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Don’t Count Non-Targeted Seeding Out Just Yet

Yifan Dou, Hao Hu, Marius F. Niculescu, D. J. Wu

Abstract

In software markets, the sheer number of available applications makes it rather challenging for
any given new one to stand out and be noticed by consumers. Moreover, a push towards privacy
by regulators and consumers is making it harder to target consumers. As such, firms have to
rely on more non-targeted go-to-market strategies. We explore two popular strategies through
which developers can catalyze adoption by helping consumers directly or indirectly learn the
value of their products - seeding (free full-feature product giveaways to a subset of the consumer
base) and time-limited freemium (TLF). Seeding, as a business strategy, existed for a long
time. On the other hand, the feasibility to offer market-wide T'LF became mainstream more
recently, with the advent of the Internet and a plethora of digital tools. Thus, a natural question
emerges - if TLF represents nowadays a feasible and easily implementable strategy for software
applications, has seeding approach been rendered irrelevant in these markets? In this study, we
provide managerial recommendations on when each of these strategies with a free full-feature-
consumption component is optimal, based on social and self-learning dynamics, consumer priors,
adoption costs, and individual product value depreciation. To that end, under a multi-period
parsimonious unifying framework, we show that S becomes dominated as free trials enter the
picture. We identify two specific market factors that, when present, can induce seeding to be
optimal when consumers initially underestimate true product value - (i) user adoption costs
and/or (ii) individual depreciation of value by usage. Moreover, we show that these two factors
have a moderating effect on the impact of word-of-mouth (WOM) effects on the optimality of
seeding. In the absence of these factors, stronger WOM effects alone cannot give seeding an
edge against the other business strategies. However, once either depreciation or adoption costs
are accounted for, strong WOM effects increase the relevance of seeding (enlarging its optimality
region in the parameter space). Our results remain qualitatively consistent under a battery of

robustness checks.

Keywords: seeding, time-limited freemium, adoption costs, word-of-mouth effects, individual de-

preciation, social learning.

1 Introduction

The software app markets have experienced tremendous growth during the last decade thanks to
the advances in Internet technologies, the widespread use of desktop and mobile devices, and a
lower entry barrier for developers. Microsoft, for Windows 10 alone, has facilitated compatibility
with “over 35 million application titles with greater than 175 million application versions, and 16
million unique hardware/driver combinations” (Fortin 2018). In the mobile space, as of Apr. 2025,
the top two app stores, Google Play and Apple App Store, boasted a combined app count above
3.4 million (Roth 2025).



However, in today’s saturated app market, significant profits (and thus market success) can be
elusive for developers. Recent analyses report that fewer than 20% of mobile apps earn $1K per
month within their first two years, while the top 1% of publishers capture over 90% of global mobile
app revenue (Cruz 2022, RevenueCat 2025). A major challenge for both desktop and mobile app
startups is gaining traction early, in the critical stages of the adoption process (Gokgoz et al. 2021).
It is well established that consumers adopt software based on their own initial perceptions of the
product’s value - often referred to as “priors” - which may align with or deviate substantially from
the actual real product value (Weathers et al. 2007, Shulman et al. 2015, Chen et al. 2021, Zhang
et al. 2022). Consumers can update their valuation of the product via several learning mechanisms.
On one hand, consumers can engage in social learning via word-of-mouth (WOM), allowing their
perceptions to be shaped to a certain degree by the opinions of other consumers or experts. On
the other hand, if consumers interact with the product directly, they can engage in self-learning,
whereby they update their priors on the value of the product upon using it for a period of time.
The emergence of widely available generative artificial intelligence (GenAl) assistants and agents
is showing great potential to alter this valuation learning process even further.

Understanding the potential pre-adoption misalignment between consumer valuation percep-
tions and real valuations, as well as the dynamics of the consumer valuation discovery process, soft-
ware producers have increasingly embraced various forms of free-consumption to steer consumer
learning and induce revenue-generating adoption. Such strategies are particularly salient in the
context of experience goods - a broad category which encompasses many digital goods whose value
and fit are better understood by consumers once they are directly exposed to the product/service.
Two popular strategies employing the free-consumption approach are seeding (S) and time-limited
freemium (TLF, otherwise referred to as time-locked free trials).

Through S, developers provide the full-functionality product for free to a subset of the market,
counting on these seeded consumers to not only use the product but also help spread awareness and
knowledge about it within their respective communities and beyond. Seeding as a business strategy
has existed for a long time, since before the emergence of digital goods. What software seeding
adds to the traditional seeding model is the potential for scale (and, hence, more fine-tuning)
given negligible marginal costs and the ability to reach via the Internet the entire addressable
market. There are many instances of software products being offered for free for non-commercial
use and for a fee for commercial use. For example, many providers such as IBM, Microsoft, and
SAS offer a bundle of their developer-grade products for free to students and educators. Via its
Technology Impact Program, Autodesk donates free licenses for many of its products to nonprofits,

startups, and entrepreneurs that use design for environmental or social good. Seeding is also a



popular strategy within mobile app markets via free app giveaways (pushed through portals such
as AppAdvice, AppsFree, and Giveaway of the Day). Moreover, seeding and price discounts for a
variety of products have been used as popular, albeit frowned-upon incentives by market entrants
without established brands to harvest online reviews to jumpstart WOM effects (Hautala 2022).
Under TLF, all consumers are able to try the full-functionality product at no charge during a
limited trial period, after which they are required to pay for continued use. T'LF is a relatively
recent business strategy - while TLF draws its roots from traditional product sampling, the fea-
sibility to implement a consistent, market-wide TLF strategy has truly been ushered in by the
advent of digital goods and services for it relies on encapsulating a limited free-for-all consumption
component with digitally encoded automatic expiration at the end of the trial period. Free trial
windows typically span from a few days to a few months. TLF strategies have been employed for
many categories of apps and services in domains including engineering and design (e.g., AutoCAD,
VeSys, Adobe Creative Cloud), productivity (e.g., Salesforce CRM products, Microsoft Office 365),
IT security (e.g., Crowdstrike, Norton, Bitdefender), content provision (e.g., Hulu, Apple TV+,
Tidal, Audible), health and wellness (e.g., Peloton, Calm, Nutrium), professional and personal ed-
ucation (LinkedIn Learning, Rosetta Stone, Pluralsight), just to name a few. In the mobile app
market, Google Play Store and Apple App Store both allow for native implementation of T LF
for subscription-based apps (since 2012 and 2017, respectively). With the largest mobile app mar-
ketplaces nowadays aligned in supporting T'LF', accounting for free trials within the go-to-market
strategy choice set for mobile app developers is of practical and timely managerial relevance. For a
broader discussion of how our analysis is relevant to the mobile sector, please see E-companion I.
Recent privacy regulations across major jurisdictions (e.g., the EU’s General Data Protection
Regulation; the California Consumer Privacy Act and Colorado Privacy Act in the U.S.), com-
bined with platform-level initiatives (e.g., Apple’s App Tracking Transparency) and rising consumer
awareness and proactivity toward privacy (Cisco 2024), have sharply curtailed data-driven market-
ing (Aridor et al. 2025), prompting firms to revisit less targeted, more naive approaches. If firms
employ seeding, a commonly held opinion is that they would prefer to target specific customers if
they could - but what if they cannot do that? In this study, we zero in on non-targeted seeding,
and ask the following overarching research question: Does non-targeted seeding still merit inclusion
i a software firm’s go-to-market strategy portfolio, given that firms can resort to free trials and
paid (perpetual or subscription-based) licenses? Recent studies suggest that random seeding, with
slightly larger seed sets, can rival targeted seeding (Akbarpour et al. 2023). While extant literature
explored how seeding and free trials could be individually optimized and how they fared against

other strategies, surprisingly little research exists on how these two go-to-market approaches fare



against each other as mechanisms to jumpstart paid adoption. This work addresses this gap. Build-
ing on the unifying modeling framework from Niculescu and Wu (2014), we first show that in a
parsimonious model incorporating social and self-learning but abstracting away from other adop-
tion and usage factors, S always comes short relative to other considered strategies. While, absent
TLF, S has been previously shown to be optimal in regions where consumers initially significantly
underestimate the value of the app (Niculescu and Wu 2014), this is no longer the case when free
trials enter the picture. This is due to how S and T LF differ in their leveraging of demand can-
nibalization as well as social vs self-learning, as detailed in Section 3.3. The inability, under S, to
monetize seeded customers later on is part of what gives T'LF a decisive edge in the baseline setup.

But should we take as a foregone conclusion that non-targeted S is always a dominated strategy
and just ignore it? As a second research objective of our work, we seek to identify specific factors
that, when accounted for, support market scenarios under which S is the optimal strategy, even
in the presence of TLF. By identifying such factors, we aim to add further nuanced richness to
the theories around go-to-market strategies when consumers learn their own product valuations.
Offering some form of free access to the full product involves a delicate balance act, due among
others to (i) intrinsic adoption costs and (ii) the potential for value depreciation with use. Hence,
we found it a natural starting point to focus on the impact that these two factors have on the
optimality of various developer strategies. Adoption costs! can undermine the effectiveness of both
TLF and S (and of other strategies as well) as some consumers may shy away from exploring
the product in the first place even when there is some free access to it. That being said, when
customers initially significantly undervalue the product, S has the edge over TLF due to seeded
customers receiving a perpetual license which extends beyond the duration of a free trial, yielding
higher willingness to take advantage of the free offer. Value depreciation through use, otherwise
referred to as individual depreciation (Dou et al. 2017),% can also dilute the benefit of free trials
(TLF) should consumers be able to utilize the software for a significant portion of their needs before
the trial ends. Under S, when customers significantly underestimate the value of the product, the
developer gets better opportunities (relative to the other models) to monetize future periods by
delaying most paid adoption beyond initial period, allowing seeds to spread WOM and the rest
of customers to update their priors upwards, ensuring that a substantial portion of the unseeded

consumer population has not yet depleted value through usage before reaching higher willingness

!Commonly associated with installation, integration, setup, testing, learning curve, etc. Furthermore, as software
applications are getting more complex in terms of features and functionality, the size of their installation footprint
has increased considerably, which is particularly challenging for mobile users whose phones have limited storage. If
mobile users do not have enough space to install a new app on their device, in order to explore a free-trial app they
must either upgrade their cloud backup storage or delete other applications, both of which are costly actions. Also,
newer applications may be more resource-demanding, requiring hardware upgrades.

2Not to be confused with obsolescence, which captures time-based depreciation in value, regardless of usage.



to pay (WTP) through social learning. Individual depreciation is present when the user’s need is
limited in scope and scale in general.> Furthermore, in the mobile space, users tend to lose interest
in many installed apps relatively quickly and the retention rates drop to single-digit percentages
for the majority of app categories after only one month (Statista 2025). Individual depreciation is
also present when consumption is more hedonic (e.g., video games, music, movies), switching costs
are negligible, and consumers constantly search for the “next” great experience.* On the other
hand, tactical enterprise applications that are used for daily operations (e.g., ERP systems, EMR
systems, payment systems, cloud storage, I'T security solutions) are likely to exhibit low individual
depreciation as their value to consumers is not expected to decline through use.

We do confirm that these two factors (considered separately and together) lead to outcomes
in which non-targeted seeding can dominate TLF (and other non-free models) when customers
significantly underestimate the value of the product. While our study does not completely dispute
the continued viability of more naive seeding as a strategy in today’s markets for digital goods,
we find that more stars need to align to warrant its use. Owur results remain consistent under
multiple robustness checks (including presence of both depreciation and adoption costs, endogenous
depreciation, heterogeneous priors, generalized WOM effects, imperfect learning, and compounded
learning over multiple periods). Interestingly, we show that the two aforementioned additional
market factors are also moderators for the effect of WOM on the optimality of the seeding strategy.
In their absence, WOM effects alone do not help the seeding strategy dominate the other strategies.
Nevertheless, if adoption costs or individual depreciation are present, stronger WOM effects do lead
to a larger region of the parameter space where S dominates. In addition to advancing the theory
around market seeding strategies (and, more generally, around strategies with a free component),
our insights carry significant managerial relevance: they inform when non-targeted seeding should
still be considered, and more generally when several go-to-market strategies are optimal, contingent
on parameter space regions. Lastly, we show that the advent of GenAl can shift the market into
narrower regions of the parameter space in which free-consumption strategies including seeding can

particularly shine, further underscoring the timely relevance of our study.

3E.g., installing audio editing software for a small project to remove background noise from a handful of tracks, or
installing photo editing software to remove dust spots from digital photos from a vacation trip, when the consumer
realizes ex-post that the camera sensor was not clean of debris when pictures were taken.

4For example, in the context of video games, it has been documented that, on average, players tire quickly of a
particular game. According to Shiller (2013), consumers reduce their valuation from $80 in the first month of use to
just a couple of dollars after six months. In fact, after only the first week of ownership, the consumption value that
owners place on the games they own already deteriorates between 22% and 49% (Ishihara and Ching 2019).



2 Literature
Our novel theoretical contributions lie predominantly within the space of the economics of free,
advancing the research agenda on the impact and optimality of seeding strategies. For brevity,
the discussion in this section centers on this core literature. For completeness, we present in
E-companion H the related literature on free trials - a directly connected but secondary stream
relative to our main research focus. At the same time, we do acknowledge that our modeling
framework integrates modeling elements from several complementary literatures (including multi-
period adoption of digital goods, impact of WOM effects on adoption, consumer valuation discovery,
and individual use-based value depreciation). Relevant works in these ancillary research streams are
referenced throughout the main body of the paper, as we introduce various go-to-market models.
The literature on the seeding business model is rich, exploring various related research questions
including optimality of such strategies. At a market level, abstracting from the network structure,
several studies employed adaptations of the Bass (1969) model to explain how firms can employ
seeding to jumpstart and accelerate the product diffusion process (Jain et al. 1995, Lehmann
and Esteban-Bravo 2006, Jiang and Sarkar 2010). Another segment of this literature focuses on
how to optimize (or nearly optimize) targeted or stochastic seeding strategies contingent on the
topology of the network and the optimization objective (Galeotti and Goyal 2009, Haenlein and
Libai 2013, Libai et al. 2013, Schlereth et al. 2013, Kim et al. 2015, Chen et al. 2017, Cui et al.
2018, Wilder et al. 2018). Aral et al. (2013), Nejad et al. (2015), and Nejad and Amini (2024)
explore the role of consumer homophily on the effectiveness of seeding campaigns. Dou et al.
(2013) look at how seeding and social media features can be used in tandem to engineer optimal
network effects in markets for digital goods and services. Niculescu and Wu (2014) find that
uniform seeding dominates feature-limited freemium and no-promotion strategies when consumers
significantly underestimate a priori the value of the product. Lin et al. (2019) show that free
sampling promotions (including seeding®) can have positive effects on product ratings - in other
words, seeding can be an effective tool to harvest positive reviews early on in the diffusion process.
Han et al. (2021) explore scenarios in which seeding is a desirable strategy for either manufacturer
or retailer in a supply chain. Interestingly, recent studies by Chin et al. (2022) and Akbarpour et al.
(2023) suggest that targeted seeding might not be more effective, and even possibly less effective,
than random seeding. Cui et al. (2024) show that the performance of targeted seeding vs. random

seeding depends on the consumers’ propensity to spread negative WOM.

Lin et al. (2019) classify the products into nine categories. Not all free sampling campaigns fall under our
description of seeding. For example, free samples of health food items do not correspond to our definition of seeding
because food is a repeated consumption non-durable item and the sample provides only a small portion. On the other
hand, free sampling promotions of apparel and home appliances do correspond to our definition of seeding because
these goods are semi-durable or durable, with the same item not being purchased very often.



Surprisingly, despite the widespread use of free trials in software markets, the direct compari-
son of optimal seeding against T LF', as go-to-market strategies capitalizing on free consumption,
remains largely unexplored. Schlereth et al. (2013) conduct a numerical optimization of the market
coverage of seeding and T'LF under exogenous pricing that is kept constant across the sampling
methods. They do not draw conclusions as to which strategy dominates in any given parame-
ter range and they do not benchmark these two business models with free consumption against
other no-promotion models in terms of profits. To the best of our knowledge, our study is the
first to compare and contrast S, TLF, and business models with no promotion (under both per-
petual and subscription-based licensing) within a unified framework accounting for WOM effects,
endogenous pricing, adoption costs, and individual use-based value depreciation. Building on the
learning framework from Niculescu and Wu (2014), we show that the optimality of seeding pre-
viously identified in that study (in the scenarios in which consumers initially underestimate the
value of the product) vanishes once free trials enter the strategy set, regardless of the strength of
network effects or imperfect learning. Nevertheless, not all is lost for seeding, as we uncover two
factors - adoption costs and individual depreciation - that, when accounted for in the model, can
restore uniform seeding as the dominant strategy within certain regions of low consumer priors,
even when free trials are an option. Collectively, our study contributes both modeling and theoret-
ical advances to the understanding of non-targeted seeding optimality in software markets. Other
secondary theoretical contributions (some relegated to the E-companion) include explorations of

how the optimality regions fluctuate for various strategies contingent on model parameters.

3 Baseline Model
3.1 Supply Structure and Candidate Business Models

We consider a scenario in which a firm has already developed a software product and is exploring
the most profitable way to commercialize it. At this pre-release stage, all the development costs are
sunk. In the main setup, we consider a product that has a life span of two periods, after which it
becomes obsolete. We show in Section 6.3 that our findings remain robust in the context of a longer
horizon as well. The marginal production cost and the time discount factor of future earnings
are considered negligible. The firm aims to maximize the undiscounted profit over two periods.
Consistent with established literature (Choudhary 2007, Zhang and Seidmann 2010, Niculescu and
Wu 2014, Li and Jain 2016, Chen and Jiang 2021), we focus on scenarios where the firm can offer
a credible price commitment. In our setup, the firm considers among the following four models:
(a) Charge for Everything - Perpetual Licensing (CE-PL): Consumers pay a one-time fee
at the time of adoption, which in turn grants them the right to use the product throughout its

remaining life (i.e., until its obsolescence horizon) without any additional charges.



(b) Charge for Everything - Subscription (CE-SUB): Consumers purchase a single-period
license at the beginning of period 1 and/or 2, which expires at the end of that period. Consumers
who subscribed in period 1 have the option to renew the subscription at the beginning of period

2 (but are not required to).

(¢) Time-Limited Freemium (7TLF'): All consumers have access to the product at no charge in
period 1 (i.e., the free trial period). When the free trial expires, consumers are required to
purchase a license in period 2 to continue using the product. In the context of two periods,
only one period is left at the end of the free trial - thus, it does not matter if the paid license
for period 2 is in a perpetual or subscription-based format. Nevertheless, in Section 6.3, in the
context of a longer product lifespan, we do distinguish between the two types of paid licenses

at the end of the free trial period.

