) provides initial conditions to the
dynamical system over t ∈ 6t01T 7:

¡D4t5

¡t
= �N4t5�u4Y 54B̄−D4t551

¡B4t5

¡t
= −�4D4t5−B̄+B4t551 (13)

¡N4t5

¡t
= 4m4Y 5−N4t55

(

a+b
N4t5

m4Y 5
−c

B4t5

Y

)

w4p51

11 In the remainder of this paper, without loss of generality, we
restrict attention to �f 6= �. For the special case where �f = �,
B4t5= 4B̄+ �4B̄− D̄5t5e−�t , and the subsequent analysis is similar.
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where D4t05 = B̄ + 4D̄ − B̄5e−�f t0 , B4t05 = 4�4B̄ − D̄5 ·

e−�f t0 + 4D̄� − B̄�f 5e
−�t05/4� − �f 5, and N4t05= 0.

Because of how the bug detection, fixing, and adop-
tion processes interact, the ability to fully analytically
characterize the dynamical system described in (13)
is limited, though it can be studied numerically over
the complete parameter space. We proceed analyti-
cally by focusing on a parameter regime where the
quality effect on adoption and the bug fixing rate sat-
isfy certain bounds. First, our focal regime will satisfy
c < c̄ such that the negative effect of bugs on adop-
tion is not too severe. Consistent with most software
products, users often utilize software while cognizant
of the quality issues. Adoption is typically not overly
hampered and commences, although users certainly
impose goodwill costs. Second, � > � will also be sat-
isfied in this regime such that we study cases where
bugs are worked on at a reasonable rate.12 Our model
assumes that it is mandatory for firms to process
all consumer-reported bugs and resolve them at this
rate. Overall, the parameter regime we study is often
found in practice, and maintaining focus on it will
increase clarity and analytical tractability throughout
the paper.13

4.1. Exogenous Pricing
First, we study the case where price is fixed over the
software product’s selling horizon and is determined
by the market. Let p be the price of the software for all
t ≥ t0. Examining the dynamical system in our focal
regime, the adoption path exhibits certain monotonic-
ity properties.

Lemma 1. For all t ≥ t0,
(i) N4t5 is decreasing in t0 and p.
(ii) For a given software firm’s process maturity level �,

N4t5 is increasing in Y . That is, a firm derives a stronger
cumulative adoption from releasing a higher functionality
product despite it containing a larger number of bugs.

Part (i) of Lemma 1 establishes that a delayed release
adoption path always lies below an early release adop-
tion path. As a consequence, if the firm ever chooses
to delay its release in order to increase initial qual-
ity and gain stronger initial adoption momentum, this
delayed strategy will never induce the same cumu-
lative sales volume. Part (ii) of Lemma 1 highlights
that, all else being equal, the net effect of increased

12 Our regime is consistent with Ji et al. (2011) and Jiang et al. (2012),
where identified flaws are assumed to be removed instantaneously.
13 Because of the nature of (13), c̄ and � are implicit bounds whose
existence is rigorously demonstrated in the proofs. Because any
closed-form representations of these bounds would be pages long
and lack informativeness (and not be attainable in most cases), we
numerically establish how wide the parameter region typically can
be as we discuss results in the paper. This parameter regime will
apply for all propositions.

software functionality is greater adoption, despite the
existence of more bugs in the software. Examining (4),
which governs adoption, we see that an increase in
functionality Y increases both the potential market
for the software m4Y 5 and the initial number of bugs
B̄4�1Y 5 = �4�5Y . When the negative effect of soft-
ware quality on adoption is limited, the net effect of a
larger market potential is to increase the rate of adop-
tion. Hence, a software firm with a given maturity �
can increase functionality without hurting adoption,
provided it maintains this level of capability in its
development processes. That is, more bugs certainly
get introduced, but additional functionality serves to
counterbalance them. For example, holding all else
constant, including software maturity, the above result
suggests that having both triple the functionality and
triple the bugs would still lead to greater adoption;
one could compare the adoption of Windows NT 4.0
to Windows 7, which has an estimated three times the
former product’s lines of code.

4.1.1. Release Time Bounds. Next, we study the
profit maximization problem for the firm as it selects
the optimal release time. Given a fixed price p, the
optimal release time t∗0 satisfies

t∗0 = arg max
t0∈6L4�51T 7

ç4t050

Although it is not possible to give a complete, explicit
closed-form solution to this problem, we can (i) char-
acterize informative bounds on the firm’s optimal
release time, (ii) identify conditions under which t∗0
is either at a bound or interior, and (iii) character-
ize the conditions t∗0 must satisfy when it is interior.14

Choosing a release time at a bound can often still
generate profits comparable to those obtained under
the optimal interior choice for release time, which
we will both analytically and numerically demon-
strate. For convenience, we define G14�5

4

= 4a + b5/
4b+ ae4a+b54T−�5w5, G24�5

4

= 4a+ b54T −�5w/2, and

g4�5
4

= −aG2
1e

4a+b54T−�5w+��fmpwY��u −CT e
��f Y 2��f �u

+
(

CG + 4CP1u −CP1f 5Y��u
)

× 4B̄− D̄5�f

+ 4CG +CP1uY��u5

×
G

m��u/4bw5
1 4B̄− D̄5e4a+b54T+�5w/2+am4T−�5��u/b

ae4a+b5Tw + be4a+b5�w

×
(

−4a+ b5�f cosh4G25

+ 4�f 4b− a5+ 2am��u5 sinh4G25
)

0

14 For both the release time and pricing optimization problems stud-
ied in this paper, the profit functions generally have a unique opti-
mizer, although their shapes may not be concave. Our results apply
for wide parameter regions as can also be numerically illustrated.
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Proposition 1. The optimal release time for a firm’s
software product satisfies t∗0 ≤H4Y 1�1p5 such that

(i) if �f ≥m��u, then

H4Y 1�1p5

= min
{

T 1max
{

L4�51

1
�f

log
(

4B̄− D̄54CG + 4CP1u −CP1f 5Y��u5

CTY
2��u

)}}

3

(ii) if �f <m��u, then

H4Y 1�1p5

= min
{

T 1max
{

L4�51

1
�f

log
(

4B̄− D̄54CG + 4CP1u −CP1f 5Y��u5

CTY
2��u

)

1

T − log
(

1 +
4a+ b5�f

a4m��u − �f 5

)

/

44a+ b5w5

}}

1

and profits are decreasing in t0 over the interval
4H4Y 1�1p51T 7. Further, there exists Kë > 0 such that
�t∗0 −ë � < Kë� whenever g4L4�55 > 0, where ë satisfies
g4ë5= 0.15

Proposition 1 establishes that a firm should never
delay release beyond H4Y 1�1p5. Despite potentially
inducing higher sales on some time intervals, a
delayed release corresponds to a weaker aggregate
installed base pointwise. Within the interval 4H4Y 1
�1p51T 7, further delaying release will shrink profits
because lost revenues and additional internal testing
costs are not offset by the benefits over the remain-
ing horizon associated with lower goodwill costs and
bug processing costs. Hence, Proposition 1 asserts that
a firm should release immediately if any constrain-
ing factors prevented release prior to H4Y 1�1p5. Soft-
ware firms sometimes face such constraints when the
adoption of their product is tied to the availability of
specific hardware. For example, in the spring of 2006,
Sony officially announced a delay in the release of its
PlayStation 3 console until November due to unre-
solved issues with the production of Blu-ray compo-
nents (Nagai 2006). In such a case, some firms who
would have originally delayed the release of their
titles to improve initial quality may have reduced
incentives to delay under the new console launch date.

As a firm increases the maturity of its development
processes, both bounds on the optimal release time
have a tendency to shrink, which suggests that an

15 The formal conditions of the focal regime are described in
Lemma A1, which provides greater details on how � should be
taken. In particular, c = �c� and � = ��/�, where �c , �� , �> 0.

earlier release may be preferable. Proposition 1 also
describes the optimal release time as it moves into
the interior and away from the bounds. All together,
L, H , and ë characterize how the optimal release
time is affected by the parameters of the model. In
Figure 1, we illustrate how the optimal release time
compares to the derived bounds while slightly devi-
ating the parameter set for each panel. Panels (a), (c),
and (e) all demonstrate that for sufficiently large �,
the bounds collapse, suggesting that the firm should
release its product as soon as it can generate adop-
tion. Said differently, firms that utilize mature devel-
opment processes (e.g., those that have obtained a
higher CMM level) should release their products to
the market when they have a release candidate avail-
able. Although there are always some negative effects
on adoption stemming from reduced quality due to
bugs early in the product life cycle, at a high level of
maturity, releasing at L4�5 to boost adoption through
network effects is more beneficial to the firm.

Panel (a) of Figure 1 shows that when the strength
of the bug quality effect on adoption is relatively low
(c = 004), L drops to zero, as is implied by (12) for all
levels of software maturity. Even a firm whose soft-
ware maturity is low can feasibly release immediately
and still engender adoption, but it optimally chooses
to delay release. In this case, the negative effect of
low quality on adoption is quite limited, but good-
will costs are substantial because N4t5 will ramp up
quickly when c is small (see (4) and (8)). In this panel,
the optimal release time is decreasing as software
maturity (�) increases, and for sufficiently high matu-
rity, the release time bounds collapse and the firm
optimally releases immediately at time zero. Panel (b)
demonstrates that the upper bound H performs well
in comparison to the optimal interior release time, and
profits under the lower bound L approach optimal
profits as � gets large.

Panels (c) and (d) of Figure 1 illustrate a case where
the negative quality effect on adoption is still weak
but a bit larger (c = 3). Additionally, the selling hori-
zon is shortened from T = 8 to T = 205. In this case,
there are two noteworthy differences. First, because
the negative quality effect on adoption is slightly
stronger, at the low range of software maturity, the
lower bound L has now increased, moving away from
zero. Second, the optimal release time occurs sooner,
and the software is released at zero for a significant
range of process maturities at the high end. Panel (d)
illustrates the corresponding optimal profits, demon-
strating that releasing as soon as a release candidate
is available at L is nearly optimal. In the following
proposition, we analytically examine what happens as
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Figure 1 Optimal Release Time, Release Time Bounds, and Profits as Affected by Software Maturity, the Impact Strength of Bug Quality on
Adoption, and the Length of the Selling Horizon
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Notes. For panels (a) and (b), c = 004 and T = 8. For panels (c) and (d), c = 3 and T = 205. For panels (e) and (f), c = 6 and T = 8. The other parameter
values are a = 4, b = 005, Y = 15, m = 30, � = 0025, �f = 008, �u = 00015, CT = 007, CF = 007, CP 1 u = 006, CP 1 f = 005, CG = 003, CD = 005, � = 203, � = 001,
� 4�5= 241 − �5, p = 4, and w = 0046.

T becomes shorter, which can provide greater insight
into the characteristics seen in panel (c).