(d) Seeding () - paired with perpetual licensing: We consider uniform, non-targeted seeding,
whereby the firm seeds a fraction k of the customer population uniformly across all tiers of the

addressable market (Libai et al. 2005, Li et al. 2019, Chin et al. 2022, Akbarpour et al. 2023).

A key distinction between T'LF and S lies in how each strategy cannibalizes demand to stimulate
paid consumption. TLF cannibalizes demand from every potential customer for a limited period of
time, leaving open the possibility to later charge each of these customers (whose priors have been
updated after the free trial) for the residual value of the product after the expiration of the trial.
S, by contrast, cannibalizes demand from a subset of the market, albeit for the entire product
life, relying on those seeded customers to influence the purchase decisions of other customers.
Accordingly, TLF primarily drives paid consumption through self-learning, whereas S leverages

self-learning to spark WOM (which in turn, drives social learning).

3.2 Demand Structure and Valuation Learning Process

Consider a unit mass of consumers with their types 6 uniformly distributed on [0,1]. A type-0
consumer derives per-period benefits af from using the product. Coefficient a > 0, which we
hereafter refer to as quality factor, quantifies in an aggregate form core quality dimensions of the
product such as reliability, versatility, efficiency, ease of use, etc. Type 6 captures heterogeneity
in the consumers’ WTP for quality per period as a reflection of diverse needs for the product and
individual fit. Consumers do not observe the true product quality a before the product is released.
At the beginning of period 1, prior to any paid or free adoption in the market, consumers enter the
market with prior a; = aa on product quality. In the baseline model, we assume a homogeneous

6

value o > 0 across consumers.” We relax this assumption in E-companion G and explore how

51f 0 < a < 1 then all customers initially underestimate the quality of the product, whereas if a > 1 then all
customers initially overestimate the quality of the product.



heterogeneity of consumer priors on quality (whereby some customers initially overestimate the
quality of the product while others underestimate it) impacts the main results.

Consumers adjust their priors over time based on learning. Let as denote the consumer’s
perceived valuation factor at the beginning of period 2. For each period, we assume that any
adoption outcome (paid, seeded, or free trial) happens at the beginning of the period whereas
learning happens afterwards, throughout the period. Hence, any customer considering whether or
not to purchase a license during a given period will act on their valuation priors at the beginning of
that respective period. We employ the valuation learning process from Niculescu and Wu (2014),
capturing in a unified framework how the value of as is shaped up by self-learning via use and

social learning through WOM, as follows:

e Self-learning. We assume that adopting consumers (whether paying, seeded, or trying the
product) can perfectly learn the product quality through one period of use. We relax this
assumption in Section 6.3 in the context of imperfect learning and show that main insights
continue to hold. As most software products are experience goods, adopting consumers can
directly update their priors through their own hands-on experience, which is not necessarily

affected by the opinions of others.

e Social learning via WOM. Non-adopters in period 1 (for all models except TLF'), while
deprived of direct, own experience with the product, indirectly adjust their priors on quality
by learning from the “buzz” (WOM) spread by the period 1 adopters. This takes place
at the end of the first period, after adopters self-learned the valuation of the product and
started sharing their signals with non-adopters. We employ the exact same parameterization
of social learning as in Niculescu and Wu (2014), whereby non-adopters in period 1, after

social learning, enter period 2 with the following updated priors:
1 1 1
az =a1 + Nlujtotal(a - al) =a (1 - Nlljjtotal) + aNllfjtotal’ (1)

where Ny totq is the total number of period 1 adopters (including both paying and non-paying

adopters, if any)” and w is the strength (i.e., the degree of persuasiveness) of the WOM effects.

We refer readers to Niculescu and Wu (2014) for an elaborate discussion of how this WOM-
based social learning model is anchored into and motivated by the rich research streams on (i)
factors that affect the magnitude of the impact of outside signals and (ii) the stickiness/inertia of
own beliefs and strategies in the presence of additional information suggesting a potential need for

course correction. In a nutshell, for period 1 non-adopters, the updated prior as at the beginning

"Under CE-PL and CE-SUB, Ni tota1 represents the total amount of paying customers in period 1. Under S, N1 totai
includes both paying and seeded period 1 consumers. Under TLF, in the absence of adoption costs, Ni totar = 1.



Table 1: Consumer perceived quality factor and learning across business models

Priors at beginning | Learning during period 1 Updated priors (posteriors)
of period 1 (after adoption takes place) at beginning of period 2
CE-PL All consumers: Period 1 installed base Period 1 installed base
CE-SUB (paying or seeded): (paying or seeded):
S a] = aa e First, engage in self-learning as=a
e Second, after self-learning,
at the end of period 1,
disseminate WOM
Period 1 non-adopters: Period 1 non-adopters:
e Receive WOM signals at the .
end of period 1 and engage in az =a1 + Ny, (a—ai)
social learning
TLF All consumers: All consumers engage in All consumers:
a1 = aa self-learning as =a

of period 2 is a weighted average between the older prior a; at the beginning of period 1 and the
signal a sent by period 1 adopters after they had experienced the product. The weight of the new
1

signal (N*,

Yotar) captures the overall impact of WOM effects in convincing non-adopters to deviate

from their prior beliefs. This impact is shaped by two forces: (i) the volume of outside opinions
(N1totar), and (ii) the degree of persuasiveness, w, of these signals. In a more general context of
combining priors with outside signals, Bates and Granger (1969) show that the minimum variance
unbiased estimator for the updated forecast is a weighted average of the prior and the outside
signals. Building on that, Zhang et al. (2021) further explain how the resulting weight of the prior
in the updated forecast is decreasing in the number of available outside signals. The social learning
in this paper, albeit in a reduced heuristic form, remains true to the essence of these theories.

If there are any non-adopters in period 1, then Ny sotq < 1. As such, V. 1% otql 18 INCTEASING in w),
spanning the interval (0,1) as w spans (0,00). A very low w means that outside signals, even in
large numbers, have limited power in convincing non-adopters to deviate from their priors. A high
w, on the other hand, means that it takes only a handful of outside signals for the non-adopters to
adjust from a1 to a value very close to the real quality factor a. In scenarios in which all consumers
either paid for or got free access to the product in period 1 (which is the case under TLF model),
social learning becomes redundant but remains mathematically consistent with self-learning.®

We summarize the two learning mechanisms in Table 1, and our overall key notation in Table

Al in E-companion A. Consistent with Niculescu and Wu (2014), we make several additional

8In such a case, Nitotat = 1 and a1 = a (via self-learning). As such, regardless of the value of w > 0, a2 =
a+1x (a—a) =a = a1. Once customers learn the true quality of the product through self-learning, any subsequent
WOM effects have no further impact on their perception of the product quality.

10



assumptions. On one hand, while each customer knows her own type, the distribution of 6 is not
publicly known among consumers, such that they cannot infer the true quality a based on the
firm’s optimal pricing p. On the other hand, the firm knows the consumer type distribution but
does not have information on the precise type of each individual customer and can neither price
discriminate nor engage in targeted seeding. Moreover, we assume a form of bounded rationality in
that consumers in period 1 do not anticipate a change in their priors at a later time (they operate
under the belief that their prior is the correct value of quality, especially since they do not know
the distribution of # and they cannot anticipate various scenarios of how demand will be realized).

Without any loss of generality, we normalize the true quality factor to a = 1. Moreover, the main
results are derived under moderate strength of WOM effects (w = 1). We relax this assumption and

explore numerically in Section 6.2 how the results hold under varying strengths of WOM effects.

3.3 Dominant Strategy

The individual equilibrium solutions for each of the four strategies under the baseline setup are
presented in E-companion B, in Propositions B.1-B.4. We point out that the optimal pricing
solutions under CE-PL and S (in Propositions B.1 and B.4) are reproduced directly from Niculescu
and Wu (2014). Note that CE-PL is essentially a special case of model S with the seeding ratio k
set to zero. For clarity of exposition, for a given parameter set, we consider CE-PL to dominate S
if the profit optimization under model S yields £* = 0. Below, we present the dominant strategy,

when comparing among the considered four models, for each region of the parameter space.

Proposition 1. [Dominant Strategy in Baseline Model] Under the baseline setup, there exists
a € (0,1)? such that the firm’s dominant strategy is:

(1) TLF, if a € (0,@);

(i) CE-SUB, if o € [@,1);

(iii) CE-PL, if o > 1.

In addition, TLF yields the highest social welfare among the four models.

All proofs are included in the E-companion. Figure 1 illustrates the firm’s optimal price and
ensuing adoption pattern and profit under each of the four strategies. Note that, in panel (b), under
CE-SUB the price is per period, whereas for the other go-to-market strategies the price is for the
perpetual license. Panels (c¢) and (d) capture the adopters paying for new licenses in periods 1 and
2, N{ and Nj. We point out that Ny is different from Nj ;o1q1 (from equation (1)) as the latter
includes all adopters (paying/seeded/free trial). In period 2, there is a nuanced distinction between

“new consumers buying licenses” and “consumers buying new licenses.” In the context of CE-PL

9& ~ 0.3968 is defined in implicit form in the proof of Proposition 1.
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Figure 1: Baseline setup - comparison of go-to-market strategies.

and S, Ny effectively captures new market entrants (since period 1 adopters are grandfathered into
period 2 by the perpetual license). However, for CE-SUB, N» includes, in addition to new first-time
subscribers (if any), also period 1 adopters that decide to renew the subscription, as they essentially
purchase a new single-period subscription for period 2. For TLF', Ny represents the subset of free
trial consumers that decide to continue with paid use at the end of the promotion.

An immediate implication from Proposition 1 is that seeding a non-negligible mass of consumers
upfront is never optimal, as can be seen in panel (a) of the figure. When optimizing firm strategy
under S in isolation, k* > 0 is optimal only when consumers initially severely underestimate the
quality of the product (o € (0, ) with threshold as ~ 0.065 defined in Proposition B.4). For
a > ag, S defaults to CE-PL - this can be seen in Figure 1 as the plots for the two strategies
overlap in this a-range.'? It can be shown (from Propositions B.1, B.2, and B.4 in E-companion B)
that lima o 75p_pp = lima 0 hp_qup =0 < %6 = limy o7& . Niculescu and Wu (2014) discuss in
detail the mechanics of how S dominates CE-PL under low priors and a similar argument applies

to the dominance of S over CE-SUB in the same region. In essence, when consumer priors on

0The discontinuity in price and period 1 paying adopter base for CE-PL and S at o = 13 — 44/10 ~ 0.35 captures
the shift in the pricing strategy towards abandoning period 2 adoption (hence abandoning pursuit of WOM effects)
and maximizing revenue extraction exclusively from period 1 adoption by higher-type consumers, once their priors
are significant enough. This shift is discussed in detail in Niculescu and Wu (2014).
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quality are low, in the absence of a free offering that would facilitate self and social learning, the
firm would have to rely on a very low price in order to jumpstart adoption, thus taking in only a
small profit. In contrast, in that same region, under S, WOM effects do not need to be triggered
by paid adoption. Instead, the firm can forfeit period 1 paid adoption altogether, and use seeded
customers to ignite social learning that can induce a considerable update of the priors of unseeded
customers (such that a significant number of the latter are willing to pay a substantial price in
period 2 for a single remaining period of use even though they balked at paying the very same price
for two periods of use at the beginning of period 1). Thus, without 7T'LF among available options,
S would emerge as the dominant strategy in this region of the parameter space.

However, in contrast to Niculescu and Wu (2014), what we find is that when TLF enters the
picture, that aforementioned region of optimality for .S evaporates. Under optimal implementation
of S and, by definition, under TLF, for low enough priors, the firm does not get any paid adoption
in period 1. What ultimately decides the winner between these two strategies is the revenue in
period 2. Under S, the seeded customers steer other customers in the direction of the right value of
the quality factor. Nevertheless, as seeded customers get perpetual licenses and seeding is uniform,
the firm cannot avoid seeding a fraction of the higher valuation population - however, the firm
cannot afford seeding too many of the high type customers that could be payers in period 2 (under
updated priors). Also, unseeded customers do not update their prior all the way to the correct
value of the quality (one would need complete market seeding, i.e., k = 1, for that, which would
essentially erase all profits). However, under TLF, during period 1 trial, all customers update their
priors all the way to the correct value of the quality factor. Moreover, the trial version is not offered
under perpetual license - all customers remain in the pool of potential paying adopters in period 2.
As such, the firm can collect revenue in period 2 from more high type customers, also with higher
updated WTP, under TLF compared to S. Hence, TLF dominates S in that region.

The dominance of TLF extends well beyond ag all the way to & =~ 0.41. While both CE-PL
and CE-SUB strategies become progressively more profitable with higher «, under each of these
strategies the firm is still considerably constrained by the priors and cannot price too high upfront.
While both of these strategies rely gradually less and less on new period 2 adopters (which have not
adopted in period 1) as consumer priors increase, the firm gives up on this component of revenue,
and essentially on engendering social learning, considerably faster under CE-PL than under CE-
SUB, as can be seen in panel (d) of Figure 1. Under CE-PL, social learning would have to yield
more than a doubling of the priors for a period 1 non-adopter to even consider period 2 adoption
(since they are now looking at only one remaining period of use before obsolescence and they balked

at the same price for a 2-period perpetual license before). As « increases, under CE-PL, for the firm
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to ensure such strong WOM thrust for period 2 new adoption to occur, it would have to induce
enough period 1 adoption, which would put downward pressure on the price it charges and be
suboptimal beyond a certain point. However, under CE-SUB, as « increases, the firm continues to
make use of both self and social learning as long as o < 1 (all period 1 adopters renew subscription
in period 2 and also new adopters enter the market in period 2, i.e., Ny op_syp > NfCE—SUB for
all @ € (0,1)). The difference is because period 1 non-adopters under CE-SUB, relative to CE-PL,
initially balked at a 1-period subscription instead of a 2-period perpetual license - thus, WOM
effects do not have to be that strong to induce new adopters to enter in period 2. This added
flexibility allows CE-SUB to overtake CE-PL when « gets above roughly 0.17.

It is this same flexibility that eventually enables CE-SUB to flip the tables and dominate
TLF once customers only moderately or slightly underestimate the initial value of the product
(a € [@,1)). Under TLF it is optimal to have precisely half of the population paying for adoption
for the second period. As « increases in this region, under CE-SUB, we see from panels (¢) and (d)
of Figure 1 that the firm will optimally induce a little less than half of the population to pay for
adoption in period 1 and a little more than half of the population to pay for adoption in period 2
(with N ecp_suptNscp_syp > 1forala e [, 1)). With higher priors, the firm is able to charge
a high enough per-period subscription price (for most of this region we have pfp_oyp = Pipp/2),
which ensures that from two periods it will collect more revenue than under TLF.

If consumers initially overestimate the product (« > 1), then CE-PL strategy has the upper
hand as it relies only on period 1 adoption, charging consumers for two periods before they get a
chance to update their priors (downwards) through learning. On the other hand, both TLF and
CE-SUB are impacted by consumer valuation learning, which (under either self-learning or social
learning) leads to a downward calibration of priors and, implicitly, of the consumers’ WTP.!!

In terms of social welfare, TLF dominates. Since price represents an internal transfer, with
development costs sunk and negligible marginal costs, residual social welfare amounts to consumer
surplus. Under TLF, all customers get to use the product in period 1, and the top half of them
(in terms of valuation) pay for it also in period 2. None of the other models achieve an aggregate
product use similar to TLF. What this translates to is that the firm will choose a socially optimal

strategy only when consumer priors are low (i.e., a € (0, @)).

4 Model with Individual Depreciation

In the baseline scenario, we assumed that consumers can extract value from the product at the same

rate for as long as they use it. However, as discussed in the Introduction, certain products exhibit

"While under CE-SUB the firm gets some paid adoption in period 1 (from selling one-period subscriptions), all
those subscribers will downgrade their priors via self-learning and also WOM will push downwards the priors of the
non-adopters in period 1. Hence, under CE-SUB the firm would face churn in period 2, without any new adopters.
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individual depreciation, whereby consumer satiation, diverted interest, or a limited need can lead
to reduced product valuation past first (initial) period of use (Dou et al. 2017, Tan 2024). Han et al.
(2016) showed that individual depreciation occurred widely in the intertemporal use of information
goods and services. They found that, among mobile apps, the satiation level was highest for portal
search apps (which users tend to use briefly, for quick searches), and lowest for communication
apps (which consumers use at a sustained level to interact with others). According to Statista
(2025), consumer interest is shortlived for many installed apps, with retention rates plunging to
single digits after only a month. Zooming in on the video game industry, studies by Shiller (2013)
and Ishihara and Ching (2019) further corroborate the presence of individual depreciation.

To capture this effect, we propose an adjustment to our baseline model. More specifically, for
period 1 adopters, the value they can extract from period 2 scales by a factor A € (0,1].!?2 On the
other hand, period 1 non-adopters are not affected by individual depreciation (their perceived period
2 valuation can only be impacted by WOM effects). In other words, period 1 usage cannibalizes
period 2 benefits. We assume that A is common knowledge.!> In this section, we consider A
to be exogenously determined. Thus, we look exclusively at the post-development go-to-market
strategy, considering already sunk the costs for any (additional) features and content that can
impact depreciation. We relax this assumption in Section 6.1, endogenizing A in the context of a
more general model, and show that the main insights continue to hold qualitatively. The separate
equilibrium solutions for each of the four strategies under the individual depreciation scenario
are presented in E-companion C, in Propositions C.1-C.4. Below, we characterize the dominant
strategy, when comparing among the four considered strategies, for each region of the parameter
space. We point out that the individual equilibria and the comparison of strategies are highly

nontrivial, with the depth of the analysis included in the proofs.

Proposition 2. In the presence of individual depreciation, the firm’s dominant strategy, as illus-
trated in Figure 2, is:

(i) CE-PL, if 0 < a1(\) < a (yellow region);

(1t) TLF, Ay <A <1 and 0 < a < ag(\) <1 (green region);
(iii) Otherwise,

(a) CE-SUB, if a > oy and X\ > \g(«) (purple region);

(b) S, otherwise (red region).

12For example, under TLF, since all customers get to try the product for free for one period, the perceived period
2 utility becomes uz = a20\ — p. Similarly, under CE-PL, the perceived utility at the beginning of period 1, before
release, is u1 = a16(1 + A) — p (which is the same case for unseeded consumers under S). At the beginning of period
2, period 1 non-adopters exhibit utility ue = a20 — p.

13Firms do market research about the use cases for their products. On the other hand, consumers, even without
fully understanding a priori the quality of the product, know their own needs and preferences for features and content.
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Functions a1 (N), as(N), Az(a), and exogenous thresholds oy and A¢ are defined in E-companion C

and marked on Figure 2. In addition, T LF yields the highest social welfare among the four models.

Figure 2: Setup with individual depreciation - optimal strategies. Panel (b) represents a zoomed-in
snapshot of the left-bottom corner region from panel (a).

Comparing Propositions 1 and 2, we see that individual depreciation plays a non-trivial role in
determining which strategy is dominant in various regions of the parameter space. We recognize
Proposition 1 results as the vertical slice at A = 1 in panel (a) of Figure 2. In contrast to the baseline
setting, in the presence of individual depreciation, a major difference is that S can emerge as the
optimal strategy - that happens in scenarios involving concomitantly severe individual depreciation
through use and significant prior underestimation of the product value (both A and « small enough).
In this region, offering the product for free to a fraction of the population leads to a significant
update in the product valuation for the rest of the consumers. This allows the firm to charge a
substantial price under S, with paid adoption taking place in second period only, following the
realization of WOM effects, thus leaving unseeded population largely unaffected by individual
depreciation. Under strategies without a free offering (CE-PL and CE-SUB), the firm would have
no option but to price low from the beginning, trapped by the inability to generate WOM from other
sources rather than the paying installed base. At the same time, with strong individual depreciation
(small ), TLF is no longer optimal regardless of consumer priors because all consumers extract
the bulk of the product value during the free trial and there is little residual value to be extracted
in period 2, leading to very low WTP. Also, in the same strong individual depreciation region, if
the initial valuation priors are not too low (a > aq(A)), CE-PL still outperforms S because the
WOM effects generated from the seeded consumers cannot shift the dial on valuation by too much
to justify forfeiting revenue from the high-type seeds if the initial estimation is not too low (CE-PL
can be offered with a high price from the get-go).

But there is more nuance to the contrast between S and T'LF in the presence of depreciation. It
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is not only that S can emerge as optimal but also that, in fact, each of the four considered strategies
has an optimality region. Similar to reasoning under the baseline case, low priors support strategies
with some free consumption component that ignites WOM effects (S or TLF') while high priors
support strategies with no free consumption, that rely less on WOM effects (CE-SUB and CE-PL).
As discussed above, when A is low, S is the one strategy with free offerings that strongly competes
with CE-PL or CE-SUB, whereas when A is high, it is TLF that dukes it out with the non-free
strategies. In the low A region, the boundary between S and the non-free strategies is weakly
decreasing in lambda - S is gradually losing ground when there is less depreciation. At the same
time, for higher A, the boundary between T'LF and the non-free strategies, aa(\), is increasing in
A - TLF is gaining ground when there is less depreciation. Consumer prior « is irrelevant to TLF
with or without depreciation. All consumers learn the true value of the product via the free trial.
In contrast, for S to dominate, it is important that it induces paid adoption solely in period 2
(with higher price, no period 1 paid adoption, and WOM effects carried through only by the seeded
customers in period 1); hence, when S dominates, \ is irrelevant to it (given that paying customers
are not exposed to the product in period 1).

When A\ is very low, as it increases, under CE-PL and CE-SUB the firm can effectively increase
the prices. As such, in this range, the boundary between CE-PL / CE-SUB and S will decrease
because S needs gradually lower priors (that keep the profitability of the other strategies in check
in spite of less depreciation) to still dominate. As depreciation becomes less severe (A > «), but
still relatively low, under CE-SUB all period 1 consumers return in period 2 (in addition to new
consumers joining in period 2). In this region, the update in valuation due to WOM dominates
depreciation such that 7 5_gyp is independent from A altogether (as can be seen in region (a)
of Proposition C.2 in E-companion C). Hence, A does not affect either CE-SUB or S in this
case and the boundary between the two optimality regions is flat at «;. However, as we get into
intermediate to large values of A (even less depreciation), TLF dominates S. In such ranges, as
individual depreciation lessens, TLF becomes more profitable due to an increased consumer WTP.
Nevertheless, the profit under CE-SUB does not change w.r.t. A as the boundary between CE-SUB
and TLF (az(\)) remains inside the region A > a. Thus, as A increases, TLF gradually gains more

advantage over CE-SUB for low to moderate a.

5 Model with Adoption Costs

In this section, we extend our baseline model by accounting for a one-time adoption cost ¢ > 0

incurred during the period of the initial adoption (whether paid or for free).'* Under TLF and CE-

YUnder CE-PL, at the beginning of period 1, consumers perceive utility u; = 2a10 — ¢ — p. Period 1 non-adopters,
after updating their priors, face perceived utility us = a20 — ¢ — p at the beginning of period 2. Under TLF, at the
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SUB, adopters from period 1 do not incur the adoption cost again, even though they make another
adoption decision at the beginning of period 2. For simplicity, in this setup, we assume no depreci-
ation (but will later numerically explore a generalized model with both depreciation and adoption
costs in Section 6.1). In the software industry, installation and configuration processes have become
increasingly complex and resource-demanding for highly specialized apps. For instance, a complete
Windows installation of Matlab R2025a requires 24 GB of storage, roughly 6 times the amount
required for Matlab 2014a.'® Additionally, modern enterprise software often involves initial migra-
tion costs, legacy integration, extensive customization, and potentially organizational change. On
the other hand, adoption costs trend lower when using an app with minimal on-premise resource
requirements, intuitive interface, and confined scope (e.g., cloud-based collaboration and produc-
tivity apps such as Google Workspace, Zoom, Slack). While individual depreciation impacts only
consumers that use the product for two periods, adoption costs affect every user.

A major difference from prior scenarios is that, when accounting for adoption costs, under S
and TLF, some of the customers presented with the free offering choose to decline it. In addition,
WOM effects start playing a role for TLF because only the customers that choose to use the
product during the free trial perfectly learn their valuation. As such, these customers will generate
WOM effects for all the other customers that did not enroll in the free trial. The separate nontrivial
equilibrium solutions for each of the four strategies under the adoption costs scenario are presented
in E-companion D, in Propositions D.1-D.4. The following proposition fully characterizes the firm’s

dominant strategies across the entire parameter space.
Proposition 3. In the presence of adoption costs, the firm’s dominant strategy, as illustrated in
Figure 3, is:

(i) If o < 5, don’t enter the market, (white region);
(ii) If o > 5, enter the market with:

(a) CE-SUB, if aa(c) < a < éi(c) (purple region);
(b) TLF, az(c) < a < Ga(c) (green region);
(c) Otherwise,

(1) S, if a < &'(c) and ¢ < ¢t () (red region);

beginning of period 1, customers consider the utility from the one-period free trial u; = a10 — ¢. Trial participants
in period 1 anticipate uz = a20 — p at the beginning of period 2, whereas the folks that declined the free trial in
period 1 anticipate us = a26 —c—p. Under S, unseeded customers face the same utilities as under CE-PL. Customers
presented with a seed face perceived utility u1 = 2a10 — ¢ over the offered two-period perpetual license. Seeded
customers that declined the seed offer in period 1 anticipate us = a20 — ¢ — p in period 2. Under CE-SUB, customers
face perceived utility u1 = a10 — ¢ — p in period 1. Installed base from period 1 anticipate us = a2 — p in period 2,
whereas consumers that did not subscribe in period 1 anticipate us = a20 — ¢ — p.
Yhttps://www.mathworks . com/support/requirements/previous-releases.html.
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(2) CE-PL, otherwise (yellow region).

Functions é1(c), a2(c), as(c), a4(c), and () are defined in E-companion D and marked on Figure

3. Notably, TLF yields the highest social welfare among all models.

Figure 3: Optimal strategies - model with adoption costs. Panel (b) represents a zoomed-in snap-
shot of the left-bottom corner region from panel (a).

When adoption cost is too high (¢ > 2a), no user will adopt the product regardless of the
business strategy employed (including those with a free offering). Hence, the firm cannot profitably
enter the market in this region. Conversely, when adoption costs are manageable (¢ < 2a), each
business strategy can emerge as optimal. When ¢ = 0, we recognize the market outcome from the
baseline model (vertical slice in panel (a) of Figure 3 at ¢ = 0). It is important to mention that
when ¢ = 0 and « is very small, TLF' strictly dominates S.

However, as ¢ increases, S emerges as optimal as long as ¢ and a are sufficiently small (as
illustrated in part ii.c.1 of the above result). In particular, the region where S dominates intersects
(and extends upwards in « slightly beyond) the range o < ¢ < 2a, which is a range not contested
at all by TLF, as the latter can only be profitably implemented under stricter constraint ¢ < .6
Interestingly, when ¢ is very close to 2a (right above the no-market-entry threshold), CE-PL will
dominate S - only the very top-valuation seeded consumers are willing to consider the free offer and,
as such, the generated WOM effects would be too weak to significantly boost the valuation of the
other consumers (to reap the benefits only through period 2 adoption). Thus, it is more profitable
to just price a 2-period perpetual license at a low level and sell it to those top-valuation consumers
directly. But if we move further above the market entry threshold (i.e., a slightly larger value of

2a0 — ¢), under S the firm can generate a slightly stronger WOM effect through a larger number

8T LF profitability can occur only under ¢ < o, as it is necessary to induce at least some enrollment in the
one-period free trial in order to ignite WOM (as seen in Proposition D.3 in E-companion D).
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seeds, enough to give an edge to S over CE-PL (as the latter strategy can only employ a small
price). Note also that CE-SUB can only dominate for small adoption costs (following dynamics
similar to those discussed in Section 3.3, which we skip discussing here for brevity) but higher
priors, as it necessitates a jumpstart of adoption in period 1 with a high enough price for only a
single period subscription when consumers face both adoption costs and the subscription price for
that initial period. As costs increase, it loses to either T'LF' (due to the free trial customers facing
adoption costs but no price in period 1) or CE-PL (due to period 1 customers amortizing adoption
cost over two periods of the perpetual license).

For intermediate adoption cost ¢, two forces work against S. First, higher adoption costs shrink
the customer pool for seeding (in spite of the free giveaway), which in turn reduces the ability
to generate WOM effects. Second, as costs increase, the feasible market-entry region also requires
higher priors, so that the firm can monetize the customers more efficiently to make entry worthwhile.
Similar to the baseline model dynamics, under higher «, there is less benefit from strong WOM
effects and it becomes suboptimal to forfeit revenue from some of the top-valuation customers for
both periods. On the other hand, for higher priors a > ¢, TLF is somewhat less affected by the
intermediate adoption costs because the firm has the ability to monetize all free trial customers
(including all top-valuation ones) in the second period since, for those, the adoption cost will be
already sunk and their valuation will be updated to the true value. In this region, CE-PL dominates
TLF at relatively low and high « values, whereas for intermediate «, the reverse occurs. Again,
for @ < ¢ < 2a, TLF cannot be profitable at all, whereas for large priors it is not optimal to offer
anything for free. In the intermediate range of o, TLF gets an edge over CE-PL because the jump
in valuation via self-learning is still significant and enough customers try the product during trial,
allowing the firm to charge a high price in period 2 alone. Under CFE-PL, the firm has to start at a
somewhat lower price and remains committed to it. Once we get into very large ¢ ranges though,

TLF loses the advantage across all regions, and CE-PL remains the sole dominant strategy.

6 Robustness Checks

We conduct several robustness checks by relaxing various model dimensions. First, in Section 6.1,
we account for individual depreciation and adoption costs simultaneously. Next, in Section 6.2, we
explore how the strength of WOM effects shapes our results. Lastly, in Section 6.3, we extend our
model to 3 periods (hence shortening the length of the free trial relative to the product lifetime) and
consider imperfect self-learning (whereby product use does not fully reveal the true valuation within
one period), social learning based on multiple outside signal values, and an additional go-to-market
strategy (subscription with free trials, alongside perpetual license with free trials). Furthermore, in

E-companion G, we consider heterogeneity of consumer priors whereby, initially, some consumers
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overestimate while others underestimate the true product value. Collectively, these extensions
confirm that S can emerge as the optimal strategy in the presence (but not in the absence) of
individual depreciation and/or adoption costs in a more general context. Given the complexity of
these extended models, closed-form solutions are intractable; hence, we run numerical explorations

to identify optimal strategies for each extension.

6.1 Extension 1 - Model with Both Individual Depreciation and Adoption Costs
In this section, we consider a model that includes both individual depreciation and adoption costs
(combining the frameworks from Sections 4 and 5). Here, consistent with the main setup, we
consider an exogenous individual depreciation rate. In E-companion F, we show that our results
continue to hold when the firm endogenizes the individual depreciation rate (in which case the firm
controls the degree of depreciation through new content/features).

We explore the 3-dimensional parameter space {«a,c, A} and present in Figure 4 several slices
of the outcomes under this parameter space, at three distinct and relatively small o values (0.05,
0.1, and 0.15). Prior insights continue to hold qualitatively. We confirm that all four go-to-market
candidate strategies can be optimal, with S dominating in regions of high depreciation (low \)
and low adoption costs. At very low priors, strategies with free offerings are superior, but non-free
strategies gradually take the stage as priors start increasing. Note that when ¢ =0 and A =1, we

default to the baseline scenario in which S is never optimal.

(a) 7*(a = 0.05) (b) 7*(a = 0.1) (¢) (a0 = 0.15)
02 02 %21No market entry
No market entry “ CE-PL

0.15 No market entry 0.15 0.15

CE.PL CE-PL

0.05 0.05

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
A A A

Figure 4: Optimal Strategies - model with adoption costs and exogenous individual depreciation

6.2 Extension 2 - Model with Generalized Social Learning

The main results consider moderate strength of WOM effects (w = 1), mainly for tractability

purposes. In this section, we relax this assumption in order to explore the robustness of our results

in contexts of a wide range of intensities of WOM effects from weak (low w) to strong (high w).
Figure 5 captures how the baseline model behaves under general WOM. We confirm that re-

gardless of the strength of network effects, in the baseline model, in the absence of adoption cost or

21



CE-PL

0o 05 1 15 2 25 3 35 4 45 5
w

Figure 5: Optimal strategies - baseline model with generalized WOM

individual depreciation, S is always dominated. When « > 1, CE-PL is always the optimal model.
When o = 1, CE-PL and CE-SUB perform identically. When o« < 1, TLF is not affected by WOM
and it always dominates seeding as the latter cannot induce perfect valuation learning via WOM,
regardless of strength. However, asymptotically, as w — oo, we have 7§ 1 7}, (convergence from
below) as it takes a gradually smaller volume of seeding to achieve increasingly better learning.
At the same time, we notice that stronger WOM effects also lead to an expansion of the CE-SUB
optimality region at the expense of the TLF' as the firm gains more flexibility to price the subscrip-
tion higher per period, balancing out less period 1 adoption at higher margins with strong WOM
effects that lead to more new consumers in period 2 even when the period 1 adoption shrinks.
Our further analysis suggests that, when the individual depreciation and adoption costs are
accounted for, the results under general WOM also remain consistent with our prior findings from
Sections 4 and 5. This can be seen in Figures 6 and 7. We consider for both explorations a triplet
of WOM strength effect values w € {0.5,1,2}. Serving as benchmark, panel (b) in both of these
figures is identical to the corresponding figures in previous sections (Figures 2 and 3). First, we
confirm that S will always show up as optimal when consumers underestimate the value of the
product (and several other conditions are met). Similar dynamics as the ones discussed before are

at play here as well, and, for that reason, we omit such discussions here for brevity.
Even though social learning impacts multiple strategies, an interesting pattern emerges:

Remark 1. When consumers incur either adoption costs or individual depreciation, stronger WOM

effects lead to an expansion of the optimality area for S.7

This insight is in contrast with the baseline model, in which WOM effects never give an edge to S
in the four-strategy race. Hence, it is very important for firms to understand how to incorporate the

magnitude of WOM effects in their decision making process and choice of go-to-market strategies.

1"While Figures 6 and 7 contain only three values for w we have numerically tested this insight for many others,
including significantly larger w values and confirm the validity of the insight.
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Figure 6: Optimal strategies - model with individual depreciation and generalized WOM

(a) w=10.5 (b) w=1

1

0o CE-SUB

0.8

CE-SUB

CE-PL

0.7
0.6
3 05
0.4
0.3
02|

0.1

0 0.2 0.4 06 0.8 1 0 0.2 0.4 06 0.8 1
c c

[

Figure 7: Optimal strategies - model with adoption costs and generalized WOM

More so, stronger WOM effects allow for a more efficient seeding approach with far fewer seeds
needed to raise awareness about the true value of the product. At the same time, TLF comes

under increasing pressure from CE-SUB as the latter is able to capitalize on WOM effects as well.

6.3 Extension 3 - Imperfect Self-Learning with 3 Periods

In this final robustness check, we jointly relax two assumptions in our main model — the 2-period
horizon and the perfect 1-period self-learning. First, we extend the analysis to a 3-period setting
(but qualitatively similar insights hold for a larger number of periods as well), making free trials
last a smaller share of the product life cycle and thereby improving T'LF’s monetization potential.
A multi-period framework also captures potentially compounding learning cycles, as users continue
updating their priors about the product’s true value over successive periods, enabling a more
granular representation of the learning process. Second, in tandem with the extended horizon, we
introduce imperfect self-learning — we accommodate not only for the fact that it may take longer for
adopters to uncover the true value of the product through self-learning, but also for their learning
potentially overshooting in either direction. Thus, adopters update their priors after each period

of use but may not converge to the true valuation within a single period.
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We confirm that the insights from the main model remain robust under this extension as well.
In particular, S is always dominated in the absence of adoption cost or individual depreciation.
However, when either adoption costs are present but low or there is high depreciation, S does
emerge as the dominant strategy when initially consumers significantly underestimate the value of

the product. For brevity, all details are relegated to E-companion E.

7 Impact of Gen/Agentic Al on Strategies with Free Consumption
While this study examines an unconstrained parameter space, the rapid emergence of powerful
GenAl tools warrants consideration of how our findings will remain applicable in the evolving
technological landscape. The year 2022 marked a pivotal moment in human-computer interaction
with the public release of ChatGPT by OpenAl, soon followed by a proliferation of similar GenAl
and, more recently, Agentic Al tools from various market participants. This ongoing Al revolution
is transforming the software industry and underscores the need for rigorous theoretical reassessment
of its implications for a broad spectrum of established business strategies (Korzynski et al. 2023,

Hermann and Puntoni 2024, Huang and Rust 2025), particularly those involving consumer learning.

Table 2: Landscape shift: impact of GenAl on model primitives

Parameter | ¢ | w o A

Impact 1T dort|lor?