Proposition 2. There exist bounds �̄u, T̄ > 0 with T̄
satisfying

0 = −
a4a+b52e4a+b5T̄wmpwY

4b+ae4a+b5T̄w52
−CTY

2�f −4B̄−D̄5

×

(

CP1fY�f −CGm

×

(

1−
aT̄ �f

b
+
�f 4log4b+ae4a+b5T̄w5−log4a+b55

bw

−
a+b

b+ae4a+b5T̄w

))

1 (14)
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such that if a > b and �u < �̄u, then
(i) if T < T̄ , then t∗0 = L;
(ii) if T > T̄ , then t∗0 >L.

Furthermore, as either software functionality or maturity
increases, a firm can release at L over a wider range of
selling horizons. Technically, T̄ is increasing in � (i.e.,
decreasing in B̄ − D̄) and also increasing in Y whenever
m′4Y 5/m4Y 5 < 1/Y .

Proposition 2 formally establishes that there exists
a bound on the length of the selling horizon T̄ below
which a software firm should release at L. Above that
bound, the optimal release time moves to the interior.
A bound exists for a firm at any level of software
maturity. The critical difference is how the bound is
affected by software maturity. In Proposition 2, we
analytically establish that T̄ is increasing in software
maturity, which is to say that a highly mature firm
should release its software at L for a wider range of
selling horizons. Said differently, T̄ can be quite large
for a firm with mature software development pro-
cesses. Returning to panel (c) of Figure 1, we illus-
trate that firms with software maturities satisfying
� ∈ 6006117 already release their software at L when
T = 205. As T decreases further, t∗0 will coincide with
L for a greater range.

To contrast this result with what happens as c
grows higher, in panel (e) of Figure 1, we use c = 6
and T = 8. Once the negative quality effects on adop-
tion become more severe, even less mature software
firms will find it optimal to release earlier, but the
reasoning is different in this case. It is not the case
that a lower maturity firm should release software
products early in the absolute sense. Rather, it should
release its product as soon as it feasibly can, because
by the time it has a release candidate with suffi-
ciently high quality to induce adoption, the amount
of time remaining before product discontinuation has
become limited. Panel (e) of Figure 1 illustrates how
L4�5 can decrease more sharply in software matu-
rity. As � becomes small, the remaining sales horizon
is effectively limited and the firm should optimally
release at L. As � increases, T −L4�5 increases and the
firm’s sales horizon becomes less constrained. In this
case, an early release would involve goodwill and
processing costs accumulating over a longer period
of time for early adopters. Thus, the producer may
prefer to delay release in order to improve quality
first, which is depicted by t∗0 moving into the interior
region between the bounds L and H . However, as �
continues to increase, such a firm’s software product
has inherently better quality, and the effects described
in Proposition 2 dominate, indicating that the firm
should release immediately at L.

Finally, Proposition 2 also establishes that T̄ in-
creases in Y under market conditions where the mar-
ket potential is large and not too sensitive to changes

in software functionality. Under these conditions and
when the per-user contribution rate is low, an increase
in functionality provides greater incentive to release
earlier and harness customer error reporting. In par-
ticular, more bugs are introduced with greater func-
tionality, and shorter sales horizons demand faster
bug clearance.

4.1.2. Impact of User Contributions on Release
Timing. In this section, we study the sensitivity of
the optimal release time with respect to user contri-
butions. First, we examine how an increase in the
proportion of users who agree to participate in error
reporting affects the optimal release time.

Proposition 3. The optimal release time t∗0 is decreas-
ing in � if Q�4�5 < 0 for all � ∈ 601 �̄7 and increasing in
� if Q�4�5 > 0 for all � ∈ 601 �̄7, where

Q�4�5

4

=−bCG

(

a+b

G1

)m��u/4bw5

4ae4a+b5Tw
+be4a+b5�w5w�f

+eG2+4a+b5w�+am4T−�5��u/b×4a+b5m��u/4bw5

×
(

4a+b5�f cosh4G256wbCG−m��u

×G34wa4T −�5+logG157+sinh4G25

×
[

w
(

−b2CG�f +a2m��u4T −�5G342m��u−�f 5

+ab4CG�f 41+m��u4T −�55

+CP1umY�2�2
u42+�f 4T −�55

)

+m��uG3 log4G154�f 4b−a5+2am��u5
])

1 (15)

G3
4

= CG + CP1uY��u, and �̄ is given in the appendix.
Further,

(i) there exists a bound �̄ > 0 such that if

m��u
�f

<
4a+ b5 cosh44a+ b5Tw/25− 4b− a5 sinh44a+ b5Tw/25

2a sinh44a+ b5Tw/25

and CG/CP1u < �̄, then Q� > 0;
(ii) there exists a bound � > 0 such that if CG/CP1u > �

is satisfied, then Q� < 0.

Proposition 3 demonstrates that the net effect of
the interaction between the optimal release time (t∗0 )
and the level of error reporting (�) is critically deter-
mined by goodwill costs, the cost of processing user-
generated error reports, error reporting rates of the
firm and user base, bug fixing rates, functionality,
and the various parameters describing the adoption
curve. In our focal regime, how the release time is
impacted by an increase in the error reporting frac-
tion ultimately hinges on the sign of Q� as defined
in (15). For part (i), when the ratio between goodwill
costs and the processing costs associated with user-
generated error reports (CG/CP1u) is relatively low and
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the strength of the error reporting rate from users
compared with the firm is also low, then t∗0 increases
in response to an increase in �. When goodwill costs
are low, the firm has incentives to release its product
early on. With an increase in the fraction of users con-
tributing to error reporting, the firm can release even
earlier to further harness these contributions, particu-
larly in light of the small goodwill costs. On the other
hand, if the cost of processing user reports is large in
comparison to goodwill costs and the relative strength
of total user error reporting rate relative to the firm’s
is small, then the firm also has incentives to incur
further detection costs itself and release a more pol-
ished product later in the market. Part (i) of Proposi-
tion 3 establishes that the latter effect of this trade-off
is stronger, and the firm may optimally prefer to shift
its release time outward in such cases. In panel (a) of
Figure 2, we provide a numerical illustration of this
behavior with curve A.

In contrast, when the condition in part (i) of the
proposition is violated and the relative potential of
error reporting (m��u/�f ) is high, the former effect
tends to dominate, as is illustrated with curve A′. In
this case, the inherent market potential is doubled
in comparison to that for curve A, which increases
the potential of user error reporting considerably.
Similarly, part (ii) of Proposition 3 establishes that
despite obvious drawbacks of releasing its software
early when goodwill costs are high, a software firm
will overall prefer to release earlier as the fraction of
users participating in error reporting increases, pro-
vided that the cost of processing these user reports
is not too substantial. In panel (a) of Figure 2,

Figure 2 How the Optimal Release Time Changes in the Proportion of Users Who Contribute Error Reports
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Notes. The common parameter values are a = 4, b = 005, c = 10, T = 105, CT = 0025, CF = 002, CD = 002, CP 1 f = 0001, �̄f = 007, Y = 305, m4Y 5 =

m041 − e−0042Y 5, �u4Y 5 = 001Y −007, � 4�5 = 241 − �5, � = 0075, p = 004, w4p5 = 005e−0002p , � = 001, and � = 2. For curves A and A′, the specific parameter
values are CG = 108 and CP 1 u = 102, with m0 = 30 in the former and m0 = 60 in the latter. For curve B, the specific parameter values are CG = 2, CP 1 u = 0005,
and m0 = 30. Panel (b) illustrates the extent of the bounds on the focal regime, denoted as FR, for curve B.

curve B demonstrates how t0 decreases under these
conditions. In this case, it is critical that the firm be
able to remedy defects quickly in order to effectively
offset the high goodwill costs while benefitting from
the increased user error report contributions.

In panel (b) of Figure 2, we depict the extent of the
bounds on the quality effect on adoption (c̄) and the
bug fixing rate (�), which we discussed previously in
§4.1 and in Footnote 13. As mentioned, the size of our
focal regime (labeled FR in the figure) is extensive,
and our results apply for a wide region of the param-
eter space. In particular, using the same parameters
used to generate curve B, we illustrate the extent to
which c and � can be adjusted while maintaining the
same qualitative behavior (i.e., monotonicity) as seen
in curve B. When this focal regime is violated, the
optimal release time can exhibit varying behavior. For
example, in region I, when the bug fixing rate is too
slow, the firm has incentives to delay release rather
than inducing greater detections that are not expedi-
tiously resolved. For region II, as c becomes large, the
software begins losing profitability.

Another dimension of user contribution to the
debugging process is captured through the user error
detection rate �u4Y 5, which in turn depends on the
level of software functionality Y . Highlighting this
interaction, we next explore how the level of software
functionality affects the firm’s release time decision.
To simplify the problem and focus on the most rel-
evant trade-offs, in the following we will hold the
market potential constant at the level m; implicitly, we
study a region where the market potential is not too
elastic in functionality.
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Proposition 4. For fixed market potential, the optimal
release time t∗0 is decreasing in Y if QY 4�5 < 0 for all
� ∈ 601 �̄7, and increasing in Y if QY 4�5 > 0 for all � ∈

601 �̄7, where

QY 4�5 = �4�541 −�5e−��f

×
(

KY
GCG +KY

P1uCP1u − �fCP1f

)

− �fCT 1 (16)

and KY
G , KY

P1u, and �̄ are given in the appendix.
(i) When the additional cost of processing user-reported

bugs is low, then
(a) given any level of firm development maturity,

there exists �̄f > 0 such that if �f < �̄f and �′
u4Y 5 < 0, then

QY > 0 and t∗0 is increasing in Y ;
(b) if a firm’s internal rate of bug detection (�f ) is not

too small and it has highly mature development processes,
then QY < 0 and t∗0 is decreasing in Y .

(ii) When a firm uses less mature development pro-
cesses, the additional cost of processing user-reported bugs
is high, and the goodwill costs are low, then

(a) if the impact of increased functionality on the user
community’s contribution to detection rate is negative (i.e.,
Y�′

u4Y 5+�u4Y 5 < �̄ < 0) and the firm has a relatively high
internal detection rate, then QY < 0 and t∗0 is decreasing
in Y ;

(b) if the impact is positive and the contributions are
large (i.e., �′

u4Y 5 > 0 and �u4Y 5 is high), then QY > 0 and
t∗0 is increasing in Y .

An important measure that helps determine the
aggregate effect of a change in functionality on
release time is the degree to which this change
affects the total detection rate contributed per user
across all modules; i.e., ¡Y�u4Y 5/¡Y = Y 4¡�u4Y 5/¡Y 5+
�u4Y 5. When the impact on user contribution is weak
(i.e., Y 4¡�u4Y 5/¡Y 5 + �u4Y 5 is small or negative), an
increase in functionality leads to either a limited pos-
itive increase or a loss in the total user detection
rate. There are multiple effects in play. On one hand,
the firm has reduced incentives to release its prod-
uct early to the market because of the lower benefit
associated with user contributions. Instead, the firm
can shift its release to a later time to avoid good-
will costs associated with early release. On the other
hand, because there is a cost associated with process-
ing user-reported defects, having fewer contributions
from the user community may permit the firm to
release earlier to engender faster adoption benefitting
from network effects while incurring less additional
processing costs.