Below, in Subsections 7.1-7.4, we describe qualitatively in detail several potential mechanisms
through which Gen/Agentic Al reshapes key model primitives, thereby driving markets to specific
feasible ranges of the parameter space and influencing the relative dominance of strategies such as
S and TLF. As a preamble, we summarize in Table 2 these directional impacts. This discussion
remains grounded in the quantitative analysis established in the main text.

In real markets, Gen/Agentic Al will likely impact multiple parameters simultaneously. Given
its effects on ¢ and w (discussed below in Subsections 7.1 and 7.2), if the net impact pushes « further
away from the real valuation (which, as discussed below in Section 7.3, we expect to happen in the
short run), then, when customers initially underestimate the value of the product, both S and TLF
will be brought into sharper focus as increasingly relevant (with the winning strategy determined
based on where A falls). To our knowledge, this represents one of the first theoretical treatments

on how Gen/Agentic Al influences the optimality of free-consumption strategies.
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7.1 Impact of Gen/Agentic AI on the Adoption Cost (c)

First, the widespread adoption of GenAl is expected to substantially reduce software users’ adoption
costs. This stems from GenAl’s ability to provide highly personalized configuration and training
processes accessible to users on demand. Through chatbots and prompt-based tools, users can ac-
celerate software deployment in complex business environments and markedly enhance productivity
(Bick et al. 2025, Brynjolfsson et al. 2025). Furthermore, many software firms now integrate GenAl
modules directly into their products, while others enable GenAI connectivity via APIs (Russo 2024)
or offer services to customize/train GenAl to intrinsic client needs. For instance, Salesforce’s Ein-
stein GPT, linked with OpenAl’s models, provides intelligent support during CRM implementa-
tion, and Agentforce tools allow users to build and deploy autonomous Al agents operating across
business functions. Similarly, Microsoft Azure Al Studio and Google Al Studio empower users to
develop Al assistants by combining general-purpose large language models (LLMs) with proprietary
data. GenAl has also transformed software development through programming assistants such as
Amagzon Q Developer, Anthropic Claude Code, GitHub Copilot, and Google’s Gemini Code Assist
and Jules, which significantly reduce the coding expertise and effort traditionally associated with
complex coding tasks. Moreover, the continued evolution of GenAl is expected to further lower
barriers to low-code and no-code platforms, indirectly reducing adoption costs for syntax-based
programming and profoundly reshaping software development (Ghoshal 2023).

Adoption costs are unlikely to vanish entirely, as software integration and configuration still
require effort, resource-intensive applications may necessitate hardware upgrades, and use of ad-
vanced GenAl API or specialized Al assistants currently incur small fees. Thus, we expect GenAl
to move ¢ to a lower (yet positive) range, which, as shown in Sections 5 and 6, limits the market

to a parameter range where all strategies, including those with free consumption, can be optimal.

7.2 Impact of Gen/Agentic AI on Social Learning (w)

Secondly, GenAl is likely to improve social learning efficiency, which in our framework corresponds
to a higher w. This is because GenAl can train itself on feedback and data from users (and prompt
engineers/testers) of a software app early in the adoption cycle, with improved models benefiting
the training and education of potential users of that app in the later periods. Once the early
adopters start using the app and further train GenAl with respect to it, a prospective user can
now query that same Al assistant about how (or whether it is possible) to accomplish a task with
that specific app, learning this knowledge even before installing the app. For example, Microsoft
introduced Copilot Al assistant in Office applications. By engaging with Copilot more frequently,
existing users help Microsoft’s GenAl learn how productivity apps can be effectively applied to

a wider array of business problems. Then, with the help of the same Copilot AI (accessible via
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Internet), prospective users can better assess whether Office can meet their needs. Thus, knowledge
transfer through social learning is increasingly facilitated by GenAl. Moreover, GenAl models learn
not only from user interactions but also from other data sources, and recent evidence suggests that
LLMs can self-train from a limited number of examples (Hopkin 2023). Mapping into our modeling
framework, as GenAl assistants become ubiquitous, continuously available, and increasingly relied
upon, fewer first-period adopters will suffice to generate equivalent levels of knowledge transfer
through WOM effects as compared to scenarios without GenAl. This is equivalent to the advent of
GenAl being associated with a higher w (stronger, more persuasive WOM effects).

As shown in Section 6.2, when depreciation or adoption costs are present, GenAI’s upward effect
on w can broaden the conditions under which seeding is optimal. However, in the absence of these

two effects, GenAl may not support optimality of seeding.

7.3 Impact of Gen/Agentic Al on the Estimation Prior («)

Compared to the impact on ¢ and w, the impact of GenAl on software users’ prior («) and individual
depreciation () is considerably more nuanced. We first discuss the potential influence of GenAl on
«. GenAl may expand an application’s usefulness by enabling deployment across a broader range of
business use cases. Moreover, when the app is used in tandem with other digital assets, the limited,
costly, or poor-quality repository of the latter (complementary resources) can constrain the benefit
of the former. GenAl can help mitigate this issue. For instance, Adobe has integrated GenAl into
Photoshop and Stock, providing users with access to a rich stream of Al-generated images and the
ability to produce their own variations using Al - capabilities that enhance the creative process
and complement existing resources. More broadly, GenAl can improve user productivity, enabling
individuals to extract greater value from the app (Brynjolfsson et al. 2025). However, in the near
term, given the novelty of GenAl, prospective users, prior to market release and without signals
from other adopters, may not fully comprehend GenAI’s potential to expand the product valuation
(prior to taking the product for a spin for themselves). When users initially underestimate the
product value (a < 1), the real value they can extract may deviate even further from their prior in
the presence of GenAl. Since in our model we normalize the real value (per period) to 1, a wider
gap between real and perceived valuation translates into a lower a.

In the long term, firms and users alike will become increasingly familiar with GenAI’s poten-
tial. Internally, prior to release, software developers could adopt practices to pre-train Al chatbots
(integrated or widely available) with examples (many scientific software tools such as Matlab or
Mathematica are released with documentation that already includes examples - the next step is to
feed such examples to GenAl prior to release). Furthermore, prior to product release, developers

may also conduct closed beta tests with select customers, during which testers can interact with
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widely available GenAl assistants while using the product, thereby further refining the AI’s under-
standing of it. As a result, GenAl could become proficient at addressing product-related inquiries
even before market launch. Prospective customers could then use publicly available chatbots to
update their priors from the outset, improving their ability to assess the software’s true value before
adoption. Consequently, the introduction of GenAl can align user priors more closely with real
valuations, which, depending on initial over- or underestimation, can mean a lower or a higher a.
However, this assumes minimal hallucination, as firms risk reputational damage if pre-trained Al
assistants fabricate use cases or claim non-existent features. Moreover, given the risk of data leaks,
some firms may be reluctant to expose GenAl to detailed information about unreleased products,
fearing premature competitive spillovers (after all, competition can accelerate development of like
capabilities - ironically, also using GenAlI for coding).

In sum, GenAl can bring consumer prior « either further away from or closer to the real

valuation of the product.

7.4 Impact of Gen/Agentic AI on Individual Depreciation (\)

Finally, GenAl can also influence individual depreciation. As noted earlier, GenAl can enhance
productivity. On one hand users can do more with the app (hence the value of the app increases).
At the same time, GenAl can also help them complete tasks faster. In instances in which users
have a limited need for the app (e.g., a single project), completing the task faster results in less
need for the app in the future. This translates to higher depreciation (lower X).

On the other hand, as its name suggests, “generative” Al can repeatedly generate new content,
update older content for current contexts, and even allow more users to participate in the content
generation process. Consider professional simulator applications (e.g., for aviation, military com-
bat, law enforcement, surveillance, driving, or deep-sea diving). Prior iterations of these systems
operated on either pre-programmed or user-input scenarios. Once a user went through most of the
pre-programmed scenarios, the value of the simulator would decline. With GenAl, simulators can
generate an ongoing stream of novel scenarios, including those dynamically tailored to a trainee’s
progress, allowing continuous practice with minimal repetition. A parallel can be drawn to video
games, where developers have long sought to enhance replayability by adding an element of ran-
domization to the procedural map generation. One of the most prominent examples in this category
is Blizzard’s widely acclaimed Diablo game series. Every time a user restarts a campaign (poten-
tially with a different character class), some portion of the maps/levels/non-player characters/loot
would be randomly generated to create a new experience (while following some established rules
for gameplay progression). Yet, such automated content rejuvenation has historically been de-

tached from individual player preferences, and user-created map editors often proved cumbersome
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and underused. GenAl advances this paradigm by enabling seamless, automated content creation
responsive to user prompts, performance, and progress, thereby sustaining engagement and poten-
tially reducing depreciation (i.e., yielding a higher A). Nevertheless, this effect might be dampened
by potentially reduced variance and quality of GenAlI output, a phenomenon already documented

in LLMs trained on synthetic data (Shumailov et al. 2024, Bhatia 2024).

8 Conclusion

Given the rapid proliferation of software applications and the widespread adoption of the Internet,
software firms now operate in increasingly congested markets where it is difficult for products to
stand out. At the same time, heightened privacy concerns among consumers and regulators have
curtailed firms’ ability to engage in targeted marketing, and, furthermore, for many app develop-
ers, acquiring consumer data remains prohibitively expensive since most apps generate minimal
revenue flow. In this environment, software producers must reconsider how to optimize consumer
product discovery by evaluating how non-targeted go-to-market strategies shape multi-dimensional
valuation learning on the consumer side. To this end, firms nowadays increasingly employ strategies
involving some form of free consumption to stimulate valuation learning by exposing consumers to
the product. In this paper, we pit two such strategies with free consumption against each other
- the more traditional strategy of non-targeted seeding (which predates the emergence of digital
goods) and market-wide time limited freemium (free trials available to everyone for a limited time,
possible at scale only in the context of digital goods). Our central question is whether non-targeted
seeding remains relevant when large-scale free trials are possible. To our knowledge, this is the first
study to compare and contrast seeding with free trials (and with other non-free strategies), while
jointly considering self- and social learning processes on the consumer side. Prior research shows
that when time-limited freemium (T'LF') is absent from the strategy choice set, seeding (S) may be
optimal when consumers initially severely undervalue the product. However, our exploration reveals
that this may no longer be the case when free trials are considered as well. Building on a unifying
multi-period framework with learning mechanisms borrowed from established literature, we find
that in a parsimonious baseline setting, in the absence of any user adoption costs or individual
value depreciation, seeding is in fact never optimal once free trials are in the picture.

Intrigued by this initial finding, we set out on an additional research goal - to identify some
factors that, when added to the model, would allow non-targeted seeding to re-emerge as optimal
in some regions of the parameter. We find that when either of two demand characteristics -
adoption costs or individual depreciation (which can be present in various combinations in industry)
- are introduced, S can become the optimal strategy in scenarios in which consumers initially

underestimate product value. In fact, these two factors enable each of the four business strategies
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to dominate in specific regions of the parameter space.

Our findings remain qualitatively consistent across a comprehensive set of robustness checks,
including endogenous individual depreciation, joint modeling of depreciation and adoption costs to
ensure their effects do not offset each other, more general WOM effects, imperfect self-learning,
and extended time horizons capturing compounded learning effects. Additionally, we show that
depreciation and adoption costs moderate the influence of WOM on the optimality of seeding. In
the absence of these factors, stronger WOM effects alone cannot make seeding superior to other
strategies; however, once either factor is introduced, strong WOM effects expand seeding’s opti-
mality region within the parameter space, increasing its relevance. Identifying ranges of adoption
costs and individual depreciation that render seeding optimal in some regions provides actionable
managerial insights. Relatedly, we map the parameter regions where each of the considered go-
to-market strategies emerges as optimal, information that is also highly relevant to practitioners.
Furthermore, under the main scenarios in Sections 3-5, T'LF yields the highest social welfare, even
though firms may prefer alternative strategies depending on parameter regions, revealing a notable
misalignment between societal and firm objectives. Our study informs policy makers and regulators
on when it could be socially beneficial to intervene in app markets and when not to. Solving sepa-
rately the non-trivial equilibrium strategies for each of the strategies in the presence of depreciation
and adoption costs adds secondary contributions - these complete characterizations can be used as
building blocks to further advance the exploration of each of these strategies.

Furthermore, in Section 7, we delved into how the emergence of Gen/Agentic Al can reshape
the optimal go-to-market strategy by influencing key market primitives and consumer learning
dynamics. In our unconstrained analysis, seeding proved optimal only within a relatively narrow
range of the parameter space. We show, however, that Gen/Agentic AI can shift the market
toward, or even broaden that favorable set, in particular enhancing the viability of S. Thus, this
AT revolution makes the insights of this work even more timely and consequential.

This study opens several avenues for future research. We identified two market factors that
sustain seeding as a viable strategy, yet further studies may uncover additional factors and refine
this theory. In the context of a longer horizon, future studies could also explore hybrid strategies
that mix aspects from multiple approaches (including combining features from S and T'LF’), or more
adaptive strategies. Moreover, the discussion in Section 7 motivates an empirical future research
agenda to quantify all mentioned GenAl-induced effects on go-to-market strategies. Lastly, our
analysis incorporates the role of network externalities in the social learning process. Future research
can also investigate how non-targeted seeding and the other strategies fare against each other in

the presence of direct network effects at the consumer utility level (whereby larger installed bases
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directly drive up the utility of adopters through value exchange and collaboration). Intuitively,
seeding should benefit from direct network effects because the perpetual license of the seeds would
ensure a minimum added boost at utility level (due to a non-zero initial installed base) for every
prospective consumer at every future stage. We therefore expect our results to continue to be robust
to some extent even in the presence of direct network effects. Interesting additional dynamics are
likely to emerge in models that integrate both direct network and WOM effects, as non-adopters
would be drawn to the market not only through WOM-based prior updating but also through
expectations about the magnitude of the installed base, with the sequencing of these mechanisms

potentially influencing how they perceive the benefits of such direct network effects.
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Electronic Companion

Don’t Count Non-Targeted Seeding Out Just Yet
Y. Dou, H. Hu, M. F. Niculescu, D. J. Wu

A Summary of Key Notation for Main Setup (Sections 3-5)

Table A1l: Summary of key notation.

Symbol Description

0 Consumer type

a True product quality (normalized to 1 w.l.o.g.)

at Consumers’ perceived valuation at the beginning of period ¢, with
te{1,2}

Level of deviation in valuation in ex-ante (prior) beliefs
Use-based value depreciation

Adoption costs incurred by consumers

Strength of WOM effects

Price of the product

Seeding ratio under S model

Firm’s profit

>3 T 2 0 >0

i Size of paying population in period ¢, with ¢t € {1,2}
Ni total Size of installed base (including paying, free trial, and/or seeded
consumers) in period ¢, with ¢t € {1,2}

B Proofs of Results for the Baseline Setup

We first present the optimal strategies under each of the business models separately. The solutions
for pricing and profit for CE-PL and S are reproduced from Niculescu and Wu (2014) for readers’
convenience.

Proposition B.1. [expanded from Proposition 1 in Niculescu and Wu (2014) to include social
welfare] Under CE-PL model, the firm’s optimal pricing strategy, profit, and ensuing social welfare

are:

0<a<13-4V10 13—-4vV10< «

* 2 2
PCE-PL T-a (1 - Hiaa) @
* 20[(\/ 1+a—\/ﬁ)2 (6%
TCE-PL -2 2
* _ 14204202 3
SWep-pL 1 2(14a) (VI+a+v2a)? 4

Paid Adoption in both periods only in period 1




Proof. See Proposition 1 in Niculescu and Wu (2014) for the derivation of pfp_p, and nf&p_py.
The social welfare derivation follows trivially. O

Proposition B.2. Under CE-SUB model, the firm’s optimal pricing strategy, corresponding profit,
and ensuing social welfare are:

0<a<l l<a<3 a>3
PCE-SUB p 1%04 5
~ D p
TCE-SUB p <1 atl- 1+ﬁﬁ> Tra 1

wh—t
ool

2
p 1 2tdatl
SWee—sup <a> -2 <1+p_> %
Subscription in both periods in both periods only in period 1
(paid adoption)

where P is unique solution to the equation 203 —2(a —1)2p3 + (a — 6)(a — 1)ap? + 2(a — 3)a?p = 0
on the interval (0, ).

Proof. In period 1, consumers subscribe iff af > p. To make any profit, the firm is constrained
to set 0 < p < a. The marginal adopter has type #; = £ and the installed base in period 1 is
Ni=1- g. All period 1 adopters learn the true quality of the product in the first period. In the
beginning of period 2, the non-adopters from period 1 update their priors through social learning
froma; =atoaz=a+(1—a)(l—2)=1+p— 2. We have two cases:

e Case 1: 0 < < 1.
In this case, a1 < as < a = 1. All period 1 adopters will renew the subscription in period 2.

The marginal customer type 65 satisfies 65 = + < 01. Therefore, the number of adopters

1+

—L . The firm’s proﬁt maximization problem becomes

in period 2 is No =1 — T

HlaXﬂ‘CE SUB—maX 1—8—{—1—L .
0<p< 0<p< « 1+p—§

Differentiating mcg_syp with respect to p we obtain:

Orce-suB(p) 202 — 2(a — 1)?p3 + (a — 6)(a — 1)ap? + 2(a — 3)ap
op ala+ (a—1)p)? '

The denominator is positive. Denote the numerator as g(p) 2 202 —2(a—1)%p? + (o —6)(a —
ap? + 2(a — 3)a?p. Thus, the sign of drcp_sup(p)/dp is the same as the sign of g(p).
Differentiating ¢g(p) w.r.t. p, we obtain:

(?fég?) = =2(a+ (a = 1)p) (3(a = )p — (a - 3)a).

‘We have two subcases:

— If o =1, then 242 = —20%(3 — a) < 0 for all p € (0,a).



— If « < 1, then, 8%—2’” = 0 has two solutions, p; and ps on the real line, but they are both

outside the interval (0,«). More precisely, o < p; = gz;fio)é < p2 = 72. Thus, when

a<1,8%7§f)<0forallp€(0,a).

Thus, when « € (0,1], g(p) is decreasing in p over (0, ). Given that g(0) = 223 > 0 > g(a) =

—at(1 + ), there exists a unique p € (0, ) that satisfies g(p) = 0. Thus, (%E:{)i;m?(m >0

when p € (0,p) and 5’770155721119@ < 0 when p € (p, ). As such pfp_gyp = P is the optimal
price. The formulas for the optimal profit and associated social welfare follow trivially.

e Case 2: a > 1.
In this case, a1 > as > a = 1. None of the period 1 non-adopters will subscribe in period 2
(they value in period 2 the product even less than in period 1). Also, only part of the period
1 adopters will renew the subscription in period 2. Since all adopters from period 1 updated
their priors to ag = a = 1 The marginal customer type 5 satisfies #3 = min{1,p}. We have
two subcases:

— Case 2-i: 0 < p< 1.
Then 65 = p and No = 1 — p. The firm’s profit maximization problem becomes:

_ P
max Tcp—syp = max p|l——+1—p].
0<p<1 0<p<1 «

We have Z7mcr—sus®)  (  From FOC, we obtain the following interior solution

Op?
* .« : * .« * _ oa?44o0+1
POE—SUB = Tiq- Thisleads to 76p_gup = 155> SWep—sup = 2(1+a)?