Part i(a) of Proposition 4 establishes that when
the cost of processing user-reported defects is small,
then the optimal release time can be delayed with
an increase in functionality. Referring to the trade-
offs identified above, because the user contributions
are weak, the firm can benefit from pushing back

the release time such that goodwill costs are not
incurred while the firm continues testing on its own
to improve the quality of its software by reducing
defects. Moreover, even in cases when testing costs
are large, having a lower internal rate of detection will
limit the firm’s exposure to these costs and permit
a later release. Part ii(a) of Proposition 4 examines
the impact of a loss in strength of user contributions
as a result of increased functionality when the firm
has lower software maturity and user error report
processing costs are higher. Beyond a certain point,
increased complexity may impact the usability of a
system and reduce the chances of users spotting indi-
vidual defects. Because of greater flaws due to lower
maturity, a decrease in user reporting can permit ear-
lier release without incurring as much total additional
processing costs because of these reduced user contri-
bution rates. In this case, releasing earlier can expedite
adoption and be preferable as long as goodwill costs
are limited in comparison to processing costs.

When the impact on user contribution is positive
and contributions are large, an increase in function-
ality boosts the total detection rate stemming from
users. In this case, there is again a distinct trade-
off. First, there are incentives to release the software
earlier in order to benefit from stronger user contri-
butions. On the other hand, the firm also wants to
limit both goodwill costs stemming from early release
and potential additional costs associated with the
processing of user-reported defects. Part i(b) of Propo-
sition 4 establishes that when firms have higher devel-
opment maturity, and correspondingly fewer bugs in
their products, they can release earlier to benefit from
more user contributions as long as processing costs
are not too high. High maturity and lower process-
ing costs together limit the downside costs, making it
optimal to decrease release time as a consequence to
increased functionality. Notably, KY

G in (16) is negative
when �′

u4Y 5 > 0, suggesting that stronger user contri-
butions stemming from increases in functionality can
extend this effect to a greater range of software matu-
rity levels. On the other hand, part ii(b) of Proposi-
tion 4 formalizes the opposite effect: when a firm has
lower software maturity, it may find it preferable to
delay release to limit exposure to the additional pro-
cessing and goodwill costs stemming from the higher
bug density found in its product.

In Figure 3, we illustrate how the optimal release
time responds to an increase in software functionality
from YL = 205 to YH = 4. In this case, CP1u is relatively
low and �f is at a higher level relative to per-user
error reporting contributions; by part i(b) of Propo-
sition 4, the optimal release time should decrease
in response. In panel (a), we plot the overall detec-
tion rate �4t5 over time, which shows t∗0 dropping
from 0060 under YL down to 0040 under YH . Panel (b)
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Figure 3 Optimal Release Time as Influenced by Changes in Software Functionality
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Notes. The common parameter values are a= 10, b = 005, c = 5, T = 105, �= 0025, CF = 007, CD = 005, CP 1 f = 0001, CP 1 u = 0002, CT = 105, CG = 2, �f = 3,
m = 30, �u4Y 5 = 2Y −002, � 4�5 = 241 − �5, � = 007, w4p5 = 005e−0002p , p = 107, � = 001, and � = 2. For the two curves depicting lower and higher levels of
functionality, the parameter values are YL = 205 and YH = 4, respectively.

reflects the impact of this change on the adoption
curve N4t5. Consistent with Lemma 1, the adoption
curve under a lower t0 and higher Y is greater every-
where, as can be seen in the figure. Panel (c) illus-
trates how bugs are resolved over time. Because of
the product’s higher level of functionality, under YH

there are more defects that need to be detected and
resolved. Releasing earlier allows the firm to better
harness customer error reporting in order to improve
software quality over the selling horizon.

Connecting our findings with what we observe in
industry, we discuss a recent example. The Apple
iOS 5 mobile operating system was released relatively
quickly after its previous iteration and initially con-
tained flaws and preconfigured settings that severely
diminished handset battery performance (Albanesius
2011). Although Apple does not sell its mobile oper-
ating system separately to customers, the goodwill
impact of poor quality can be high given its com-
plementary handset and application (app) market
businesses. Apple uses mature software development
processes and takes a structured approach to qual-
ity assurance, using many channels to receive user
feedback. Moreover, a great number of Apple iOS 5’s
incremental new features were aimed at enhanc-
ing user experience and facilitating the development
of apps on its platform. Both of these classes of
enhancements are likely to have generated a sig-
nificant amount of attention and usage from their
targeted communities, leading to potentially substan-
tial feedback in case of software flaws. This setting
fits well with part (ii) of Proposition 3 and part i(b)
of Proposition 4, both suggesting that Apple had

incentives to release earlier, which was confirmed
ex post.

4.1.3. Beta Testing. In this section, we examine
how beta testing interacts with the firm’s release time
decision. Because the focus of our paper centers on
release timing and pricing in the context of user error
reporting contributions, we abstract from initial soft-
ware development decisions taking a software prod-
uct as given (i.e., a release candidate is available at
time zero). In the typical software release cycle, beta
testing is a precursor to the release candidate stage,
and therefore issues such as when to cease develop-
ment (quality choice) and begin alpha/beta testing
become more relevant. In that light, in this section,
we do not intend to provide a comprehensive under-
standing of how to manage beta testing. Instead, we
hope to provide some basic insights into how the exis-
tence and degree of beta testing might impact a firm’s
software release timing, which is a fundamental con-
cern in our study.

We take a simple view of beta testing where
the firm has the capability to harness a portion of the
potential market NB ∈ 401m5 to serve as testers of the
product during the interval 601 t07 before release. In
effect, beta testing uses potential customers to boost
the detection rate while not incurring a significant
cost of quality (i.e., goodwill cost) because the product
still has yet to be released. At the same time, beta test-
ing may push up the cost of processing user-reported
bugs by increasing the rate at which these detection
reports arrive to the development team. In the follow-
ing proposition, we explore how the extent of beta
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testing affects the firm’s incentives to either expedite
or delay the release of its software.

Proposition 5. Suppose both the internal and exter-
nal bug detection rates and the strength of network effects
are not too large. Then, (i) if a software firm has highly
mature development processes and the cost of processing
user-reported bugs is small, it will tend to optimally delay
its product release as the size of the beta testing group
increases; (ii) if the cost of processing user-reported bugs is
large, a firm will instead tend to release earlier.

Part (i) of Proposition 5 formalizes that when a firm
with high process maturity produces a high-quality
product and there are not many defects in the code,
it should delay software release as the beta test size
increases. When there are few defects in the code, the
firm will not incur significant additional processing
costs as a result of user-reported bugs. However, it
incurs testing costs at each moment while searching
for these defects. As the size of the beta test increases,
the firm faces a trade-off: it can release earlier to
reduce its own testing cost while harnessing a larger
beta testing population for a shorter period of time or
release later to utilize the larger beta testing popula-
tion for a longer period of time, which improves qual-
ity and reduces goodwill costs but also leads to higher
testing costs. For a high-maturity firm, the trade-off
described above tilts toward the latter, and it prefers a
delayed release strategy. For example, Blizzard Enter-
tainment, a producer of very popular PC games, has
long been known for the high quality of their prod-
ucts. Recently, they were in the beta testing phase of
the third edition of one of their most successful role-
playing games. During that phase, they announced
that the beta test would be extended and the size
of the beta testing group would also be increased,
two moves that should be performed in lockstep for
a high-maturity producer as suggested by part (i) of
Proposition 5 (Hachman 2011).

On the other hand, when the processing of user
error reports is more costly, part (ii) of Proposition 5
formally establishes that the firm can end beta test-
ing and release its software earlier because (1) the
greater-sized beta testing population improves the
quality of the software faster, enabling earlier release;
and (2) releasing the software temporarily relieves the
incurrence of processing costs, and adoption ramps
up, giving the firm an opportunity to fix previously
discovered defects and reduce goodwill costs. This
highlights the trade-off the firm faces between lower
testing costs and processing costs associated with
increased feedback from adopters; higher processing
costs incentivize the firm to focus more on lower-
ing testing costs and increasing revenues through
an earlier release. Although firms of varying matu-
rity are similarly affected when user error report-
ing processing costs are higher, a firm with lower

maturity is more sensitive because its product is char-
acterized by a much higher defect density. In partic-
ular, such a firm both needs more help from the user
testers and has adoption that exhibits slower growth.
Thus, the applicability of part (ii) of Proposition 5
occurs for a wider range of processing costs; i.e., CP1u

can be much smaller for lower-maturity firms and still
induce this net effect.

4.2. Optimal Pricing
In the previous section, we examined a software
firm’s optimal release timing and profitability when
it utilizes release time as its primary lever to man-
age adoption and error reporting. Next, we explore
a setting where a software firm also has some pric-
ing power, optimally selecting a single price to charge
throughout the selling horizon of the product. There
are many instances where software firms prefer to set
price at an optimal level and keep it to a large extent
at that level for the entire selling horizon. For exam-
ple, over the past several years, the AutoCAD suite
and DivX video software bundle have been priced at
$3,995 and $19.99, respectively, for a perpetual license,
whereas WinEdt’s noncommercial single-user license
has been priced at a steady $40 over the last decade.
In this section, our aim is to better understand what
role each lever plays to manage adoption and harness
the benefits of error reporting. We denote the optimal
price chosen by the firm as p∗, which together with
the optimal release time satisfy

4t∗01 p
∗5= arg max

t0∈6L4�51T 71 p>0
ç4t01 p50

If error contributions from users are large and
goodwill costs are low, then implications from Propo-
sition 1 expand to firms of all maturity; i.e., they
tend to release immediately. When a firm releases
its software at the earliest time possible, i.e., t∗0 =

L4�5, it uses a two-pronged strategy. First, immediate
release jump-starts adoption and permits error report-
ing feedback earlier in the software’s life cycle. Sec-
ond, the firm finds it profitable to price the software
(and, implicitly, shape adoption) in a manner that can
help prevent overexposure to lower initial quality. In
this section we explore properties of the optimal price
in such scenarios. First, we examine the link between
price and the proportion of users � who report bugs.