— Case 2-ii: 1 <p<a.
Then 62 = 1 and Na = 0, i.e., none of the period 1 adopters will renew the subscription
in period 2. The firm’s profit maximization is simplified to:

p
max mogp—_syp — Imax (1 - .
1<p<« 1§p<ap (0%

We need to consider two subsequent subcases:

x Case 2-ii-a: 1 < a < 2.

Then we have a corner solution ppp_gyp = 1, which yields 75 p_gyp = %5~ and

* _ 1 1
SWC’E—SUB — 2 2aZ

x Case 2-ii-b: a > 2.
Then we have an interior solution pfp_gyp = 5, which yields 75 ,_gyp = § and
* _ 3
SWC’E—SUB - 8

fl<a<3, 452 max{aT_l,%}. If > 3, then § > 13, > O‘T_l Comparing 75 p_syp

values among subcases, the results follow immediately. O

Proposition B.3. Under TLF model, the firm’s optimal pricing strategy, corresponding profit,
and ensuing social welfare are pp;p = %, TrLE = i, and SWipp = %, respectively.



Proof. Under TLF, all customers get the product for free in period 1, i.e., Njtotqr = 1 (but the
number of paying customers is N = 0) . Consequently, in period 2, all customers update their
prior on quality to ao = a = 1. Thus, customers purchase the product if and only if their types
satisfy 8 > p, yielding No = 1 — p. The firm’s profit maximization problem becomes:

max TrLFp = max p(l —p),

0<p<1
which, in turn, yields pp; p = 2 and T p = % The social welfare is fo 0do = for period 1 and
f 0d6 = 2 for period 2, which gives SWj, » = L. O

Proposition B.4. [expanded from Proposition 2 in Niculescu and Wu (2014) to include social
welfare] Under S model, the firm’s optimal pricing strategy, corresponding profit, and ensuing social
welfare are:

O0<a<ag as <a <13 —44/10 a>13—44/10
* 1-2

ks 2(1—3) 0 0

X 1 2 2
Ps 1 Ta (1 - Hiaa) .
% 1 2a(vI+a—v2a)? a
s 16(1—a) (1-a)? 2
* 11—-16a _ 1+20+4202 3
SWs 16(1—a) 1 2(14a) (VI+a+v2a)? 4

Paid adoption only in period 2 in both periods only in period 1

where ag == 0.065 is the unique solution to the equation fs(a) = 0 over the interval (0,13 — 4+/10),

with fs(a) £ 16(11—a) - (\/ﬁji\/ﬁ)f

Proof. See Proposition 2 in Niculescu and Wu (2014) for the derivation of p§ and 7§. The social
welfare derivation follows trivially. O

Lemma B.1. If0 < a <1, then a((a+3)) <7mop_sup < aézill)

Proof. [Derivation of the lower bound]

e max (p) >m (p) | _ola+3d)
CE-SUB _0< CE-SUB\P) Z TCE-SUB\P) |p=a/2 — 4(0(—1—1)
[Derivation of the upper bound]
Recall from the proof of Proposition B.2 that p satisfies g(p) = 0 and g(p) is decreasing in p over

(0,c). Given that g(%) = (1 — a)a® > 0, we have ¢ < j < a. Also, it can be easily shown that
the profit function satisfies:

P p p o
=2 ) <p(1-2r1-E ) we(5.a).
p< at —§+p+1>—p< ot +1> PEge

ol

[Nlis
|



Denote h(p) £ p (1 -2 41— 34 ) Then, 755 _gyp < h(p). We next derive an upper bound

Q_l+1
2 2
for h(p). As h(p) is a concave quadratic polynomial in p, we can use F.O.C to derive its max-
imum on (§,a). Setting 8%—2’) = 0, we get the interior solution p; = ag(gill) € (§,a). Then,
~ +1
Top—sup < h(P) < hip}) = agfgﬂ)- O

Proof of Proposition 1.
We have two cases:

e Case 1: 0 < x < 1.
[Firm’s optimal strategy | We have several subcases:

—Casel-: 0<a< %
Then, it can be easily seen that 7}, > max{n};_p;,75}. So we are left to compare
TrLp = % with 75 ,_gyp- We define

D D 1
A(pla),a) & 18 _sup — Trpe = Bla) | 1 - 2 Ly ) p(oj) 1
« e —i—p(a) +1
where p(a) was defined in Prop. B.2. Form the Envelope theorem, for a € (0, 3], we
obtain:
IA(p(a), ) _ o (1 ()
o - > 0.
da p(e) a2t (a+ (a—1)p(a))?

Thus, A(f(a),a) is increasing in o for o € (0,1]. From Lemma B.1, we see that

. 3
A(p(a)>a) a:% = Wé’EfSUB ‘azl/g - % > Z((:Il)) |o¢:1/2 - % = % - % > 0. MOI‘GOVGI',

from Lemma B.1, we have lim, o A(p(a), o) = lima 0 75 p_gup —% < limgo aégii) —% =

—% < 0. Hence, there exists a unique @ € (0, %) such that A(p(a), @) |a=a = 0.

Thus, TLF is the dominating strategy on the interval (0, @), whereas CE-SUB is the
dominant strategy on the interval [a, %}

— Case 1-ii: % <a<l.
Then, it can be easily seen that 7fp_p; > 7 p and 75, p, = 7§ (more precisely,
S defaults to CE-PL). Thus, we only have to compare nf,_p; and 7f5p_gyp. Using

Lemma B.1, we have n/p_oyp = Z((;ils)) > % = 7&p_pr- Thus, CE-SUB is the

dominant strategy.

[Social welfare comparison| It can be shown with relative ease, through direct comparisons of
closed form solutions, that SWi; p = £ > max{SWgp_p,, SWE} for all o € (0,1). Thus, we
only have to compare SWr; » with SW{ L _ o 5- We have shown in the proof of Lemma B.1



that p(a) € (5, ). It is straightforward to see that:

SWE —111521 D 211]527—SW*
Ce-suB=17 5\, T3 W <i735\y) Sg=°"rer

Thus, TLF yields the highest social welfare.

e Case 2: o> 1.
It can be seen from Propositions B.1-B.4, by comparing profits and social welfare values, that
CE-PL is the dominant strategy in terms of the profit®-! and TLF is the dominant strategy

in terms of the social welfare. O

C Proofs of Results for the Setup with Individual Depreciation
We first present the optimal strategies under each of the business models separately.

Proposition C.1. Under CE-PL model, in the presence of exogenous individual depreciation, the

firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare are:

(a) 0<a<b5+8\—4/(1+A)(1+4)\) | (b) Otherwise

. (A1) (aA+1—+/a(A+1)(a+1)
Pce-pL ( 1—a)(art1) ) sa(l+X)

. (A1) ( 2ax+a+1-24/a(A+1)(ar+1)
TCE-PL ( =L ) %a(l + )

SWegpr SW cp.-prL 3(>\8+ R
Paid adoption in both periods only in period 1
where SW cp_pr, = Sl1+A— a®(A+1)? . — A ).
(a)\+ a()\+1)(a)\+1)+a) (a)\+ a(A+1)(aA+1)+l>

Proof. In period 1, consumers purchase the product iff (1+ \)af > p. To make any profit, the firm
is constrained to trigger adoption in period 1 (otherwise, no customer would update their priors
and there will also be no adopters in period 2 either). To achieve that, the firm has to set price
p € (0,(1 + A)a). The marginal adopter has type 6, = (1+¢/\)a and the installed base in period 1 is
N1:1—91:1—(1++)a.

At the beginning of period 2, the consumers who did not adopt in period 1 update their priors

via social learning from a; = « to:

P )—1+(a_1>p

ag—al—l—Nl(l—al)—oH—(l—a)<l—a a(1+>\).

1+ N

In period 2, new consumers purchase the product if their type 0 satisfies a2 > p. It immediately

follows the marginal potential consumer in period 2 has type 6y = ﬁ. We have new adopters

ooy

in period 2 iff 0 < Ay < 6;. We have two cases:

B-1We point out that S defaults to CE-PL in this region as k* = 0.



e Case 1: 0<ax<l1
In this case, we have two subcases:

— Case 1-i: O<p<w<a(l+)\).

Then we have 0 < 0y < 61. Then, Ny = 61 — 0y > 0. In this case, the firm’s profit

maximization problem becomes:

p
max TCOE—_PL = max pll— ————
a(A+1)(1—a—aX a(A+1)(1—a—aX (Offl)p
( )1(7(1 ) 0<p< ( )1(7(1 ) 1+ a0F1)

0<p<

It can be shown that 82”3% < 0 for p € (0, %f“—w\)) Thus, it is sufficient to
solve FOC:

Orcp-rL _ oA+ 1)* + (1 — a)p?(ad +1) — 20(A + Dp(ad + 1)

ap (aX+a+ (o — 1)p)2 =0

Without constrains, the FOC yields two solutions:

a(A+1) (a)\ + 14+ a(A+1)(aX+ 1))

pr= 1—a)(ar+1) ’
a(A+1) (a)\ +1—a( + D(ar+ 1))
P2 = 1—a)lar+1) '

a(A+1)(1—a—al)
l-a

a(A+1)(1—a—al)

T— , we get

It can be shown that p; > . Comparing py with

two subcases:

* Case l-i-a: a(A+1)(ar+1) <1
Then 0 < p2 < w It immediately follows that pfp p;, = p2 =

a(>\+1)(a>\+1— oc()\+1)(a)\+1)) i} a(/\+1)(2a)\+a+1—2 a()\+1)(a>\+1)>
(I—a)(ar+1) ;and Top_pp = =L .

* Case 1-i-b: a(A+1)(aX+1) > 1.
Then %fa’\) < po. In this case, we have the corner solution pfp_ p, =

a(A+D)(1—a—aX) & a2+ (1—a—a))
I—a » TCE—PL = i=ay? .

— Case 1-ii: W <p<aA+1).
Then 65 > 0,. In this case, Ny = 0; adoption takes place only in period 1. The firm’s

profit maximization problem becomes:

p
max TCE—_PL = max D (1 — > .
a(A+1)1(i;a7a/\) §p<(1+)\)a @(/\+1)1(i;04*aA) §p<(l+)\)a @(1 + A)

Since the function is quadratic, it is sufficient to use FOC. Unconstrained, FOC yields



the following solution:

1
p3 = §(a+a)\) < (14 Na.

a(A+1)(1—a—al)

Comparing p3 with s , we have two subcases:

* Case 1-ii-a: a + 2a) > 1.
Then %f‘_a’\) < p3 < a(A+1), and, thus, plyp_p;, = p3s = 3(a + a)) and
Top—pL = %(OZ +a);

x Case 1-ii-b: a + 2aX < 1.
Then p3 < W Then, we have the corner solution pf.p_p, = w,
a?A(A+1)(1—a—a)
Ta?

* _
ToE—-PL =

Comparing case 1-i and case 1-ii, we can get the optimal solution and the associated social
welfare for case 1:

cx()\—l-l)(a)\—l-l— a()\+1)(a>\+1)>

—If0<a<5+8\—4y/(1+A)(1+4)), then pLy_p;, = =)@ D) ,

a()\+1)<2a)\+oz+172w/a()\+1)(a)\+1)>

(1-a)?
SWep—pL =13 (1 tA- (

— 548 =4/ (1 + N (1 +4)\) < a < 1, then pip_p; = s(a+a)), Thp_pr = F(a+al),
and SWgp p, = 22,

* —
TCE-PL = , and

a?(A+1)? _ A )
2 2 9
arty/ad D@ +a)  (arty/aQF @At )+1)

e Case 2: a>1
In this case, a1 > a9 > a = 1. None of the period 1 non-adopters will purchase in period 2.
The firm’s profit maximization problem is:

max

p
_pL = 1—— .
o<pe(lira CETE P < a(l + A))

Since the profit is quadratic in p, we can derive the solution from FOC. We get pf.p_p; =

Proposition C.2. Under CE-SUB model, in the presence of exogenous individual depreciation,
the firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare are:

(a) 0<a<A<1

() A<a<al

(c) at <a<1

(d) 1< a<max{3X 1}

(e) a > max{3X,1}

X
PcE-suB

X
TCE-SUB

*
SWCE—SUB

Paid adoption

Pa

TCE-SUB,a

SWeE-suB,a

in both periods

Py

TCE-SUB,b

SWecEe—suBb

in both periods

(o3
Jail

[e3

(va+1)®

2y/a+1
2(va+1)”

in both periods

al
a+A

al
a+A

1 )\([12+/\)
2 (1 TA = oz

in both periods

ENISN T[]

oolw

only in period 1




where:

- pa € (%, a) is the unique solution to the equation Gsyp.q(p) = 203 —2(a—1)*p? + (o —6)(a—

Dap? + 2(a — 3)ap = 0 over the interval (0,q), TcE—SUB.a = Pa (2 — Pe Hp”ﬁ), and
_1 Ap; 2 )
SWeE-sUBa = 3 (1 +A—= T3 - (lml_p;)z>7

-pp € (%,)\) is the unique solution to the equation Gsypp(p) = 202X + (a — 1)p?(a(X —
4) — 2)) — 2(a — 1)?p3 + 2ap(a(X — 1) — 2)) = 0 over the interval (0,)), Top—supy =

2
1 P 1 .
pb( —I}—H}f;’m)) and SWop-suBp = 3 (1+/\_Ab_(1+pb_pb)2 ; and

- threshold o is defined in implicit form in the proof, in equation (C.1).

Proof. In period 1, customers subscribe iff af > p. To make any profit, the firm is constrained
to set 0 < p < a. The marginal adopter has type 6; = £ and the installed base in period 1 is
Ny = 1— 2. All period 1 adopters learn the true quality of the product in the first period. At
the beginning of period 2, the period 1 non-adopters update their priors via social learning from

alzatoagza—k(l—a)(l—g):1—|—p—§. We have two cases:

e Case 1: 0 < < 1.
In this case, a1 < as < a = 1. The marginal customer type for period 1 non-adopters at the
beginning of period 2 is , = ﬁ < 61. Thus, all customers with types 6 € [02,61) are new
adopters in period 2 (i.e., fresh subscribers). For period 1 adopters, while their valuation of
the product increased, due to individual depreciation, there is a limited residual value that
they can extract in period 2. These past adopters make another decision at the beginning of
period 2 on whether to renew subscription or abandon the product. A period 1 adopter with

type 0 will renew subscription in period 2 iff p < A0. We get several subcases:

— Case 1-i: a < A <1.
Then p/A < ;. All period 1 subscribers renew the subscription in period 2. The profit
maximization becomes:

max TCE_SUB = max p 1—8—1—1—L .
0<p<a 0<p<a « 1+p—2¢

It can be shown that SOC is satisfied (%C(,f% < 0). Hence, FOC is sufficient to

determine the optimal price:

Orcp—sup _ 203 —2(a —1)*p* + (a — 6)(a — 1)ap? + 2(a — 3)a?p

dp ala+ (a—1)p)?
When solving FOC (&TC%# = 0), it is enough to look at the numerator.
Denote Gspp.a(p) = 203 —2(a—1)%p® + (a — 6)(a — 1)ap? +2(a — 3)a?p = 0. It can be
easily shown that Gsup,q(p) is decreasing in (— oo, g‘g’(:‘ic)“), increasing in (gﬁf{);;, ),

3—a)a a
g(l—i) <1a

and decreasing in (ﬁ, —|—oo). Moreover, a <



Evaluating Gsup,q(p) at various threshold points allows us to further narrow the bounds
for pg:

a

GsuB,a(0) > Gsupy (5) > 0> Ggsupala) > GsuBa <

«
GsuB,a (1 — a) < 0.

Thus, Gsup,q(p) = 0 has a unique solution p, € (%, a) over the real line, which is also

the price value maximizing the profit in this region. More precisely, 87@%% > 0 for

p € (0,p,) and 87@%% < 0 for p € (pg, ). The formulas for the optimal profit and
associated social welfare follow trivially.

— Case 1-ii: A < a < 1.
We explore two subcases:

x Case l-ii-a: A <p < a.
Then p/A\ > 1 > 6;. In this case, all period 1 subscribers (customers with type
6 € [01, 1]) unsubscribe in period 2. The profit maximization problem becomes:

max Top_syp = max p lfBJrBfL = max p 1—L .
A<p<a A<p<a a a 1+p-2 A<p<a l1+p-2

2
It can be shown that BW%E% < 0. Thus, FOC is sufficient to determine the

optimal price. Solving the unconstrained FOC:

Orcp-sup _ o +p° —a(p+2)p _ 0
p (a4 (a—1)p)? ’

we get two candidate solutions:
o

(6%
hh=1"/a 1+ Ja

It immediately follows that p; > a and ps < a. Thus, ps is the only feasible candi-
date against the upper bound. Comparing ps and A (the lower bound), we get two

and po =

subcases:

- Case 1-ii-al: 1+Oi/a <\

Then p¢p_gyp + A, which is a corner solution and is weakly dominated by the
case when p < A (case 1-ii-b).

- Case 1-ii-a2: —%— > \.

Itv/a
We point out that this subcase is feasible only when 0 < A < % and Wﬂf AN

0]

* _ [0 * — * —
0% S 1. Then pCE*SUB = m, WCE*SUB = W, and SWCE*SUB =

10



2y/a+1
2(Va+1)”’

*x Case 1-ii-b: p < A
Then 1 > p/A > 6;. In this case, period 1 subscribers with type 6 € [61,p/))
unsubscribe in period 2. The profit maximization problem becomes:

p p D p p p
max mop— = max l1- - +1—-~4+~-— ———— ) =max 22— == ——].
NAXTCE-SUB pg,\p( a+ )\—i-a 1+p§) pg/\P( (;;)

2
It can be shown that (BM%E% < 0. Thus, FOC is sufficient to determine the

optimal price. The FOC of the profit function is:

OmCcE-SUB 202X + (@ — Dp?(a(A — 4) — 2X) — 2(a — 1)%p® + 2ap(e(A — 1) — 2)) -0
o Aa +ap —p)? o

Denote Gsyp p(p) £ 202+ (a—1)p?(a(A—4)—2X) —2(a—1)2p3+2ap(a(A—1)—2)).
a(1=X)+2X
3(1—a)

—|—oo). Moreover, under the current

It can be easily shown that Gsyp(p) is decreasing in ( — 00, ), increasing

in (%, ﬁ), and decreasing in (

(0%
T—a
a(1=X)+2X
case, A < T3(—a) < ﬁ.
Evaluating Gsyp(p) at various threshold points allows us to further narrow the

bounds for p,. In particular, since we are in the case A\ < a < 1, we have:

A
Gsupp(0) > Gsupyp <2) > 0> Gsupp(N) > Gsupp (

«
GsuBp (1> <0.
—

Thus, Gsypp(p) = 0 has a unique solution py, € (%, /\) over the real line, which is also

the price value maximizing the profit in this region. More precisely, 8”0%# >0

a(l —X)+2X
3(1 —«) >’

OTCcE-_SUB

for p € (0,pp) and —=5 —~ <(0forpe (pp, A). The formulas for the optimal profit
and associated social welfare follow trivially.