Proposition 6. Suppose that the cost of processing
user error reports is not too high. Then,

(i) p∗ decreases in � for software produced by a high-
maturity firm when CG/CP1u is high, and

(ii) p∗ increases in � for software produced by a lower-
maturity firm with low goodwill costs and intermediate
user error detection rates (i.e., CG/6Y 4CT /441 −�5�̄5 −

4CP1u −CP1f 557 < ��u4Y 5 < b/44a+ b5mT 55.
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For part (i) of Proposition 6, when software is pro-
duced by a highly mature firm, it has fewer bugs
at the release candidate stage. Given that the firm is
performing extensive testing across the entire code-
base, if it can efficiently harness user contributions to
help detect the bugs that remain, it has incentives to
reduce its own internal testing. This strategy can be
achieved by releasing early and pricing in a balanced
way such that the installed base leads to a significant
reduction in testing costs without severely impacting
revenue. The higher the user error reporting rate, the
lower the optimal price is, because a larger resulting
installed base is an effective substitute to internal test-
ing; detection costs are outsourced to the user base
without compromising quality. This effect is strongest
when goodwill costs are high because, in this case,
the potential benefits of faster quality improvement
by harnessing users are the largest. Second, the cost
associated with processing user error reports should
not be too high such that leveraging users remains
economical.

Although our paper is normative in nature, we
briefly present some suggestive evidence that our
finding here can be supported. Over time, Microsoft
developed and improved Windows Error Reporting
to harness consumer bug detections toward improv-
ing quality (Glerum et al. 2009). Microsoft also
released successive generations of products such as
Office Professional (i.e., 2000, XP, 2003, 2007, and
2010). The suggested retail prices of these versions of
Office Professional, as announced by Microsoft, were
$599, $579, $499, $499, and $499, respectively, and for
the 2010 version, an alternative option to purchase
the product key card instead was made available for
$349 (Microsoft 2001, 2007; Arar 2003; Meredith 2010).
Given that Microsoft has high software maturity, part
of its decreasing price trend over versions can be
explained by the substantial increase in error report-
ing and its strategic outsourcing of its testing costs.

In contrast, for part (ii) of Proposition 6, when
quality is lower (i.e., higher bug density), if the firm
releases early, it has the potential to incur significant
goodwill costs and processing costs associated with
user reports. Clearly, a firm with low process maturity
charges less than a firm with high process matu-
rity because of its reduced-quality product. How-
ever, when the user error reporting rate increases,
a lower-maturity firm prefers to restrict early adop-
tion by raising its price slightly when goodwill costs
are relatively limited in comparison to the processing
costs. Here, the level of user error reporting should
be within an intermediate range such that a change
in the level has a stronger impact on the processing
costs that are incurred. In particular, when the user
error reporting rate is lower, an increase to the rate
and its corresponding effect on processing costs can

be mitigated with a small increase in price while not
significantly impacting goodwill costs and revenues.
Consistent with traditional monopolistic settings, an
increase in the firm’s costs per user is compensated
through a higher price that allows the firm to retain
high margins by serving in the beginning a reduced
mass of adopters for whom its software is presumably
most critical while inducing a delay for other adopters
until quality further improves through bug detection
and resolution.

Proposition 7. For fixed market potential, suppose
that the processing costs associated with user error reports
are not too high.

(i) When the firm has highly mature development pro-
cesses and goodwill costs are relatively high,

(a) if increased functionality decreases the user com-
munity’s contribution to the detection rate (i.e., �′

u4Y 5 < 0),
then p∗ is increasing in Y ;

(b) if it increases the rate (i.e., �′
u4Y 5 > 0), then p∗ is

decreasing in Y .
(ii) When the firm has less mature development pro-

cesses and goodwill costs are small relative to the costs
associated with processing user error reports (i.e., CG/CP1u

is relatively low),
(a) if the user detection rate is low and the impact of

increased functionality on the total contribution is negative
(i.e., Y�′

u4Y 5+ �u4Y 5 < �̄ < 0), then p∗ is decreasing in Y ;
(b) if the user detection rate is relatively strong com-

pared with the marginal effect of increased functionality on
the rate (i.e., �u4Y 5/4Y�′

u4Y 55 > �> 0), then p∗ is increas-
ing in Y .

Proposition 7 explores how pricing varies with
functionality. When the firm has high maturity, as in
part (i), an increase in functionality is associated with
relatively fewer additional bugs. Above we found
that when quality is high, reducing testing costs and
leveraging a larger installed base tends to dominate
increased processing costs. Nevertheless, when the
impact of increased functionality on user detection
rates is negative and tends to limit the firm’s ability to
leverage adopters, the increase in goodwill costs stem-
ming from these additional flaws is the predominant
factor. Thus, the firm instead prefers to price higher,
serve a smaller installed base, and limit goodwill
costs. Alternatively, if consumer usage rates increase
considerably with greater functionality and lead to an
increase in detection rates per bug, then the firm will
find it profitable to leverage the testing efforts of users
despite higher processing and goodwill costs. In this
case, the firm marks down its price to boost adoption,
as we establish in part i(b) of Proposition 7.

When process maturity is lower, the effect of how
user contributions respond to a change in functional-
ity has a much different impact on the firm’s pricing.
Because of the magnitude of bugs, any benefits from
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Figure 4 Shape of Optimal Price Path in Software Functionality for a Firm with Lower Process Maturity
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leveraging users toward detecting bugs tend to be
dominated by losses associated with processing user
reports and goodwill costs. An increase in function-
ality will exacerbate these costs. However, if such an
increase inhibits user error detection (i.e., its net effect
is negative, as seen in the left-hand portion of curve A
in panel (a) of Figure 4), then the coupled reduction
in processing costs can shift the balance so that the
firm can benefit by marginally increasing the installed
base. This scenario is illustrated in the left-hand por-
tion (labeled I) of the p∗ curve in panel (b) of Figure 4.
Here, the firm slightly reduces its optimal price to
stimulate adoption and generate more savings from
outsourced detection, as is established in part ii(a) of
Proposition 7. In contrast, when an increase in func-
tionality strengthens user contributions to detection,
processing costs then increase, and the firm has incen-
tives to increase price, thus limiting exposure to both
processing and goodwill costs. In panel (a), curve B
becomes larger as Y increases and satisfies part ii(b)
of Proposition 7 for sufficiently large Y . As a con-
sequence, the optimal price increases in Y , which is
illustrated in the right-hand portion of the price curve
(labeled II) in panel (b).

5. Concluding Remarks
With the recent, rapid penetration of broadband Inter-
net access, software firms and their customers now
interact at a higher frequency and in more com-
plex ways than before, especially after a product is
released to the market. This modern structure enables
firms to address software quality issues by leverag-
ing both in-house developers and user/community
resources. In this paper, we present a model of
software adoption to develop an understanding of

how firms, which vary in development characteris-
tics such as software process maturity as well as in
product characteristics including class and function-
ality, should optimally adapt their release timing and
pricing in order to harness the potential of customer
error reporting. We study this issue in-depth in both
a setting where the firm has limited ability to control
price and a setting where it can optimally set its price.

In the former setting, we characterize relevant
bounds on a firm’s software release time and relate
these bounds to the firm’s process maturity and its
product’s level of functionality. We then explore how
consumer feedback affects adoption dynamics and, in
turn, the firm’s associated revenues and costs.

From our model and results, we generate several
testable implications for future research. First, we find
that both a shorter product life cycle and a higher
software process maturity can induce a firm to release
earlier in time. However, a firm possessing lower pro-
cess maturity and offering a product with a longer life
cycle has incentives to delay its release. Second, when
the additional processing cost stemming from user
bug reports is not too high in comparison to goodwill
costs, a firm should release its product earlier when
the proportion of users agreeing to participate in
error reporting increases. Firms with higher process-
ing costs relative to goodwill costs and limited user
contributions should delay release instead. Third, we
find that whether a firm delays release in response to
added functionality critically depends on the extent to
which detection contributions coming from the com-
munity adjust in response to this functionality. Impor-
tantly, the nature of the effect seems to be opposite
depending on whether a firm has high or low process
maturity. For example, if increased functionality tends
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to dilute per-module detection contributions, then a
highly mature firm should further delay release as
it increases functionality, whereas a less mature firm
has greater incentives to expedite release and har-
ness these contributions earlier. Fourth, we find sim-
ilar results related to beta testing. As the size of the
beta test increases, firms with higher process maturity
tend to delay. Finally, when a firm can set a single,
optimal price, we find that comparative statics of the
proportion of user participation in error reporting and
software functionality on the firm’s price align well
with our comparative statics on release time (i.e., p∗

moves in the same direction as t∗0 , for similar reasons).
In this paper, we construct a model while making

some simplifying assumptions for tractability. First,
for simplicity, we assume that debugging is perfect,
which is to say that new bugs are not introduced into
the code as part of the debugging process. Although
the introduction of new bugs can certainly happen,
it is generally true that software quality improves
over time because of patching, even with this small
risk. Our results in this paper would be quite robust
to imperfect debugging, provided that debugging is
mostly effective. Second, we take a simpler view that
patches are released as soon as the vendor has a patch
available; in reality, when patches are released (either
willingly or by threat of disclosure) and when they are
applied (if ever) by users is a complex topic in its own
right and extensively studied in the vulnerability dis-
closure literature (see August and Tunca 2006, 2008,
2011; Cavusoglu et al. 2007, 2008; Arora et al. 2008).
One possible future extension could be to explore this
link between vulnerability disclosure and a vendor’s
product release time and pricing.

There are a number of directions to build on our
model and results. One interesting extension is to
examine bugs of varying degrees of severity. In this
case, the firm would remediate the varying classes
of bugs at different rates. In a preliminary numer-
ical study, we found that the firm indeed spends
more energy on fixing more severe bug classes, but it
also concurrently delays release as the proportion of
bugs in the severe class increases. Another direction
to explore is studying software producers who choose
to offer small functionality updates in addition to
security patches over time. Although extensive func-
tionality updates would generally be reserved for the
next major release, one can explicitly study a firm’s
decision on how much functionality to build into a
product by release, how much additional function-
ality to add to it later while already released, and
when to release the next version; all of these deci-
sion problems can be grouped together as part of an
integrated study on upgrade cycles. One limitation
of our study is that we focus strictly on release time

and price. More broadly, a firm may undertake strate-
gies to adjust the level of user error reporting, such as
temporarily throttling contributions from users when
detected but unresolved bugs become backlogged and
resources are limited. Developing an understanding
of this broader decision problem is an interesting
direction for future research.