We next need to compare the optimal profits under cases 1-ii-a2 and 1-ii-b for the region in

which we can simultaneously have A < o <1 and ; +°‘\/a > \. As mentioned above (under the

A/ )\2
discussion of case 1-ii-a2), that region is characterized by 0 < A < % and M <

a < 1. Define the difference between the optimal profits under cases 1-ii-b and 1-ii-a2 as:

E(pp(a, A), a, A) 2 o, \) (2 _ Po(a; ) . py(a, \) ) B Q

X Tap(an — 20N | T at )

«

where py(a, A) is the unique solution mentioned in case 1-ii-b. From the Envelope theorem,
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B > S,

Itva’

and using pp < A < we obtain:

aa(pb(aa)‘)va7)\) pb(aa)‘)g 1

da C(a=(1-a)p(aN)? (Va+1)?
Py, \)? (1 + V) — (a — (1 — a)pp(e, N))?
a,A))2(1 + ya)3

<

B
|
=
|
Q
s
®
=
=
=

Thus, Z(pp(a, A), a, A) is decreasing in .

Note that, since py(-) maximizes the profit under case 1-ii-b, it also maximizes =(p, -) under
the feasible region and it is a strictly interior solution. As such, since Z(py(c, \),a, A) >

E(p, o, A) |p=n for all a € (Wﬂf ‘)‘QH)‘), 1} when A < 3. By applying this inequality, the
fact that a +f‘/a)2 = %2 when a = Wﬂf “’\ZHA), and a few algebraic manipulations of the

grouped expressions, we get the sign of = at that lower boundary for «:

= a,\),a, A y > E(p,a, A y
(pb< ) )7 ) )‘a_A(A+2+\2/AZ+4A)))O<)\<é (p7 ) ) p:A’a:A(A+2+\2/AZ+4A)’0<A<%

A A 2
3 —
2

At the upper boundary, when o« = 1, we can directly solve py(1,\) = 1%\ Thus, Z(pp(1, ), 1,\) =
A

o %. It immediately follows that:

<0 f0<A<3,
>0 iff<A<i

E’(pb(17 )‘)7 L, /\) {

Given that Z(pp(a, \), a, A) is decreasing in «, then, Z(py(a, A), @, A) > 0 when % <AL %
and AQ+2HVIFDY)

2
under case 1-ii-a2.

< a < 1. As such, in this region, profit under case 1-ii-b dominates profit

However, when 0 < A < %, we have a single crossing. In other words, there exits a unique

threshold &' e (Wﬂf *AQH)‘), 1] such that Z(py(af, \),at, \) = 0, Z(py(a, \),a, A) > 0 for

all a € (A, al), and Z(pp(a, \), a, ) < 0 for all a € (&', 1]. Denote af as:

~ . 1
aTé{aT’ if0<A<g, (C.1)

1, ifi1<Aa<l

Then, we obtain that Case 1-ii-b dominates Case 1-ii-a when A < o < af and Case 1-ii-
a dominates Case 1-ii-b when af < a < 1. Defining o as in (C.1) ensures that region

12



af < a <1 vanishes if feasibility conditions are not met.

e Case 2: a> 1.
In this case, a1 > as > a = 1. None of period 1 non-adopters will subscribe in period 2. Also,
only part of the period 1 adopters will renew the subscription in period 2 because of tandem
pressure from both the downward updating of the valuation and the individual depreciation.
The marginal subscriber in period 2 has type 65 = min {1, g} > #,. We have two subcases:

— Case 2-i: 0 <p <A
Then, we have 6 = £ and Np = 1—%. The firm’s profit maximization problem becomes:

max TOoE—SUB = maxp(l—g—i—l—g).
0<p<A 0<p<A « A

52
We have ‘M%E# < 0. From FOC, we obtain the following interior solution pf.p_ g5 =

al T* al
atx’ "CE—-SUB — a+x-

— Case 2-ii: A<p<a.
Then, we have 3 = 1 and Ny = 0. The firm’s profit maximization problem becomes:

p
max Top—SyB = Imax p (1 — —) .
A<p<a A<p<a o

We have two subcases:
x Case 2-ii-a: o < 2.
This case is feasible only if ; < A < 1. Then, p*CE sup = A and Top_oup =
A (1 — 7) However, we do notice that (1 — 7) < m As such, case 2-i dominates
case 2-ii-a and we do not have to consider case 2-ii-a going further.
« Case 2-ii-b: o > max {2, 1}.

Then, ptp_syp = 5 and 1op_gyp =

[0

Comparing profits under cases 2-i and 2-ii-b, we get:

* If a < 3\, then plp_oyp = ;“—J:‘A, TOE_SUB = a+)\’ and SWip_syp = 7<1 + A —
A(a2+))
(a+2)?
define this region as 1 < o < max{1,3A} in the text of the proposition and we point

). We point out that this case is only feasible when A > % This is why we

out this region vanishes when A\ < %

* _«a * _« * _ 3
* If a >max{1,3\}, ptp_sup = 5> Tep—sus = 1> and SWip_oyp = - -

Proposition C.3. Under TLF model, in the presence of exogenous individual depreciation, the
firm’s optimal pricing strategy, corresponding profit, and ensuing social welfare are given by p7;p =
%’ TTLp = %’ and SWrpp = % + %

Proof. Under TLF, all consumers get the product for free in period 1, i.e., Ny totqr = 1 (but the
number of paying customers is N; = 0). Consequently, in period 2, all customers update their prior

13



on quality to as = a = 1. Taking into account depreciation, customers purchase the product in
period 2 iff their types satisfy A > p. The firm’s profit maximization problem is:

max m=p (1 — B)
0<p<A A ’

N[

which yields p7; » = %, T p = %, and SW;, p = % +

Proposition C.4. Under S model, in the presence of exogenous individual depreciation, the firm’s
optimal pricing strategy, corresponding profit, and ensuing social welfare are:

(a) 0<a<ar | (b) af <a<b5+8\—4/(T+N)(1+4N) | (c) a>5+8\—4/(1+N)(1+4N)
K Aioa) 0 0
P 1 Q(AH)(Q?E;)W) La(142)
- m z;v()\Jrl)(2&)\+a4;11:i\)2/a(>\+1)(a)Hrl)) Lol 4 )
SWE 7“12???8&” SWep-pr 3(1;/\)
Paid adoption only in period 2 in both periods only in period 1

where threshold o is the unique solution to equation a(32a(A+1)(8c(A4+1)—6A—7)+321+33)—1 =

. 2A(6A+13)+14—(A+1)1/48A(BA+5)+97 1
0 over the interval < BOT)? , 4()\+1)>.

Proof. First, we point out that CE-PL is a particular case of S with seeding ratio set to zero.
Throughout the proof, we will show that in certain regions CFE-PL dominates S with non-zero
seeding ratio - that is equivalent to saying that the optimal seeding ratio will be 0 in those regions
(i.e., S defaults to CE-PL).

If a > 1, seeding brings no benefit as any social learning calibrates perceived valuations downwards,
and, as such, S defaults to CE-PL.

Thus, we are left to explore the non-trivial case of 0 < a < 1. We have two cases:

e Case 1: 0 <p< (14 X)a.
There are paying adopters in period 1 (potentially alongside seeded customers if k& > 0).
The marginal paying customer in period 1 has type #; = ﬁ. Then, the total number of

adopters in period 1 is Ny torqr = (1—k) (1 — ﬁ) + k. In period 2, the potential customers
who have not adopted in period 1 update their prior beliefs via social learning as follows:

az = a1 + Nitotar (1 —a1) = a+ (1 — ) <(1_k) (1_a(1p+)\)>+k> ZI_W

A customer of type 6 who has not adopted in period 1 (via paying for license or through the
seeding program) will adopt in period 2 iff §; > 6 > 6y = W. Comparing #; and
IRV
aA+1)(1—a—a))
(I1-a)(1—k)

05, we have:

01 >0 <<= 0<p<

14



‘We have two cases:

— Case 1-i: o+ aX > 1.
In this case, we have 0 > 0, for any k € [0,1). There are no paying adopters in period
2. The firm’s profit maximization problem becomes:

max TS = max p(l—k) JE——
0<p<(1+N)a, 0<k<1 0<p<(1+A)a, 0<k<1 a(l+ M)
It trivially follows that kg = 0. S defaults to CE-PL.
— Case 1-1i: a4+ a) < 1.
We have:
aA+1)(1 —a—al) a\

<(I+MNa <<= 0<k<

1-a)1-k) l-a

Subsequently, we have several subcases:

x Case l-ii-a: 0<p<Wand0§k<la—’\

In this case, 62 < 6;. Customers with type 6 € [f2,601), who have not been seeded
in period 1, adopt in period 2. The firm’s profit maximization problem becomes:

p
max TS = max (1 — k) 1-— W .
A+1)(1 A) u>\ A+ 2) >\ N G A LY 4
0<p< 2OFDUeZad) o< fe 2 0<p<aCill arad) o<pc et 1 PIEESY

Taking first order derivative of the profit w.r.t. p, we get:

ors _ (1=k) [@®A+1)° + (1 = a)(1 = k)p*(aA + (@ = Dk +1) = 2a(A + Dp(ad = (1 — o)k +1)]
o (1 =)@ =k)p—a(rA+1))? '

The denominator is always positive. We define the numerator as a function:
np) 2 a*PA+1)2+ (1 —a)1 —Ek)p*(ar — (1 —a)k+1) — 2a(X + Dp(ar — (1 — a)k +1).

n(p) is convex in p. Solving in unconstrained form the equation n(p) = 0, we obtain
two candidate solutions:

= aA+1D(ed = (1—a)k+1) — /a3(A+1)3(ar— (1 —a)k + 1)
b (1= a) (1 —k)(ar = (1 - a)k+1) ’
by — aA+1D(ar—(1—a)k+1)+/a?(A+1)3(ar— (1 —a)k + 1)
lI-a)l-Fk)(ar—(1—a)k+1) '

It can be easily shown that p; > 0 and py > ot a—ad) \roreover:

(1-a)(1—F)
aA+ 1)1 —a—ad) a(l+ N1 +ar) -1
PUS T )=k — sty -k

We need to consider several subcases:
- Case l-ii-a-I: a(1+ M) (1 +a)) >1
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.. . a(A+1)(1—a—aX a(1+2)(14aX)—1
O Case 1-ii-a-I1: 0 <p < W and 0 < k < W

In this case, p; > % Assuch, n(p) > 0forall0 < p < %
Thus, mg(p) is strictly increasing in p in this region and the profit in this case

is strictly dominated by the profit under Case 1-ii-b.

. . a(A+1)(1—a—aX a(1+2)(14aX)—1 al
O Case 1-ii-a-12: 0 < p < ( (1—)c£)(1—k) ) and (a(l—gv)(l—l-))\) <k<qi%

In this case, p1 < % As such, n(p) > 0 for all p € (0,p1) and

n(p) < 0 for all p € <p1, %) Thus, p§ = p1. The profit function

can be simplified to:

o — —2/a3A+ 13 (A= (1 —a)k+1) +a(A+1)(2ar+a— (1 —a)k + 1).

(1—a)?(1-Fk)

It is straightforward to show that o > 5 +8X —44/(1 + A)(1 + 4)) in this case,

which corresponds to the second case under CE-PL. For any k € (%,

%), it can be easily shown that mg(k) < (1 + A) = 75p_p,. Therefore,

this case is sub-optimal, as it is dominated by not seeding anyone.

- Case 1-ii-a-IL: (1 + A)(1 4+ o)) < 1.
In this case, it immediately follows that

a(l—a)(1+XN)
%. Similar to case 1-ii-a-12, we have p§ = p;. Following the same

steps in Case 1-ii-a, we get kg = 0. S defaults to CE-PL.

N+l ) < b Thus, p; <

+ Case 1-ii-b: “GHUGe0d) <) < (14 N and 0 < k < 2.,

In this case, 82 > 6;. There are no new adopters in period 2. The firm’s profit
maximization problem becomes:

max s = max p(1—k) (1 - %) .

<p<(1+M)a, 0<k< 22, RO <pe (142 o, 0<h< 122 1+X)

a(A+1)(1—a—ar)
T -k

It trivially follows that kg = 0. S defaults to CE-PL.

+ Case 1-i-c: 0 <p < (1+ N and 22 <k < 1.
In this case, p < (1 4+ MNa < %
0 € [02,01), who have not been seeded in period 1, adopt in period 2. The firm’s

. Then, 6 < 6. Customers with type

profit maximization problem becomes:

max TS = max p(1—Fk)|[1—- %
0<p< (14N ), 12 <k<1 0<p<(1+A)ar, 122 <k<1 1— %

Following the same steps as in Case 1-ii-a, we get the same two solutions, p; and
p2, to the equation n(p) = 0. It can be easily shown that p; > 0 and p2 > (14 M)a.
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Moreover:

al

n<(l+Na =

- 1 4
Sk<min{ atad+ ol + A —l—oz—i—a/\’l}'

2(1 — «)

We have several subcases:

- Case l-i-c-I: ad + Va(A+ 1) (aA +a+4) + a < 2.

: 3 Ny ey
Then, it can be shown that % < atar+ 2?1(i4(;/)\)(4+o¢+m <1

T —atal 1N (4 )
O Case 1-ii-c-I1: 22 <k < atart 2‘2‘1(_2))( tatad
In this case we have p; < (1+A)a. Then, we have the interior solution p§ = ps.

The profit is simplified to:

a(A+1) (—2\/a()\ FDar— (1 -k + 1)+ (2ar+a— (1 — )k + 1))
(I-a)*(1—k) '

TS =

It is straightforward to show that 0 < o < 5+ 8\ — 4,/(1 +A)(1 +4)) in

this case, which corresponds to the first case under CE-PL. The first order

a\

derivative w.r.t. k satisfies ag—,f < 0. Hence, we have corner solution kg = %

The optimal profit is simplified to:

a(A+1) (a/\+a+1—2\/W)

s = (I-—a)(l—a—a))
a(A+1) <2a)\ +a+1-2y/aA+1)(a)+ 1))
< 1—a? =TCp-pL-

Therefore, this case is sub-optimal.

O Case 1-ii-c-2; —efedfyalN@ratar 00

2(1—a)
In this case, we have p; > (1 + A)a. We can see that, for any & in this region,

ms(p) is strictly increasing in p and the profit in this case is strictly dominated
by the profit under Case 2.

x Case 1-ii-c-II: aX + /a(A + 1) (@A + a +4) + a > 2.

. _ ST (Aot ok
Then, it can be shown that % <1< atoAt 2?1(i2?)(4+a+a)\. As such, when
O‘f)‘a < k < 1, we have p; < (1 + M), and, thus, we have the interior solution

1
pg = p1. Following the same step in Case lii-c-I1, we get kg = % and, following

the same reasoning, it can be shown that this case is sub-optimal as well.

In summary, we have shown that Case 1 either defaults to CE-PL or is strictly dominated
by CE-PL.
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e Case 2: p> (1+ Mo
In this case, there are only seeded consumers in period 1 (i.e., no unseeded customer is willing
to pay for the product based on priors). Hence, Nj totq; = k. At the beginning of period 2, the
un-seeded customers update their priors to ag = a+ (1 —a)k. The firm’s profit maximization
problem becomes:

max T = max p(1—Fk)(1— —C—
p>(1+X\)a, 0<k<1 p>(1+N)a, 0<k<1 a—ak+k

The profit is concave in p. The first order derivative w.r.t p is:

Org (l—k:)(oz-f—(l—a)k—Qp)'

Op a—ak+k

From FOC, the uncontrained optimizer is p = M We have:

200\
p>1+Na kz?iw,
—
20\ + « 1
— <1 A+1 —.
T—a < —  alA+ )<2

We get two subcases:

— Case 2-i: a(A+1) < 3.
Then 2014174&01 <1

x Case 2-i-a: 0< k< 2“11720‘
Then p < (14 X)a. As such, we have the corner solution p§ = a(A+1). The firm’s

profit maximization problem becomes:

max wg= max aA+1)(1—k) (1

0<k<292ta 0<k<2gAde

a(A+1)
a—ak+k)

We have:
Org a(A+1) (—ar —a+ (o — ak + k)?)

ok (o — ak + k)?
Solving the unconstrained equation %Lks = 0, we obtain two candidate solutions:

—a— A+1 — A+1
]ﬁ: @ a( + )<0<k2: ot a( + )
1—« 1l—«

mg is decreasing in k on (—oo, k1), increasing on (ki,k2), and then decreasing on
(k2,00). Comparing ko and 20‘11720‘, we get two subcases:

- Case 2-i-a-l: T <a(A+1) < 1.

Then, ko < 2?372«1 Thus, we get the interior solution kg = ko and 7y =
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()\+1)<1+a((1 )M ra)—2(1—a)y/af )\+1)

(I—a)?

- Case 2--a-Il: 0 < (A +1) < L.
Then, ko > 261@720‘ Thus, 7g is increasing in k on the entire region and this case
gets dominated by case 2-i-b-II.

* Case 2-i-b: M <k<l1.

In this case, p > > (14 A)a. Thus, we have the interior solution p§ = p = M

The firm’s profit maximization problem becomes:

1—-k k(1 —
max Tg= max ( o+ K oz)).
2adda <o 2adta < 4

The profit function is concave in k. We have:

Org 1
— =—-(1-2a—2(1 - .
s L1 —2a-2(1 - a)h

Solving the unconstrained equation agks = 0, we obtain the candidate solution kg =

21( 20‘) < 1. We also have:

20\ + «
l—«

=

<ks <<= a(A+1)<
We get two subcases:

- Case 2-i-b-I: $ <a(A+1) < 1.
Then, 20@74&04 > kg. As such, we get the corner solution k* = gol‘izo‘. Substitut-

I
ing k%, we obtain pf = a(A+1) and 7§ = a()\+1)2((11 gaa)(,\ﬂ))

- Case 2-i-b-II: a(A +1) < 3 1
Then, M > kg and we get the interior solution kjg = kg = 21(1:23) Substi-

tuting ks, we obtain pg = 1 and 75 = ﬁ-

Comparing Cases 2-i-a and 2-i-b, we get:

1o 1 1-2 1
* fa(A+1) <, pS:Z7k§:2(1 g)’ﬂg‘ 16—16a°

x If 1 <a(A+1) < 3, then p§ = a(A + 1) under both 2-i-a-I and 2-i-b-I. Comparing
the profits directly, it can be shown that Case 2-i-a-I dominates. Thus, kg = ko and

. a()\-l-l)(l+oz((l—a))\+o¢)—2(l—o¢) a()\-l-l))
Ts = (1—a)2 ’

[Comparison between S and CE-PL]
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Under both cases (i.e., when a(A+1) < 3), we get 0 < @ < 548X —4/(1 + A\)(1 + 4\).
(,\+1)(2aA+a+1 2w/a()\+1)(a)\+1)>

Therefore, in this region nfp_p; = i=a)? . We have two re-
gions to compare:

x If a(A+1) <1 then 7} =

1> It can be shown that:

1

16—16a "
a(A+1) < %, and

7TZ* > ﬂ'é'E,pL <~ (02)
32¢/a3(A+ 1)3(ad + 1) + 1 > (16X + 1)(2A + 1) + 16X + 17).

When S dominates CE-PL, we have SW = k% [ (1+\)0d0+(1—-k5) [1 s

ALk Lk
afozks+ks

0do =
AN+T—8a(A+1)
16(1—«)

Let us better understand the region characterized under condition (C.2).

o< a< 16>\+17+\/m then a(16a(A+1)(2A+1)+16A+17)—1 < 0.

Then, the inequality 321/a3(A + 1)3(aX + 1) +1 > a(16a(A+1)(2A+1) + 161+
17) is always satisfied.

C-1
If 16>\+17+\/m < 1oy ! then a(16a(A +1)(2A + 1) + 16X +

17) — 1 > 0. In this region, we have:

32/ a3(A+1)3(ar + 1) +1 > a(16a(X + 1)(2X + 1) 4 16X + 17)
= T(a) £ a(32a(A + 1)(8a(A+1) —6A—7) + 321 +33) — 1 > 0.

( ) —

= 0, we get two solutions:

s ~2M(6A+13) + 14 — (A + 1),/48A(3\ +5) +97
b 48(A 4 1)2
2A(6A +13) + 14 + (A + 1)/48A(3A + 5) —|—97
a9 — 2
48(N+1)
. 2 ~ 1 ~
It can be easily shown that 0 < TS WRTRY Ty VT N T <o < 001 < Qi

~ 2 ~
P(@) >0, 7T <16)\+17+\/32/\(12)\+23)+353> > 0, F(4(/\+1)) < 0, I'(dg) < 0.

In terms of monotonicity, I'(«) is increasing on ( 2

a
16A+17++/32X(122+23)+353’ 1)

and then decreasing on (&1, m] Therefore, there exits a unique af €

2 1 _
(16)\“” /—32)\(12/\+23)+353>4(A+1)>, such that I‘(ai) = 0. Thus, when a €

C-1We also verified that 2 < )\1 7y to make sure this region exists.
16A+17+4/32X(122+23)+353 4(A+1)
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,ot ), S dominates CE-PL, and when o € [ai, %),
16A+174+/32X(122+23)+353 (A1)

CE-PL dominates S.

Moreover, the range for at can be further narrowed to:

1 2 1
i ~
ae|loa,———— ) C )
< ' 4(A+1)> (16)\+17+\/32)\(12/\+23)+353 4N +1)

Thus, putting the two subregions together, S dominates CE-PL when 0 < a < at
and CE-PL dominates S when o € [ai, ﬁ .

x If L <a(A+1) < 3, it can be shown that:
e+ <1+a((1 —a)A+a)—2(1—a) a(A—i—l))
s = (1-a)?

a(A+1) (mx tat+1-2y/ar+ D(ar+ 1))
(1—a)?

*
= TCE-PL:

<

— Case 2-ii: a(A+1) > 3.
Then 2‘1‘1720‘ > 1 > k. Assuch p < (14 A)a. Thus, we have the corner solution
P& = a(A+1). Following the same steps as Case 2-i, we get threshold values k1 < 0 < ky.

Comparing ks with 1, we have two subcases:

x Case 2i-a: £ <a(A+1)<1.
a()\Jrl)<1+a((1fa))\+a)72(17a) a(/\+1)>

—« a(A
—otVel+) 9 =y

Then kg = ko = —
be shown that:
a(A+1)(2ar+a+1)—24/a3(A+1)3 (ar+1 . .
jaA+ 1) =ntp_pr 548 -4/ A+ 1)(@AA+1) <a < 15

Thus, S is dominated by CE-PL in this region.

. It can

ES
Tg

x Case 2-ii-b: If a(A+1) > 1.
Then, kg = 1 and mg = 0. This case is clearly suboptimal - in this region S
is obviously dominated by CE-PL since the latter generates non-zero profit when

1 C-2

Proof of Proposition 2.
When o > 1, by directly comparing profits and social welfare values from Propositions C.1-C.4, it

can be easily seen that CFE-PL is always the dominant strategy for the firm, whereas TLF' is always

“2We have 5+ 8\ — 4y/(A+1)(4X + 1) < 535 < a. In this region, n&p_pp = Ja(A+1).
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Figure C.1: Individual Depreciation Scenario - Optimal Business Model - Marked Boundaries

the strategy that yields the highest social welfare.
The bulk of the proof, below, is addressing the considerably more complex case 0 < a < 1.

Let us define:

at(\)  Lif0 <A< A,
041(/\) = Oéa()\) R if M <AL )\2,
Oéb()\) ,if Ao < A<,

and

A Lifl <A<
)\ é aC( ’ 4 = )
OQ( ) { Oéd()\) ) if )\3 <A< 17

where of(\) was defined in Prop C.4, and functions a,(-), ap(-), ae(-), aq(-), as well as constant
thresholds A1, A2, and A3 are defined and further analyzed below. For ease of identification, Figure
C.1 contains the illustration of these boundaries and thresholds (this is a more detailed version of
Figure 2 from the main body).

e Monotonicity of af()).
As discussed in the text and proof of Prop. C.4, af(\) represents the boundary between
the regions where S dominates CE-PL and the region where CE-PL dominates S (i.e., the
region in which S, under optimality, requires k* = 0, effectively defaulting to CE-PL). We
have shown that of(\) exists, it is unique (thus, it is well defined for all A € (0,1)) and it
satisfies:

)N+ 1) (mi(A)A ot +1—2y/af (N + D(aF (VA + 1)) )
(1—af(N)? 16 — 16at(N)

=0.
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Define:

a(A+1) (204)\—1—04—1—1—2\/@()\4-1)(04/\—!—1)) )

Tilen ) £ (I—a)2 T 1601 a)

We have Uy(at(M),A) = 0. At the same time, for all a, A € (0,1), it can be shown that:

oWy (a,N)  (aBX+T7)% + 16X+ 15)\/a(A+ 1) (e + 1) — 48a(A + 1)* — 160 (4A + 1)(A + 1)?

= >0, (C.3)
Oa 16(1 — a)3y/a(A+ 1) (aX + 1)
da) 1— a(A+1)(4ar+a+3)
a\pi(m /\) _ @ ( aA + 3o + v/ a(A+1) (art1) -0 (C 4)
ox (1—a)? ' '
Sat(x (9\1/1(04,)\)
Therefore, aaA( ) = _ g7ty < 0. Hence, ot () is decreasing in .

Jda

e Definition of \;, A2, and a,()\). Monotonicity of a,(\).
We know that when a > of, CE-PL dominates S. In this same region (o > o), let us further
compare profits under CE-PL and CE-SUB strategies.

— First, the following two inequalities can be easily shown:

o a(A+1) (2a/\+a+1—2\/a(/\+1)(a>\+1))
Va+1) " (= ap

(0%

1
Vat1)? o 104 A), YA€ (0,1), max{5 +8X = 4y/(1+ A)(1 +40), A} < < 1.

Thus, given that A < af, we see that in the region of < a <1 (third case in Prop. C.2)

, YAe(0,1), a e (N1),

* *
we have 75p_oyp < Tep_pr-

— We further compare 7f,_p; under the first case in Prop. C.1 and 7f.5_ g5 under the
second case in Prop. C.2. As we stay within region o > af, we look at the parameter
region at the intersection among regions a@ > af, A < a < af, and a < 5+ 8\ —
4/(T+ N)(1 +4)). Since ot < 5+ 8X\ —4/(1+ A)(1 + 4)\), it can immediately follows
that this is a non-empty region. In this region, define the difference between optimal
profits under CE-SUB and CE-PL as:

a(A+1) (zaA ta+1-2y/a(r+ Dlor+ 1))

Py Py
\I]a(a7)‘)épb(1_+1_ ] >_
A Lt+py— 2 (1—a)?

Let’s next try to understand the monotonicity of W,(a, \) with respect to a and .
After taking derivatives and applying the Envelope theorem with respect to 755 _ g5,
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given that py(c, \) represents the maximizing price for CE-SUB, we obtain:

oV, (a,)) 20(A+1) (2\/a(A + (A +1) = 20X+ a+ 1)

__Od1)(adts)
(A+1) (oz < s T 2) + 1> . .
(1 —04)2 (a_ (1_04)]913)27
00,0, n) pp <_ a“&ﬁ‘iﬁ?@ﬁiﬁ? +2a(A+1) + 22\ +a+ 1>
B2t (1—a)?

We know from the proof of Prop. C.2 that p, € (%, )\). Using these additional bounds

(@)

on py, it is easy to get w’T’ > (. Therefore, for any given «, when we increase A there

can be at most one crossing point that separates the optimality regions for CE-SUB and
CE-PL, and, moreover, the crossing (if it exists) can only be from CE-PL to CE-SUB
as A increases in this region of the parameter space.

Next, let’s check the sign of W Bringing all the terms to a common denominator,

OV, (a,\)

. _a )
we can write —5-== =, where:

a1 =py(1 = @)’ Va(A + 1)(aA + 1)
+pRa(l — a)? () + 1)2 (()\ +1)(4a"2) + a? + 30) + (X +3) + 1) Val(h + 1)(ar + 1))

—2pp®(1 — ) (A +1)? ((A + 1)(40®X + a% 4+ 3a) — (a(4X +3) + 1) VoA + 1) (a + 1))

+a?(A+ 1) ((A +1)(4a? X+ a? + 3a) — (a(4X +3) + 1) Va(A + 1) (ar + 1)) ,
@ =(1—a)Va3A+1)3(ar+1)(a+ ap, —py)? > 0.

Therefore, the sign of W is the same as the sign of the numerator, ¢;.

Recall from Prop. C.2 that p, is the unique solution to the equation Ggsypp(p) =
202X — 2(1 — a)?p® — (1 — a)p?(a(X — 4) — 2)) — 2ap(a(l — A) +2)) = 0. We use
this property of p, (i.e., Gsupp(pp) = 0) to reduce the expression of ¢; from a cubic
polynomial in p, to a quadratic one, as follows:

q1 :CK()\ + 1)

X (p%;(l ~a)? (2a(A +1)2(dar +a +3) — (a (872 + 15X +2) +2) Va(A + D(ar + 1))

(1 — a)a ((a (8A2 + 15A+5) + 2) va(A + 1)(ar + 1) — 2a(A + 1)*(4aX + a + 3))

+a? (2a()\ +1)2(dar + a+3) — (a (42 + 83 +3) +1) Va(r + ) (ar + 1))) .

24



Denote:

AL %(1 —a)? <2a(A +1)2(4ad + a +3) — (a (8\2 + 154 +2) +2) \/a(h + 1)(a) + 1)) :

B2 (1-a) ((a (8AZ+ 15X+ 5) +2) va(A + 1)(ar + 1) — 2a(A + 1)2(4a) + o + 3)) ,

C2a? (2a(>\ +1)%(dad + a+3) = (a (4N + 81+ 3) + 1) Va(A + 1)(aX + 1)) :

Then ﬁ = Ap? + Bpy, + C. Define quadratic function Hsyp, pr(p) £ Ap? + Bp + C.

In this range of the parameter space, it can be shown that:

B? —4AC = (1 — a)’a*(A + 1)
X (2 (A2 =X —2) (dar +a +3)y/a(A+ D)(ar+ 1)

~ (@A + 1) (@(AAEA — 1) — 28) — 13) + 2(A ~ 2)))) > 0.

Hence, there are two real solutions of Hsyp pr.(p) = 0, namely:

B+ VB2 —4AC —B+ VB2 —-4AC
PH1 = — oA and ppo = 54 .

It can be shown that py1 < pp2 < ;. Recall that p, is the unique solution of

[0}

Gsupp(p) = 0. Moreover, from the proof of Prop. C.2, we know that Gsypy(p) > 0 on
(—o0,pp) and Gsypp(p) < 0 on (py, 00).

It can be proved directly that Gsypp(pr1) > 0 = Gsupp(ps) > Gsupp(pH2). Hence,
PH1 < Pp < PH2.

Furthermore, it can be shown that A > 0, which indicates that Hsyp, pr(p) is convex.
Therefore, Hsyp,pr(py) < 0. Thus, W < 0. Therefore, for any given A, when
we increase «, there can be at most one crossing point that separates the optimality
regions for CE-SUB and CE-PL, and, moreover, the crossing (if it exists) can be only

from CE-SUB to CE-PL as « increases.

So far, we proved that a threshold (crossing) boundary between optimality regions for
CE-SUB and CE-PL within this particular region of the parameter space (at the inter-
section among regions @ > of, A < a < af, and a < 5+ 8\ —4/(1 + \)(1 +4)) ) is
unique for every A and for every « (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the
parameter space.

We look at two particular delimiting boundaries for this region, namely a = af and
a = X and examine the sign of ¥,(«, \) along these boundaries.

+ On the boundary o = a()), since we are under condition o < 5+8A—44/(1 + A)(1 + 4A)
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< 1, by definition of af, we obtain:

o a(A+1) (2aA+a+1—2\/a(>\+1)(a/\+1)>
a=al () - (\/54’ 1)2 B (]. — 04)2

On the boundary o = A, we obtain:

< 0.

U, (a, \)

. AN+ 1) (2/\2+)\+1—2\/>\()\+1)()\2+1)>
a:A:p”<2_A_1+pb—P;)_ (1—X)2 '

We point out that we could have written the profit for CE-SUB in terms of p,
at the boundary when o = X - however, on that boundary, whether we write the
profit in terms of p, or p, we obtain the same profit because on that particular line,
Pa = Db (as they satisfy the same implicit equation). Bringing all the terms to a

common denominator, we can write Wy (a, A) [a=) = Z—i, where:

U, (a, \)

g3 = (1= 2)p; — (3= X)(1— A
(1= A2 (2034337 43— 2/ A0+ 1P (P +1) )
Y (2)\4 F38 202 -2/ B 1P (N2 4+ 1) + )\) ,
q = (1= N2X\+ Apy, — pp) > 0.

Therefore, the sign of W, (a, A) |4=) is the same as the sign of the numerator, g¢s.

We use Gsupp(pp) = 0 to reduce the expression of g3 from a cubic polynomial in py,
to a quadratic one, as follows:

x (T=X)>2p; +2(1—2%) (2A2 2/ AN+ 1) (N2 +1) + /\) )

FAAA+ 1) VARF 1) (A2 + 1) — 2)2 (202 + 3X + 3)) .
Denote:

D= (1 - >‘)27
E22(1- ) (2)\2—2\/)\()\+1)()\2+1)+/\),
FE2DN+1D)VAA+1) (A2 +1) —2X0% (207 +3)1 + 3)..

Then 2}\%3 = Dp? + Epy+ F. Define quadratic function I;TSUB,pL (p) 2 Dp?> + Ep+F.

In this range of the parameter space, it can be shown that E? — 4DF > 0. Hence,
there are two real solutions to the equation Hgyp pr(p) = 0, namely:

—F —+VE?2 —4DF —FE+VE? —4ADF
pI:I1: 2D and pI;VQ: 2D .
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It can be shown that % < pg; < A < pjy- Recall that p, is the unique solu-
tion of Gsypp(p) = 0. Moreover, from the proof of Prop. C.2, we know that
Gsupp(p) > 0 on (—oo,pp) and Gsypp(p) < 0 on (py,00). It can be proved directly
that Gsupp(pg,) < 0 = Gsupp(py). Hence, py, < pg, < pg,- Furthermore, it
can be shown that D > 0, which indicates that ﬁSUR pr(p) is convex. Therefore,
I;TSURPL(pb) > 0. Hence, in this region of the parameter space:

U, (e, N) > 0.

a=\

Thus, ¥, (a, )\)‘

there exists a unique threshold boundary, which we define as a,(\), which separates the

optimality regions for CE-SUB and CE-PL, and which falls between boundaries o = af
and o = A. It satisfies:

aaN)(A + 1) (2aa(/\))\+aa(/\) +1- 20N+ D (VA + 1)) ( - ” >
=D I — T

N < 0 and ¥, (a, )\)‘ > 0. Therefore, in this parameter region,
(0%

o=

(1 —aa(N)?

Since existence and uniqueness are satisfied, aq(A) is properly defined as a function.

Moreover, since ¥q(agq(A),A) = 0, by differentiation w.r.t. A, we obtain aag/\m =

OWq(a,N)
—svty > 0. Hence, ay(A) is increasing.

o

Since both boundaries ot and o = 5 4+ 8\ — 4,/(1 + A\)(1 + 4)) are decreasing in A and
aq(N) is increasing in lambda and strictly between the lines af and o = A, then there
exists a unique intersection point between ag()) and of, and a unique intersection point

between ag(A) and o = 5+ 8\ — 4/(1 + A)(1 + 4A).

* Define {\1,af(\1)} as the unique intersection between a,(\) and af. Then, \;

satisfies:
1 . Oéi()\l)()\l + 1)(20&1()\1))\1 + Ozi()\l) + 1) — 2\/041()\1)3()\1 + 1)3(041()\1 + 1)
16(1— af(Ny)) (1 —at)?