Since we employ a diffusion model, demand is
aggregated at the market level, and we do not lay
out the decision-making process of individual con-
sumers. That being said, a subsequent extension to
our work can be to take a utility-based approach
and incorporate customer error reporting, release tim-
ing, pricing, and adoption. Although making analyt-
ical progress with a continuous-time model in this
type of approach would be difficult, such an exten-
sion can yield valuable additional insight into the
way a software market is strategically grown. Finally,
future studies might also examine competition and
subscription-based revenue schemes.
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Appendix. Proofs of Propositions
Before proceeding with the proofs of the proposition state-
ments, we start by proving a few useful lemmas. First, we
define the following quantities:

gD4t5
4
= B̄− 4B̄− D̄54b+ ae4a+b54t−t05w5−m��u/4bw5

× e−t0�f +4m��u/4bw554a4t−t05w+log4a+b551 (17)

gB4t5
4
= B̄− gD4t51 (18)

gN 4t5
4
=m

(

1 −
a+ b

b+ ae4a+b54t−t05w

)

0 (19)

Lemma A1. Suppose c = �c� and � = ��/�, where �c , �� ,
� > 0. Then, there exists �̄ > 0 and functions MD4t51MB4t51
MN 4t5 > 0 such that if �< �̄, then gD4t5−D4t5 < �MD4t5, B4t5−
gB4t5 < �MB4t5, and gN 4t5−N4t5 < �MN 4t5 for t0 < t ≤ T .
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Proof of Lemma A1. To begin, we examine an adapted
dynamical system with state trajectories denoted by Da4t5,
Ba4t5, and Na4t5. For this adapted system, bugs are resolved
immediately upon detection, i.e., Ba4t5= B̄−Da4t5, and there
are no negative quality effects on adoption such that Da4t5
and Na4t5 solve

¡Da4t5

¡t
= �Na4t5�u4Y 54B̄−Da4t551

¡Na4t5

¡t
= 4m4Y 5−Na4t55

(

a+ b
Na4t5

m4Y 5

)

w4p50

It is straightforward to show that Da4t5 = gD4t5, Ba4t5 =

gB4t5, and Na4t5 = gN 4t5, as defined in Equations (17)–(19),
solve this adapted dynamical system. Next, we show that
the difference between this solution and the solution to the
dynamical system in (13) is O4�5 as � becomes small. First,
we examine how the adoption process would behave if
none of the bugs had been resolved yet to obtain a lower
bound on the real adoption process N4t5. We denote this
process as Ǹ 4t5, which satisfies (4) with B4 · 5 = B̄ in that
equation. Given t0, we denote the fraction of the total mar-
ket potential that adopted before t with F 4t5

4
= Ǹ 4t5/m4Y 5.

Then, if we define f 4t � t05
4
= 4¡F /¡t54t � t05, by (4), it follows

that f 4t5/41 − F 4t55 = 4a − cB̄/Y + bF 4t55w, with F 4t05 = 0.
This is a Riccati partial differential equation with solution
F 4t5= 1 + 1/�4t5, where �4t5= ew4a−cB̄/Y+b5t4−e−w4a−cB̄/Y+b5t0 +

wb
∫ t

t0
e−w4a−cB̄/Y+b5k dk50 Hence, we obtain Ǹ 4t5 = 0 if t < t0

and Ǹ 4t5 = mF 4t5 if t ≥ t0. In particular, for t ≥ t0, after
simplifications,

Ǹ 4t5=m

(

1 −
a− cB̄/Y + b

b+ 4a− cB̄/Y 5e4a−cB̄/Y+b54t−t05w

)

0 (20)

By (20), as � becomes small, Ǹ 4t5 satisfies

Ǹ 4t5 = gN 4t5+
�c�B̄m4b− 4b+ a4a+ b54t − t05w5e4a+b54t−t05w5

4b+ ae4a+b54t−t05w52Y

+O4�25 (21)

for t ≥ t0. Following a similar logic, we define Ń 4t5 as satis-
fying (4) with B4 · 5 = 0 to obtain an upper bound for N4t5.
By (19) and (20), it follows that

Ń 4t5= gN 4t50 (22)

Suppose B̂4t5 ≥ B̃4t5 for all t ∈ 6t01T 7. We will estab-
lish that N̂ 4t � B̂4 · 55 and Ñ 4t � B̃4 · 55 solving (4) satisfy
N̂ 4t � B̂4 · 55 ≤ Ñ 4t � B̃4 · 55. Defining ã4t5

4
= Ñ 4t � B̃4 · 55 −

N̂ 4t � B̂4 · 55, this inequality is equivalent to ã4t5 ≥ 0. Sup-
pose toward contradiction that ã4t̃5 < 0 for some t̃ ∈

4t01T 7. Because ã4t05= 0, ã′4t05 ≥ 0, and ã4 · 5 is contin-
uous, t̂

4
= sup8t ∈ 4t01 t̃5 �ã4t5= 09 exists. However, because

ã′4t̂5 ≥ 0, t̂ cannot be the supremum. Hence, there is a
contradiction, and we conclude that ã4t5 ≥ 0, and thus
N̂ 4t � B̂4 · 55 ≤ Ñ 4t � B̃4 · 55 for all t ∈ 6t01T 7. It immediately
follows that N4t5 solving (13) satisfies Ǹ 4t5 ≤ N4t5 ≤ Ń 4t5,
and by (21) and (22), there also exists MN 4t5 > 0 such that
4gN 4t5−N4t55/MN 4t5 < � as � becomes small.

By (1) and (2), D4t5 satisfies ¡D4t5/¡t = �N4t5�u ×

4B̄−D4t55 for t ∈ 6t01T 7. Solving for D4t5, we obtain

D4t5= B̄− 4B̄−D4t055e
−
∫ t
t0

��uN4s5ds
1 (23)

from which we can explore how an arbitrary adoption pro-
cess N̆ 4t5 affects detection D̆4t5 conditional on that adoption
process. From this relationship, we can provide bounds on
the actual detection process D4t5. By (23), it becomes clear
that if N̆14t5 ≥ N̆24t5 for all t ∈ 6t01T 7, then D̆4t � N̆14t55 ≥

D̆4t � N̆24t55. Because Ǹ 4t5 ≤ N4t5 ≤ Ń 4t5, it follows that
D̆4t � Ǹ 4t55≤D4t5≤ D̆4t � Ń 4t55. By (20) and (23), we obtain

D̆4t � Ǹ 4t55 = B̄− 4B̄− D̄54B̄c− 4a+ b5Y 5m��u/4bw5

×
(

−bY + 4B̄c− aY 5e4t−t05w44a+b5Y−B̄c5/Y
)

× e−t0�f +m��u4t−t054aY−B̄c5/4bY 50 (24)

By (24), as � becomes small, D̆4t � Ǹ 4t55 satisfies

D̆4t � Ǹ 4t55= gD4t5− �KD4t5+O4�251 (25)

where

KD4t5
4
=

B̄�cm4B̄− D̄5e−t0�f +am��u4t−t05/b

4ae4a+b5tw + be4a+b5t0w4p55w

× 4Y 4a+ b55−1+m��u/4bw5��u

× 4Y 4b+ ae4a+b54t−t05w55−m��u/4bw5

×
(

−e4a+b5tw
+ e4a+b5t0w41 + 4a+ b54t − t05w5

)

0

Similarly, for D̆4t � Ń 4t55, we obtain

D̆4t � Ń 55= gD4t50 (26)

Thus, by (25) and (26), and because D̆4t � Ǹ 4t55 ≤ D4t5 ≤

D̆4t � Ń 4t55, we conclude that there exists MD4t5 > 0 such
that 4gD4t5−D4t55/MD4t5 < � as � becomes small.

Finally, solving (3), B4t5 satisfies

B4t5= e−�4t−t05B4t05+ e−�t
∫ t

t0

�e�s4B̄−D4s55 ds3 (27)

hence, if D̆14t5 ≥ D̆24t5 for all t ∈ 6t01T 7, then B̆4t � D̆14t55 ≤

B̆4t � D̆24t55. Because D̆4t � Ǹ 4t55 ≤ D4t5 ≤ D̆4t � Ń 4t55, it fol-
lows that B̆4t � D̆4t � Ń 4t555 ≤ B4t5 ≤ B̆4t � D̆4t � Ǹ 4t555. By (26)
and (27), we obtain

e−�4t−t05B4t05+ e−�t
∫ t

t0

�e�s4B̄− gD4s55 ds

≤ B4t5≤ e−�4t−t05B4t05+ e−�t
∫ t

t0

�e�s4B̄− D̆4s � Ǹ 4s555 ds1

which upon subtraction can be rewritten as

0 ≤ B4t5− e−�4t−t05B4t05− e−�t
∫ t

t0

�e�s4B̄− gD4s55 ds

≤ e−�t
∫ t

t0

�e�s4gD4s5− D̆4s � Ǹ 4s555 ds0 (28)

By (25) and the right-hand side of (28), there exists K̄D >
supt∈6t01T 7

KD4t5 such that as � becomes small,

e−�t
∫ t

t0

�e�s4gD4s5− D̆4s � Ǹ 4s555 ds

≤ e−�t
∫ t

t0

�e�s�K̄D ds = K̄D�41 − e−4��/�54t−t055≤ K̄D�0 (29)
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Examining the middle expression in (28), and integrating
by parts, we obtain

B4t5− e−�4t−t05B4t05− e−�t
∫ t

t0

�e�s4B̄− gD4s55 ds

= B4t5− B̄+ gD4t5+ 4B̄−B4t05− gD4t055e
−4��/�54t−t05

−

∫ t

t0

e−4��/�54t−s5g′

D4s5 ds0 (30)

By (28), (29), and (30), it follows that as � becomes small,
there exists MB4t5 such that B4t5 − gB4t5 < �MB4t5, which
completes the proof. �

Lemma A2. aw4T − t05+ log44a+ b5/4b+ ae4a+b54T−t05w55 <
0 < 4a + b5w4T − t05 + log44a+ b5/4b+ ae4a+b54T−t05w55 for all
t0 ∈ 601T 5.

Proof of Lemma A2. Left-hand inequality: Let h4b5 =

aw4T − t05+ log4a+ b5− log4b + ae4a+b54T−t05w5. By differenti-
ation, we obtain

h′4b5=
1

a+ b
−w4T − t05−

1 − bw4T − t05

b+ ae4a+b54T−t05w
0

Note that h′4b5 < 0 if and only if −1 + e4a+b54T−t05w41 −

4a + b54T − t05w5 < 0. Defining x = 4a + b54T − t05 ·

w > 0, h′4b5 < 0 ⇔ −1 + ex41 − x5 < 0. Defining j4x5 = −1 +

ex41 − x5, we obtain j ′4x5 = −xex < 0 for all x > 0. Because
j405= 0, it follows that j4x5 < 0 for all x > 0; hence, h′4b5 < 0.
Similarly, h405 = 0; therefore h4b5 < 0 for all b > 0, which
proves the result.

Right-hand inequality: We have

¡4h4b5+ bw4T − t055

¡w
=

b4a+ b54T − t05

b+ ae4a+b54T−t05w
> 00

Moreover, 4h4b5 + bw4T − t05�w=0 = 0. Thus, h4b5 + bw ·

4T − t05 > 0. �

Proof of Lemma 1. (i) Monotonicity of N with respect to t0.
Let � be chosen such that the conditions of Lemma A1
are satisfied. Then, by (19) and Lemma A1, it follows that
N4t5 = m41 − 4a+ b5/4b+ ae4a+b54t−t05w55+ �ĝN 4t5+O4�25. By
Lemma A1, ĝN 4t5 (and corresponding terms ĝD4t5 and ĝB4t5)
can be shown to satisfy

¡ĝN 4t5

¡t
= −

�cw4B̄− gD4t554m− gN 4t55

Y

+
wĝN 4t54m4b− a5− 2bgN 4t55

m
1

¡ĝD4t5

¡t
= −��u4ĝD4t5gN 4t5+ ĝN 4t54gD4t5− B̄551

ĝB4t5 = −
g′
B4t5+�� ĝD4t5

��

1

(31)

by taking a Taylor’s series expansion of (13) and subse-
quently equating terms, where ĝN 4t05 = 0 and ĝD4t05 = 0.
System (31) shows how c and � affect D4t5, B4t5, and N4t5
through �c and �� . Differentiating N4t5, we obtain

¡N

¡t0
4t � t01 · 5 = −

amw4p54a+ b52e4a+b54t−t05w

4b+ ae4a+b54t−t05w52

+ �
¡ĝN

¡t0
4t � t01 · 5+O4�25 < 0

for small enough �.

Monotonicity of N with respect to p. Let us consider
(0<) p1 < p2. Then we have w4p15 > w4p25. At t0, we have
N4t0 � t01p11·5=N4t0 � t01p21·5=0 and ¡N/¡t4t0 � t01 p11·5>
¡N/¡t4t0 � t01p21·5. Therefore, in the vicinity of t0, N4t � t0,
p11 · 5 > N4t � t01 p21 · 5. Defining ãN1p4t � p11 p25

4
= N4t � t01

p11 · 5 − N4t � t01 p21 · 5, we have ã′
N1p4t0 � p11 p25 > 0 and

ãN1p4t0 � p11 p25= 0.
Suppose that at some point � > t1 > t0, the curves cross

each other. Let t1 = inf8t � t > t0 and ãN1p4t � p11 p25 = 09.
Then, ãN1p4t5 > 0 for t ∈ 4t01 t15. Since after release all
detections come from users and one adoption path strictly
dominates another at all points, obviously more bugs get
detected under p1 than p2, and thus, more bugs are also
getting fixed (since bugs are getting fixed at a constant
rate out of the pool of known but still resident bugs);
i.e., B4t � p15 ≤ B4t � p25. Consequently, it is easy to see that
ã′

N1p4t1 � p11 p25 > 0. Thus, if the curves cross at t1, then it
must be the case that there exists � such that ãN1p4t � p11 p25
< 0 for t ∈ 4t1 − �1 t15. This is a contradiction. Thus,
N4t � t01 p11 · 5 >N4t � t01 p21 · 5 for all t > t0.

(ii) There are two cases. First, suppose t = t0 + Kt�,
where Kt > 0. By Lemma A1 and (31), differentiating
N4t5, we obtain ¡N4t5/¡Y = awKtm

′4Y 5� + O4�25. Hence,
¡N4t5/¡Y > 0 for sufficiently small �. On the other hand,
suppose t > t0, and t does not converge to t0 as �
becomes small. In this case, we similarly obtain ¡N4t5/¡Y =

m′4Y 541 − 4a+ b5/4b+ ae4a+b54t−t05w55 + �4¡ĝN 4t5/Y 5 + O4�25,
yielding the same conclusion. Thus, there exists �̄ such that
if �< �̄, N4t5 is increasing in Y . �

Proof of Proposition 1. Substituting (10) and (11) into
(9) yields

ç4t01 p5

= pN4T 5−CP1f 4B̄− D̄541 − e−�f t0 5

−
4CF +�fCD5444B̄�f −D̄�5/�541−e−t0�5−4B̄−D̄541−e−t0�f 55

�f −�

−CT �fYt0 −

∫ T

t0

4CF +��uN4t5CD54D4t5− B̄+B4t55 dt

−

∫ T

t0

N4t5

(

CGB4t5

Y
+CP1u��u4B̄−D4t55

)

dt0 (32)

Differentiating (32), we compute the derivative as

¡ç4t01 · 5

¡t0

= p
¡N

¡t0
4t � t01 · 5

∣

∣

∣

t=T
−

CP1f �f 4B̄− D̄5

e�f t0

−
4CF + �fCD5e

−t04�f +�54−4B̄− D̄5et0��f + et0�f 4B̄�f − D̄�55

�f − �

−CT �fY +

∫ T

t0

¡N4t � t05

¡t0

(

−CP1u��u4B̄−D4t55−��uCD4D4t5

− B̄+B4t55−
CGB4t5

Y

)

dt

−

∫ T

t0

¡D4t � t05

¡t0
4CF +��uN4t54CD −CP1u55 dt

−

∫ T

t0

¡B4t � t05

¡t0

(

CF +��uN4t5CD +
CG

Y
N4t5

)

dt0 (33)
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Setting c = �c� and � = ��/� as in the conditions of
Lemma A1 and substituting the result from Lemma A1
into (33), it follows that for sufficiently small �,

¡ç4t01 · 5

¡t0

=
1

Y��u
×

[

−aA2
1e

2A2+t0�f m4Y 5pwY��u −CT e
t0�f Y 2��f �u

+ 4B̄− D̄5�f 4CG + 4CP1u −CP1f 5Y��u5

+
A

1+4m��u5/4bw5
1 4B̄− D̄54CG +CP1uY��u5e

A2+4am4T−t05��u5/b

a+ b

× 4−4a+ b5�f cosh4A25+ 4−4a− b5�f + 2am��u5

× sinh4A255

]

+O4�51 (34)

where A1 = G14t05, A2 = G24t05. First, note that CT e
t0�f ·

Y 2��f �u > 4B̄ − D̄5�f 4CG + 4CP1u − CP1f 5Y��u5 is satis-
fied if and only if t0 > 41/�f 5 log444B̄ − D̄54CG + 4CP1u −

CP1f 5 · Y��u55/4CT Y
2��u550 Similarly, −4a + b5�f cosh4A25 +

4−4a−b5�f +2am��u5×sinh4A25 < 0 if and only if �f ≥m��u
or both �f <m��u and

T −
log41 + 4a+ b5�f /4a4m��u − �f 555

4a+ b5w
< t00

Thus, when t0 > 41/�f 5 log444B̄ − D̄54CG + 4CP1u − CP1f 5 ·

Y��u55/4CT Y
2��u55 and either �f ≥m��u or both �f <m��u

and

T −
log41 + 4a+ b5�f /4a4m��u − �f 555

4a+ b5w
< t0

are satisfied, by (34), it follows that ¡ç4t01 · 5/¡t0 < 0.
This, together with constraint t0 ≤ T and the definition
of H4Y 1�1p5 presented in the statement of the proposi-
tion, completes the proofs of parts (i) and (ii). Second,
evaluating (34) at t0 = T , we obtain 4¡ç4t01 · 5/¡t05�t0=T =

−ampw−CT Y�f −4B̄−D̄5CP1f �f e
−T �f +O4�5 < 0, from which

it follows that there exists TH < T such that t∗0 < TH . There-
fore, by (34) and the definition of g4 · 5 given in the propo-
sition statement, t∗0 =ë +O4�5 follows immediately. �

Proof of Proposition 2. In addition to the conditions of
Lemma A1, let �u = �u�. Then, for sufficiently small �, by
Lemma A1 and (33) in the proof of Proposition 1, we obtain

¡ç4t01 · 5

¡t0
=

e−t0�f

Y
4q04T 5+ q14T 55+O4�51 (35)

where

q04T 5
4
= −et0�f 4ampwYA2

1e
2A2 −CT Y

2�f 51

q14T 5
4
= 4B̄− D̄5

(

−CP1fY�f

+CGm

(

1 −A1 −
a4T − t05�f

b
−

�f

bw
log4A15

))

0

Differentiating q04T 5 and q14T 5, we obtain q′
04T 5 = aA3

1 ·

e2A2+t0�f mpw2Y 4ae2A2 − b5 and q′
14T 5 = 4B̄ − D̄5aCGmA1 ·

44�f 4e
2A2 − 155/4a + b5 + e2A2A1w4a + b55. Define q4T 5

4
=

q04T 5 + q14T 5. Because a > b, q′
04T 5 > 0 and q′

14T 5 > 0

are satisfied; hence, q4 · 5 is increasing in T . Noting that
q4T 5�T=t0

= −CP1fY�f 4B̄ − D̄5 − Y 4ampw + CT Y�f 5e
t0�f < 0

and, by Lemma A2, limT→� q4T 5 > 0, T̃ 4t05 = 8T 2 q4T 5 =

0 � t09 exists and is unique. Therefore, ¡2ç4t01 · 5/¡t0¡T > 0;
hence, T̃ 4 · 5 is increasing in t0. Defining T̄ = T̃ 405, which
is characterized in (14), if T < T̄ , then q4T 5 < 0 for all t0 ∈

601T 7. Therefore, by (35), ¡ç4t01 · 5/¡t0 < 0 for all t0 ∈ 601T 7
for sufficiently small �, and hence t∗0 = L, which proves part
(i). For part (ii), suppose T > T̄ . Then, when t0 = 0, q4T 5 > 0;
hence, t∗0 >L for sufficiently small �. By (14),

CP1fY�f −CGm

(

1−
aT̄ �f

b
+
�f 4log4b+ae4a+b5T̄w5−log4a+b55

bw

−
a+b

b+ae4a+b5T̄w

)

<00

Because of this fact and q′4T 5 > 0, it immediately follows
that as 4B̄ − D̄5 decreases, T̄ increases. Because B̄ − D̄ =

41 − �5�4�5Y and � ′4�5 < 0, the same result holds as �
increases. Finally, taking an implicit derivative of (14) and
substituting from (14) as well, we obtain

dT̄

dY
=
(

�f 4CT +CP1f 41−�5�4�554b+aJ 534m4Y 5−Ym′4Y 55
)

×
(

am4Y 5244a+b53pw2J 4aJ −b5+CG�4�541−�54b+aJ 5

×4�f 4b+aJ 54J −15+wJ 4a+b5255
)−1

1 (36)

where J = e4a+b5Tw . Because J > 1 and a > b, by (36), we
obtain dT̄ /dY > 0, which completes the proof. �

Proof of Proposition 3. Using TH , whose existence is
proven at the end of the proof of Proposition 1, let �̄

4
=

min4TH1H4Y 1�1p55. By Lemma A1 and following the proof
of Proposition 1, for sufficiently small �, we can differentiate
(33) to obtain

¡2ç4t01 · 5

¡t0¡�
=

4b+ ae2A2 5−m��u/4bw54B̄− D̄5e−t0�f

bwY�2�u4ae
4a+b5Tw + be4a+b5t0w5

×Q�4t05+O4�51 (37)

where Q� is characterized in (15), with � taking the place of
t0 for clarity in the proposition statement. Depending on the
sign of Q�, we can use the increasing differences property
to infer the monotonicity of t∗0 with respect to �. Note that
Q� is linear in both CG and CP1u and hence can be written as

Q� =K�
GCG +K�

P1uCP1u1 (38)

where

K�
G

4
= �f

e4a+b5wt0 4a+ b51+m��u/4bw5

A1

(

−bwA
−m��u/4bw5
1

+ eam4T−t05��u/b
(

bw−m��u4aw4T − t05+ log4A155
))

+ 2am2�2�2
u sinh4A25e

A2+4a+b5wt0+4am4T−t05��u5/b

× 4a+ b5m��u/4bw54aw4T − t05+ log4A1551 (39)

K�
P1u

4
= 4aw4T − t05+ log4A155×

(

−4a+ b5�f cosh4A25

+ 4�f 4b− a5+ 2am��u5 sinh4A25
)

+ 2baw sinh4A250

By the definition of A1 and Lemma A2, it follows that
aw4T − t05+ log4A15 < 0. Therefore, if −4a+ b5�f cosh4A25+
4�f 4b − a5 + 2am��u5 sinh4A25 < 0, then K�

P1u > 0. This
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inequality can be rewritten as

m��u
�f

<
4a+ b5 cosh4A25− 4b− a5 sinh4A25

2a sinh4A25
1

whose right-hand side is increasing in t0, from which it fol-
lows that a sufficient upper bound on 4m��u5/�f to ensure
K�

P1u > 0 is as stated in part (i) of this proposition. In this
case, by (38) and since K�

P1u > 0, Q� > 0 is satisfied when-
ever K�

G ≥ 0. If K�
G < 0, then Q� > 0 provided that CG/CP1u <

inf8−K�
P1u/K

�
G2 t0 ∈ 601H4Y 1�1p579. This completes the proof

of part (i).
For part (ii), by (39), K�

G is linear in �f and can be ex-
pressed as K�

G =K�
G10 +K�

G11�f where K�
G10 and K�

G11 are given
in (39). By Lemma A2, K�

G10 < 0. Examining K�
G11, we have

K�
G11 < 0 if and only if 0 > e4am4T−t05��u5/br4t05, where r4t5

4
=

bw − m��u4aw4T − t5 + log4A155 − bw4A1e
aw4T−t55−4m��u5/4bw5.

Moreover,

r ′4t05=
abwm��uA14−1 + e2A2 5

a+ b
4−1 + 4A1e

aw4T−t055−m��u/4bw550

From Lemma A2, it immediately follows that
4A1e

aw4T−t055−m��u/4bw5 > 1; hence, r ′4t05 > 0. Since r4T 5 = 0,
we have r4t05 < 0 for all t0 ∈ 601T 5; hence, K�

G11 < 0. Because
K�

G11 < 0 and K�
G10 < 0, it follows that K�

G < 0, and hence,
by (38), Q� < 0 provided CG/CP1u > sup8−K�

P1u/K
�
G2 t0 ∈

601H4Y 1�1p579. This completes the proof. �

Proof of Proposition 4. Using TH , whose existence is
proven at the end of the proof of Proposition 1, let �̄

4
=

min4TH1H4Y 1�1p55. By Lemma A1 and following the proof
of Proposition 1, we can differentiate (33) to obtain

¡2ç4t01 · 5

¡t0¡Y
=QY 4t05+O4�5 (40)

for sufficiently small �, where

QY 4t05
4
= �4�541−�5e−t0�f 4KY

GCG+KY
P1uCP1u−�fCP1f 5−�fCT 1

and

KY
G

4
=

�′
u4Y 5

�u4Y 52
×
(

KY
G10 +KY

G11 ×
(

4ae2A2 + b5�f

− am��u4Y 54e2A2 − 15
)

�u4Y 5
)

1

KY
P1u

4
= KY

P1u10 +KY
P1u11

×Y�′
u4Y 5

(

−�f +
am�A14e

2A2 − 15
a+ b

× �u4Y 5

)

+KY
P1u12 ×

(

�u4Y 5+Y�′
u4Y 5

)

1

with KY
G10

4
= �fZ2/�, KY

G11
4
= −mZ1A1Z3/44a + b5bw5,

KY
P1u10

4
= −�fZ2, KY

P1u11
4
= Z3m�Z1/4bw5, KY

P1u12
4
= am� ·

A1Z34e
2A2 − 15/4a+ b5, Z1

4
= a4T − t05w + log4A15, Z2

4
= −1 +

Z3, and Z3
4
=A

m��u4Y 5/4bw5
1 eam4T−t05��u4Y 5/b . It can be shown that

KY
G10 < 0, KY

G11 > 0, KY
P1u10 > 0, KY

P1u11 < 0, KY
P1u12 > 0, Z1 < 0,

Z2 < 0, and Z3 ∈ 40115.
In proving the results, we use Topkis’s monotonicity

theorem. When � is sufficiently low, if QY is positive every-
where, then t∗0 is increasing in Y . Otherwise, if QY is nega-
tive everywhere, then t∗0 is decreasing in Y .

(i(a)) For any level of maturity �, if �f and CP1u are
small enough, the monotonicity depends on the sign

of KY
G , which can be rewritten as KY

G = �′
u4Y 544Z2/�+KY

G11 ·

4ae2A2 + b5�u4Y 55�f /�u4Y 52 − am�KY
G114e

2A2 − 1550 Define
Z4

4
= A

m�/4bw5
1 e4am4T−t05�5/b ∈ 40115. Note that Z3 = Z

�u4Y 5
4 . Let

�4�5
4
= −1/� + Z�

4 41/� − �Z1m/4bw55. Then, �4�u4Y 55 =

Z2/� + KY
G114ae

2A2 + b5�u4Y 5. Note that �′4�5 =

−Z�
4 4mZ15

2��/4bw52 < 0 for any � > 0. Moreover, �405 = 0.
Consequently, for any �u4Y 5 > 0, Z2/� + KY

G114ae
2A2 + b5 ·

�u4Y 5 < 0. Thus, KY
G (and, hence, QY ) has the sign opposite

to that of �′
u4Y 5. In particular, when �′

u4Y 5 < 0, then t∗0 is
increasing in Y .

(i(b)) If �f is not too small, and the maturity of the firm is
high, then �4�5 is small, and −�fCT is the dominating term
in QY . Thus, QY < 0, and t∗0 is decreasing in Y .

(ii(a)) When CP1u is high and CG and maturity are low,
then the monotonicity depends on the sign of KY

P1u, which
can be rewritten as

KY
P1u =

(

1 −Z3

(

1 +
Z1m��′

u4Y 5Y

bw

))

�f +
am�A14e

2A2 − 15
a+ b

×Z3Y�
′

u4Y 5�u4Y 5

(

mZ1

bw
+

1
�u4Y 5

+
1

Y�′
u4Y 5

)

0

Suppose that �′
u4Y 5 < 0 and �Y�′

u4Y 5� is high enough. Given
that �u4Y 5 is upper bounded, this condition can be simply
expressed as Y�′

u4Y 5 + �u4Y 5 < �̄ < 0 with �̄ high enough.
Given that Z3 ∈ 40115 depends directly only on �u4Y 5 and
not on Y and �′

u4Y 5, it follows that the coefficient of �f
in KY

P1u, i.e., 1 − Z341 + Z1m��′
u4Y 5Y /4bw55, can become

negative for high enough ��′
u4Y 5Y � given that �u is upper

bounded. In such regions, if �f is large enough, then QY < 0,
and thus, t∗0 is decreasing in Y .

(ii(b)) If �u4Y 5 is very high, then since Z4 ∈ 40115, Z3 =

Z
�u4Y 5
4 and Z3�u4Y 5 become very small. In this case, KY

P1u

will be close to �f > 0. In such a scenario, t∗0 is increasing
in Y . �

Proof of Proposition 5. Adapting (10) and (11) to
include the contribution to the detection rate from beta test-
ing, we obtain D4t5= B̄+ 4D̄− B̄5× e−4�f +��uNB 5t and

B4t5=
�4B̄− D̄5e−4�f +��uNB 5t + 4D̄� − B̄4�f +��uNB55e

−�t

� − 4�f +��uNB5

over t ∈ 601 t07. Accounting for user participation during
beta testing prior to release, the processing cost and fixing
cost become

PC =

(

�f

�f +��uNB

×CP1f +
��uNB

�f +��uNB

×CP1u

)

4B̄− D̄5

× 41 − e−4�f +��uNB 5t0 5+CP1u��u

∫ T

t0

N4t54B̄−D4t55 dt1

FC =
4CF + 4�f +��uNB5CD5

4�f +��uNB5− �

(

B̄�f − D̄�

�
41 − e−t0�5

− 4B̄− D̄541 − e−t04�f +��uNB 55

)

+

∫ T

t0

4CF +��uN4t5CD5× 4D4t5− B̄+B4t55 dt0
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Substituting the adjusted expressions for B4t5, D4t5, PC, and
FC into (9) yields

ç4t01p5 = pN4T � ·5−CT �fYt0 −

(

�fCP1f

�f +��uNB

+
��uNBCP1u

�f +��uNB

)

×4B̄−D̄541−e−4�f +��uNB 5t0 5−

(

4CF +4�f +��uNB5CD5

×

(

B̄�f −D̄�

�
41−e−t0�5−4B̄−D̄541−e−t04�f +��uNB 55

))

×
(

4�f +��uNB5−�
)−1

−CP1u��u

∫ T

t0

N4t54B̄−D4t55dt

−

∫ T

t0

4CF +��uN4t5CD54D4t5−B̄+B4t55dt

−
CG

Y

∫ T

t0

N4t5B4t5dt1 (41)

where D4t5, B4t5, and N4t5 solve the dynamical system in
(13) over t ∈ 6t01T 7, with adjusted initial conditions

D4t05= B̄+
D̄− B̄

e4�f +��uNB 5t0
1

B4t05=
�4B̄− D̄5e−4�f +��uNB 5t0 + 4D̄� − B̄4�f +��uNB55e

−�t0

� − 4�f +��uNB5
1

and N4t05= 0. Differentiating (41), we obtain

¡ç4t01·5

¡t0

=p
¡N

¡t0
4t � t01·5

∣

∣

∣

t=T
−CT �fY −4�fCP1f +��uNBCP1u5

×4B̄−D̄5e−4�f +��uNB 5t0 −44CF +4�f +��uNB5CD5

×
(

−4B̄−D̄5et0�4�f +��uNB5+et04�f +��uNB 5

×4B̄4�f +��uNB5−D̄�5
)

5

×
(

4�f +��uNB−�5et04�f +��uNB+�5
)−1

+

∫ T

t0

¡N4t � t05

¡t0

(

−CP1u��u4B̄−D4t55

−��uCD4D4t5−B̄+B4t55−
CGB4t5

Y

)

dt

−

∫ T

t0

¡D4t � t05

¡t0
4CF +��uN4t54CD−CP1u55dt

−

∫ T

t0

¡B4t � t05

¡t0

(

CF +��uN4t5CD+
CG

Y
N4t5

)

dt0 (42)

For part (i), we demonstrate the result for a parameter
region where �f , �u, CP1u, and CP1f are small but rela-
tively large in comparison with c and 1/�; i.e., both the
negative impact of bugs on adoption and delays in fixing
these bugs are negligible relative to the other parameters
in question. Thus, defining � = �2, setting �f = �f �, �u =

�u�, CP1u = �P1u�, and CP1f = �P1f � and taking c = �c� and
� = ��/� as in the conditions of Lemma A1, we can substi-
tute an analog of the result from Lemma A1—the solution
of the adapted dynamical system—into (33), such that for

sufficiently small �,

¡ç4t01 · 5

¡t0

=
1

�uY�

(

−aA2
1e

2A2�umpwY�+CG4B̄− D̄54�f +�u�NB5

−
CG4B̄− D̄5A1e

A2

a+ b
44a+ b54�f +�u�NB5 cosh4A25

+ 44a− b54�f +�u�NB5− 2am��u5 sinh4A255

)

+O4�50 (43)

Suppose t∗0 is in the interior. Then, by (42) and the implicit
function theorem, we obtain

dt∗0
dNB

= −
CG4B̄− D̄5�u�

24ae4a+b5Tw + be4a+b5t0w53�

baw4a+ b52e4a+b54T+t05w
×

M1

M2

+O4�251 (44)

where

M1
4
= a4−T + t042 −A1e

2A2 55− log4A15/w1

M2
4
= �

(

−ae4a+b5Tw4CG4B̄− D̄5+ 4a+ b5pwY 5

+ be4a+b5t0w44a+ b5pwY −CG4B̄− D̄55
)

0

Let

ãNB 4
=

{

t0 > 02 − aA2
1e

2A2�umpwY�

+
CG4B̄− D̄5A14e

2A2 − 15�um�

a+ b
= 0

}

0

By (43), when t∗0 moves into the interior, it must satisfy t∗0 =

ãNB + O4�5, from which it follows that there exists �̄ > 0
such that if B̄ − D̄ < �̄, then t∗0 is O4�5. In this case, M1 =

4−aTw − log4a+ b5+ log4b + ae4a+b5Tw55/2 +O4�5; hence, by
Lemma A2, M1 > 0 for sufficiently small �. Similarly, M2 =

−4a4a + b52e4a+b5Tw�umw5/44b + ae4a+b5Tw535 × 4CG4B̄ − D̄54b +

ae4a+b5Tw5+ 4a+ b5pwY × 4ae4a+b5Tw − b55+O4�5. Thus, if net-
work effects are limited, i.e., b < a, then M2 < 0 for suffi-
ciently small �, which by (44), implies dt∗0/dNB > 0. On the
other hand, if t∗0 = 0 and does not satisfy the first-order
condition, then it is unchanged for a small increase in NB .
Therefore, dt∗0/dNB ≥ 0, which proves part (i).

For part (ii), differentiating (42) with respect to NB , by
setting c = �c� and � = ��/� as in the conditions of Lemma
A1 and making similar substitutions, we obtain

¡2ç4t01·5

¡t0¡NB

=
e−t04�f +��uNB 5

Y

×4K
NB
G CG+K

NB
P1uCP1u+CP1f t0Y��f �u5+O4�51 (45)

where K
NB
G

4
= 1 − t0��uNB +�NB , KNB

P1u
4
= Y��u�

NB , and

�NB 4
= −4A1e

aw4T−t055m��u/4bw5
− t0�f

+ t0A
m��u/4bw5
1 ×

4e4a+b5w4T+t05/2+am4T−t05��u/b5

ae4a+b5Tw + be4a+b5t0w

× 44a+ b54�f +��uNB5 cosh4A25

+ 44a− b54�f +��uNB5− 2am��u5 sinh4A2550
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As �u gets small, �NB approaches −1 as �u gets small; hence,
by (45), for large enough CP1u, ¡2ç4t01 · 5/¡t0¡NB < 0, and the
result follows. �

Lemma A3. The optimal release time satisfies t∗0 = L4�5 when
either (i) CG < ��uY 4CT /441 −�5�̄5 − 4CP1u − CP1f 55 or (ii)
CG >��uY 4CT /441 −�5�̄5− 4CP1u −CP1f 5e

−�L4�55 and

�4�5 <
��uYCT

41 −�54CG +��uY 4CP1u −CP1f 55
0

Proof. (i) If CG <��u4Y 5Y 4CT /441 −�5�̄5− 4CP1u −CP1f 55,
since �4�5 ≤ �̄ for all �, then it follows that for all
p and all �, we have log444B̄ − D̄54CG + 4CP1u − CP1f 5 ·

Y��u55/4CT Y
2��u55 < 0. Thus, from Proposition 1 we have

t∗0 4p
∗5= L4�5.

(ii) Note that for any fixed p, if �4�5 < ��uCT Y/
441 − �54CG + 4CP1u − CP1f 5Y��u55, then it immediately
follows that log444B̄ − D̄54CG + 4CP1u − CP1f 5Y��u55/
4CT Y

2��u55 < 0 and thus, from Proposition 1, we see that
t∗0 4p5= L4�5. �

Proof of Proposition 6. Conditions in cases (i) and (ii)
place the price optimization in the context of conditions
in Lemma A3, in which case t∗0 = L4�5 = 0 (under a low
� regime). Differentiating (32) with respect to p and �, we
obtain

¡2ç4p1 · 5

¡p¡�
=R�4p1 · 5+O4�51

where

R�4p1 · 5 = −w′4p5×
41 −�5�4�5Z3m�u
b24ae2A2 + b5w34p5

× 44ae2A2 + b5Z1 + abTw4p54e2A2 − 155×V�1

where V� ¬ m4CG + CP1uY��u5Z1 + bCP1uYw4p5. We know
that w′4p5 < 0 for all p > 0. Also, 441 − �5�4�5Z3m�u5/
4b24ae2A2 + b5w34p55 > 0. Moreover, it can be shown
that 4ae2A2 + b5Z1 + abTw4p54e2A2 − 15 > 0 if and
only if 2aA2e

2A2/4ae2A2 + b5 > log44ae2A2 + b5/4a+ b55. Con-
sider the function å4x5 = axex/4aex + b5 − log44aex + b5/
4a+ b55. Then, we have å′4x5 > 0 for all x > 0, with
å405= 0. Thus, å4x5 > 0 for all x > 0. Hence, å42A25 =

2aA2e
2A2/4ae2A2 + b5 > log44ae2A2 + b5/4a+ b55 > 0, and thus,

4ae2A2 + b5Z1 + abTw4p54e2A2 − 15 > 0. Thus, the sign of
R�4p1 · 5 is given by the sign of V�.

There exists p̄ (independent of costs and functionality)
such that p∗ < p̄ because limp→� �4p5 = 0, and we focus on
regimes where �∗ ≥ �0 > 0. Given that w′′4p5 ≥ 0, it follows
that w′4p5 ≤ w′4p̄5 < 0 and w4p5 > w4p̄5 > 0 for all p ∈ 601 p̄5.
When CG/CP1u is high or Y is low, then, since Z1 < 0, it fol-
lows that R�4p1 · 5 < 0. If CG/CP1u is low, the sign of R�4p1 · 5
is given by the coefficient of CP1u in V�, which is X�

P1u =

Y 4��umZ1 + bw4p55. Define �4x5 ¬ ��um4aTx + log4a + b5 −

log4b + ae4a+b5Tx55 + bx. Then X�
P1u = Y�4w4p55. We have

¡�/¡x = b − a4a + b5e4a+b5TxmT��u/4b + ae4a+b5Tx5. Note that
4a+b5e4a+b5Tx/4b+ae4a+b5Tx5 ∈ 411 4a+ b5/a5 for all x > 0. Thus,
¡�/¡x ∈ 4b − 4a + b5mT��u1 b − amT��u5. If b/44a+ b5mT 5
> ��u, i.e., user contribution to debugging is low, then �
is increasing, and thus X�

P1u > 0 for any p which leads to
R�4p1 · 5 > 0. Since p < p̄, for sufficiently small �, R�4p1 · 5 will
dominate the O4�5 term everywhere in the interval 601 p̄7.

Both parts (i) and (ii) follow immediately via Topkis’s mono-
tonicity theorem. �

Proof of Proposition 7. Conditions in cases (i) and (ii)
place the price optimization in the context of conditions in
Lemma A3, in which case t∗0 = L4�5 = 0 (under a low �
regime). Thus, we only have a one-variable optimization,
i.e., with respect to p. Differentiating (32) with respect to p
and Y , we obtain

¡2ç4p1 · 5

¡p¡Y
=RY 4p1 · 5+O4�51

where

RY 4p1 · 5 = −w′4p5×
m�41 −�5�4�5Z3A1

b24a+ b5w34p5

×
(

4ae2A2 + b5Z1 + abw4p5T 4e2A2 − 15
)

×VY 1

where VY ¬ bCP1uw4p54�u4Y 5 + Y�′
u4Y 55 + mZ1�

′
u4Y 54CG +

CP1uY��u4Y 55. Note that w′4p5 < 0 and 4m�41 − �5�4�5 ·

Z3A15/4b
24a + b5w34p55 > 0. From the proof of Proposi-

tion 6, we also know that 4ae2A2 + b5Z1 + abw4p5T 4e2A2 − 15
> 0. Thus, the sign of RY 4p1 · 5 is the same as the sign of
VY . By similar arguments as in Proposition 6, if � is suffi-
ciently small, RY 4p1 · 5 dominates the O4�5 term everywhere
on 601 p̄7.

Cases i(a) and i(b): In these cases, the monotonicity is
determined by the sign of the coefficient of CG in VY . Since
Z1 < 0, it follows that the coefficient of CG has a sign oppo-
site to �′

u4Y 5. The results follow directly.
Case ii(a): In this case, the monotonicity is determined

by the sign of the coefficient of CP1u in VY , which is
equal to bw4p54�u4Y 5 + Y�′

u4Y 55 + mZ1��
′
u4Y 5Y�u4Y 5. From

Lemma A2 we have −bw4p5T < Z1 < 0. Then, since �′
u4Y 5

< 0 in this case,

bw4p54�u4Y 5+Y�′

u4Y 55+mZ1��
′

u4Y 5Y�u4Y 5

< bw4p5
[

�u4Y 5+Y�′

u4Y 541 −mT��u4Y 55
]

0

If �u < 1/4mT�5 and �Y�′
u� is large, then �u4Y 5+ Y�′

u4Y 541 −

mT��u4Y 55 < 0. In this case, VY < 0, and p∗ is decreas-
ing in Y .

Case ii(b): If �′
u4Y 5 < 0 but �u4Y 5 + Y�′

u4Y 5 > 0, it imme-
diately follows that the coefficient of CP1u in VY is positive.
On the other hand, if �′

u4Y 5 > 0, given that from Lemma A2
we have −bw4p5T < Z1 < 0, then

bw4p54�u4Y 5+Y�′

u4Y 55+mZ1��
′

u4Y 5Y�u4Y 5

> bw4p5
(

�u4Y 5+Y�′

u4Y 541 −mT��u4Y 55
)

0

If �u4Y 5/Y�′
u4Y 5 > �1 − mT��̄u�, then VY > 0, and, conse-

quently, p∗ is increasing in Y . �
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