Py Do
11— — 2 ),
< At 1+pb‘ai’(}31>>

More precisely, at {\1,af(\1)}, we have:

Top-pL(AL, 041(/\1)) = 1op-suB(AL, Oéi()\l)) = mg(M1, 041()\1»-

* Define {\2,5+8XA2 —44/(1 + A2)(1 + 4A2)} as the unique intersection between aq(\)
and @ =5+ 8\ — 4,/(1 + A)(1 + 4)). Then, Ay satisfies:

(5+8/\274 (1+,\2)(1+4,\2)) (1+22) ( P P )
1 =Do '

X [ 7L
2 TP 5832 —4y/(1422) (114r2)

It immediately follows that A\; < A2 and a4()) is properly defined and increasing on
A € [A1, A2). We show agq(\) in Figure C.2.
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Figure C.2: ag4(N)

e Definition and monotonicity of a;()).
We further compare the second case under CE-PL and the second case under CE-SUB at the
intersection among regions 5+ 8\ —4,/(1 + A)(1+4)) < a < 1 and A < a < af. Denote the
profit difference between CE-SUB and CE-PL in this region as:

Pb )_a(1+)\)‘

‘I’b(a,)\)épb(l—pl)Jrl— 1

A 1+pb*%

Then, using Envelope theorem (since p, maximizes mcp_sup), we have :

0Wy(a,N) i 142
oo (a—(1—a)p)? 4 7

aq]b(aa )‘) _ pg « (%)2 o

B N A R T S

Next, let’s check the sign of %. Bringing all the terms to a common denominator, we

8‘I’b(O‘?)‘)

can write =52 = % where:

Toge’
g5 = —a*A— o +4pp +p; (—aPA—a? +2aA + 20— A — 1) +pp (—2a2/\—2a2 + 20 + 20 ,
g6 = 4(a+ apy — py)? > 0.

Thus, the sign of W is the same as the sign of the numerator, gs. We use Gsypp(pp) = 0

to reduce the expression of g5 from a cubic polynomial in p, to a quadratic one, as follows:

g =—pi(l—a)(a(-=B—a)a(A+ 1)+ A+ 11) + 31 - 1)
+pp2o(a(—(3 —a)a(A+ 1)+ A +5)+ 31— 1)
+a?(=(2 - a)a(A+1) = 3A +1).
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Denote:

2 (1-a)a(=B—a)a(A+1)+A+11)+ 31— 1),
20(a(—(3 — a)a(A+1) + A +5) + 31 — 1),
o’(—(2 = a)a(A+1) —3A+1).

III>

||l>

J
K
L

Then, g5 = Jp; + Kpp, + L. Define the quadratic function Hsy g, pr(p) L2 Jp +Kp+ L. In
this range of the parameter space, it can be shown that K2 — 4JL > 0. Hence, there are two
real solutions to the equation I:ISUBPL(p) = 0, namely:

—K —+VK?—-4JL —-K+VK?—-4JL

P = 2J and - prrz = 27

It can be shown that pgzy < A < pg;. Recall that p, is the unique solution of Ggypy(p) = 0.
Moreover, from the proof of Prop. C.2, we know that Gsypp(p) > 0 on (—oo,py) and
Gsup(p) < 0 on (pp,00). It can be proved directly that Gsypp(pge) > 0 = Gsupp(ps)-
Hence, pgo < pp < A < pgy. Furthermore, it can be shown that J < 0, which indicates that
Hsyp.pr(p) is concave. Therefore, Hsyp pr(py) > 0. Hence, in this region of the parameter

space:
oV, (Oé, )‘)

0.
da >

So far, we proved that a threshold (crossing) boundary between optimality regions for CE-
SUB and CE-PL within this particular region of the parameter space (at the intersection
among regions 5 + 8\ — 4,/(1+ A)(1 +4X) < a < 1 and A < a < o) is unique for every A
and for every « (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely o = of and
a = X (boundary in limit) and examine the sign of ¥y(«a, A) along these boundaries.

— On the boundary o = af()), since we are under condition 5+ 8\ —4./(1 + \)(1 + 4\) <
a < 1, by definition of af, we obtain:

o a(l+ )

a=at(N) - (\/a—i- 1)2 B 4 <0

\I/b(Oé, )\)

— On the boundary a = A (boundary in limit), we obtain:

\I/b(Oé, )\)

B D 23 AL+
=pp(2-F - )~ :
a=X A 1+p— R 4

Again, we remind the reader we could have written the profit for CE — SUB in terms of
Pq at the boundary when o = A - however, on that boundary, whether we write the profit
in terms of p, or py, we obtain the same profit because on that particular line, p, = pp.
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Bringing all the terms to a common denominator, we can write Wy(a, ) [o=r = gf,

where:

gr = — X' = N> — 40p} + 4p} + 4Np; — 120p — X'py + 9N Dy,
qs =4X(A + A\pp — pp) > 0.

Therefore, the sign of Wy(ar, \) |o=x is the same as the sign of the numerator, g;.

We use Gsypp(py) = 0 to reduce the expression of g7 from a cubic polynomial in pj to
a quadratic one, as follows:

A2 (A 430+ 21— Mp? — (3— N(A +1)%p)

qr = 1
Denote:
R=2(1- 1),
SE _(3-N(\+1)2
T2 X3 43

Then (1t\§)q7 = Rp} + Spy, + T. Define quadratic function I:[SUBJ:L (p) 2 Rp> + Sp+T.
In this range of the parameter space, it can be shown that S? — 4RT > 0. Hence, there

are two real solutions to the equation Hgy B,pL(p) = 0, namely:

—S —+/S2 —4RT —S ++/S?2 —4RT
P = R and Dgo = R .

It can be shown that % < pyy < A < ppy- Recall that p, is the unique solution of
Gsup(p) = 0. Moreover, from the proof of Prop. C.2, we know that Gsyp(p) > 0 on
(—00,pp) and Gsypp(p) < 0 on (pp,00). It can be proved directly that Gsupp(py,) <
0 = Gsupp(py). Hence, py < pgy < pgo- Furthermore, R > 0, which indicates that
Hsup,pr(p) is convex. Therefore, Hsyp pr.(py) > 0. Hence, in this region of the param-
eter space:

\Ifb(a,)\) > 0.

a=A

< 0 and Uy(a, )\)‘ > 0. Therefore, in this parameter region, there

a=

Thus, \Ifb(a,)\)‘ _atn)

exists a unique threshold boundary, which we define as a;(\), which separates the optimality
regions for CE-SUB and CE-PL, and which falls between boundaries o = af and a = \ (with
the 3 lines converging when A — 1). It satisfies:

m . NN
pb(l )\+1 [ pbx)>_ 4 .

a(

Since existence and uniqueness are satisfied, ap(\) is properly defined as a function. More-
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AWy (a,\)
over, since Wy(ap(A),\) = 0, by differentiation w.r.t. A, we obtain '%‘57)(\’\) = —Suiay > 0.
Wy X)

Hence, ap(A) is increasing in A.

As a=5+8A—4,/(1+ \)(1 +4)) is decreasing in ), there exists a unique intersection point
between a = 5+8X—44/(1 + A)(1 +4)) and a,()\). Defining this point as {2, ap(A2p)}, we
can immediately see that {2, aq(A2)} and {Agp, ap(A2p)} satisfy exactly the same conditions.

Due to the uniqueness properties discussed above, we have Agj = A2 and o, (A2) = ap(A2).

Thus, ap(A) is properly defined and increasing on [Ag, 1).

Moreover, we extend the domain of «y to include 1. We define asymptotically a;(1) =1 =
liliab()\).

e Definition of \; and a.(\). Monotonicity of a.()\).
Next, we compare S and TLF in the region 0 < a < of. Denote the profit difference between
S and TLF strategies in this region as:
1 A

Uela,\) = Bi-a) 1

Then:

OV.(a, \) oV, (a, \)
780[ >0> 78)\ .

Therefore, a threshold (crossing) boundary between optimality regions for S and TLF within
this particular region of the parameter space (0 < o < o) is unique for every A and for every
a (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely A = 0 and
A = 1 and examine the sign of ¥.(a, \) along these boundaries.

— On the boundary A = 0, we obtain:

1
WC,A‘ - >0
R N T rpy
— On the boundary A =1, as a < of < %, we obtain:
1 1
WJ%A” - <o,

1 16(1—a) 4

Therefore, in this parameter region, there exists a unique threshold boundary, which we define
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as a.(A), which separates the optimality regions for S and TLF. It satisfies:

1 A
16(1 — (X)) 4

We obtain: a.(\) £ 1— . Also, a.()) is increasing in A. Let A be the solution to a.(A) = 0.
It immediately follows that A\; = i.

As at()\) is decreasing in ), there exists a unique intersection point between af()\) and ().
Defining this intersection point as {A¢, a.(Ac)}, we can numerically get that A\, ~ 0.2789.
Then, () is properly defined and increasing on A € [, Ac].

Definition of a4()\) and 3. Monotonicity of ag4(A).
We further compare 7/, gy 5 under the first case in Prop. C.2,ie., 0 < a < X <1, and 77 p.

We focus first on the case A < 1. In this region, define the difference between optimal profits
under CE-SUB and TLF as:

Pa Pa A
Wy, \) = pa (2= P2 — _A
(@A) pa< a 1+pa—p0‘j> 4

Let’s next try to understand the monotonicity of W4(c, \) with respect to o and . After
taking derivatives and applying the Envelope theorem with respect to 75, _g; g, given that
pa(, A) represents the maximizing price for CE-SUB in this region, we obtain:

8\I’d(a7 )‘) ) 1 Pa
o Pel\a? * (a— (1= a)pa)? >0,
8\I/d(a, )\) 1

on - a0

Therefore, for each A (a) there can be at most one crossing point that separates the opti-
mality regions for CE-SUB and TLF in this region as we move « (\). Next, we show that
such a threshold boundary does indeed exist in this region of the parameter space (0 < a < \).

We look at two particular delimiting boundaries for this region, namely o« — 0 and @ = A
and examine the sign of ¥4(a, \) along these boundaries.

— On the boundary o — 0, under CE-SUB, the firm can only jump start adoption through
a subscription rate p, — 0. Thus, lim, o 75 p_gyp = 0. Hence:

A
lim ¥ AN=0—-=<0.
oﬂrol ala,\) =0 4_()

— On the boundary a = A, we obtain:

4(1 = N)p3 —4(3 — N2 —MAZp, — A3
Vi) = (1= X)pa —4B = M) Apa + (9= ) A°p '
a=X\ ANA + Apa — Da)
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Bringing all the terms to a common denominator, we can write Wgy(a, \) Nt
o=

where:

go =4(1 = N)pi — 4(3 = MAp; + (9= M)Apg — A%,
q10 =4\ 4+ A\pg — pa) > 0.

The second inequality holds because p, € (%, a) and, in this region, o < A. Therefore,

the sign of ¥y(a, )\)’ is the same as the sign of the numerator, qq.
[e%

We use GsuB,a(pa) = 0 to reduce the expression of gy from a cubic polynomial in p, to
a quadratic one, as follows:

A2 (AN +3) +2(1 = A)p2 + (=3 + (A = 6)A)pa)

q9 = -\

Denote:

U=22(1-)),
VE-3+(A-6)\
W £ A\ +3).

Then (1_/\# = Up2+Vp,+W. Define quadratic function Hsyprrr(p) L Up?+Vp+W.
In this range of the parameter space, it can be shown that V2 —4UW > 0. Hence, there
are two real solutions to the equation Hgyp rrr(p) = 0, namely:

LV VI _4OW - VAVEOW
2U and - prrz = 2U '

PH1 =

It can be shown that § < 131{1 < a< 5[{2. Recall that p, is the unique solution of
GsuB,a(p) = 0. Moreover, from the proof of Prop. C.2, we know that Gsyp.q(p) > 0 on
(—00,pq) and Gsyp,q(p) < 0 on (pg,00). It can be proved directly that G’gUB’a(ﬁHl) <
0 = GsuB,a(pa). Hence, p, < pr1 < ppo. Furthermore, U > 0, which indicates that
Hsyprrr(p) is convex. Therefore, Hsyprrr(pa) > 0. Hence, in this region of the
parameter space:

\Ild(a, )\) > 0.

a=\

Thus, Y4(a, ) < 0 and \Ifd(a,)\)’ > 0. Therefore, in this parameter region, there

a—0 a=
exists a unique threshold boundary, which we define as a4(\), which separates the optimality

regions for CE-SUB and TLF (i.e., and ¥4(ag(A),\) = 0), which falls between boundaries
o =0 and o = \. It satisfies:

D 9 _ Pa Pa _ i
Old()‘) 1+ pa — aé)&) 4

Since existence and uniqueness are satisfied, ag(\) is properly defined as a function. In
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terms of the domain of ag(\), given that Wy(a, \) .= 0— % < 0, the intersection of
o—>

ag(N) and @ = 0 (x-axis) line can only happen when A = 0. Hence ag(\) is well defined
n (0,1) domain. Moreover, since ¥4(ag(A),\) = 0, by differentiation w.r.t. A\, we obtain
O g(a,\)
80‘5&” = — vy > 0. Hence, () is increasing in .
da

For the case A = 1, we have a4(1) = limy_; a4(\) = &, where & was defined in Proposition
1.

Next we check whether a.(A) and ag(\) have a crossing point. First, let’s check that . and
ag are defined in overlapping regions. a.(A) is defined on A € E, )\C], where \g ~ 0.2789. It
is easy to check that ac(A) =1 — £ < A. Thus, any point {), a(A)} with X € [3, ] falls
inside the bigger region 0 < o < A < 1, which is also the region where ay()) is defined.

Both a.(\) and a4(A) are increasing in A, as previously proved. In this region (i.e., A € E, )\c],
with Ao &~ 0.2789), using ag(N) < A and pg (ag(A), A) € (adé)‘) , ozd()\)>, it can be shown that:

Dag(n) ~ Lale) 1 1 dae(\)

= — = < — =
o\ Oa(a) [a=ay(A 1 a 4)\2 152
dax e 4p; <ad(>\)2 - (ad(/\)*(lliad(/\))pa)z)

Therefore, there can be at most one intersection point between a.(A) and a4(A) in this region.

Given that «y is defined on (0,1] and «. is defined on [%,)\c], with (Ae, ae(Ac)) being on
of line, for a.(A\) and ag4(\) to intersect, it is sufficient to show that a4 (1) > ac (1) and
ag(Ae) < ae(Xe). Since aq is increasing, it can be immediately seen that:

uf5)20=0c(3)

Moreover, through numerical derivation, it can be shown that:

aa(\) — ac()\)’/\_/\ ~ 0.0882 — 0.1036 < 0.

Therefore, there exists one unique intersection point between a.(A) and ag(\), which we
define as {A3, a.(A3)}. Then, we have:

Top—suB(A3, 2e(A3)) = m5(A3, ac(A3)) = Trp (A3, ac(A3)).

More precisely, Az satisfies:

1 1 DPa Da A3
A€ [ Al and —————— —p, (2 - =23
i [4 ] 1601 —ae(ra)) P ( (A3 1—|—pa—a£’j\3)) 1

Also, we can numerically get A3 ~ 0.272 < A.. {\3,ac()\3)} falls into the region 0 < o < of.
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Since a4(A) is properly defined on (0, 1], obviously it is also properly defined on [As3, 1].

e Definition of threshold constants «;.
We further compare 75 ;_ g5 under the first case in Prop. C.2 and 7g under the first case
in Prop C.4. Specifically, we look at the parameter region at the intersection of constraints
0 < a < afand 0 < a < \. In this region, define the difference between optimal profits under
CE-SUB and S as:

1
U, \) 2 p, (2-Pa . Pa - .
(@A) p( a 1+4p.—2) 16(1—a)

Since p, is the unique solution of Gsyp.q(pa) = 0, pa does not depend on . Therefore,
Uy (ar, \) does not depend on \. After taking derivatives and applying the Envelope theorem
with respect to 75 p_gyp. given that p,(a, A) represents the maximizing price for CE-SUB
in this region, we obtain:

OW,(a, \) 2(1 Pa >_ 1

— +

da Pa & (a— (1= a)pa)? 16(1 — a)?’
alllt(a? >\) _ O
o\ -
Let’s check the sign of W. Bringing all the terms to a common denominator, we can
write 220N _ a1 where.
da 7 q2? )

qi1 =16(1 — a)*pt +16a(3a — 2)(1 — a)?p2 + 150%(1 — a)?p? + 203(1 — a)p, — o,
q12 :16(1 - a)2a2(a + apg — pa)2 > 0.

OV (a,A
rongon

Therefore, the sign o is the same as the sign of the numerator, ¢qi;.

Recall from Prop. C.2 that p, is the unique solution to the cubic equation Gsyp.q(pa) = 0.
We use this property of p, to reduce the expression of g1 from a quartic polynomial in p, to
a quadratic one, as follows:

qi1 = (4a4 — 160 — 502 + 2o + 15) azpz + 2 (4043 — 802+ 3a — 15) a’pa + (8a2 — 8a + 15) at.
Denote:

X £ a? (4a* — 160° — 5a” + 22 + 15)
Y £20° (40° — 80* + 30 — 15),
Z £ o* (80 — 8a +15) .

Then q11 = Xp2 + Yp, + Z. Define quadratic function Hsyp s(p) £ Xp? + Yp + Z. In this
range of the parameter space, it can be shown that:

Y? —4XZ = 160%(a(a(—4(a — 6)ar — 15) + 4) + 55) > 0.
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Hence, there are two real solutions of Hsyp,s(p) = 0, namely:

-Y —VY2-4X7 _ Y +VY2-4XZ
5% and ppo = 5% .

PH1 =

It can be shown that pg1 < pge < 2. From the proof of Prop. C.2, we know that

11—«

GsuB,a(p) > 0 on (—o0,p,) and Gsyp,q(p) < 0 on (pg,00). It can be proved directly that
GsuB,a(pa1) < 0. Hence, p, < pu1 < pHa.

Furthermore, it can be shown that X > 0, which indicates that Hgyp s(p) is convex. There-

fore, Hsyp,pr.(pa) > 0. Thus, 3\113(3’)‘) > (0. Thus, for any given A\, when we increase «, there

can be at most one crossing point that separates the optimality regions for CE-SUB and S,
and, moreover, the crossing (if it exists) can be only from S to CE-SUB as « increases. Such
a separating threshold line, if it exists, has to be horizontal (i.e., constant for any A for which
it exists in this region) since ¥;(«, ) is independent of A (because p, is independent of \).

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space (0 < a < min{),at}). Since we established that such a threshold will be a horizontal
line cutting through this region, it is enough to show that it exists at a particular A. Consider
{4, 4}, with Ay = a4, to be the unique intersection between lines & = A and a = of.¢3
Numerical analysis reveals that \y = a4 &~ 0.1195. We examine the sign of ¥y(a, \) at
boundary points {4, 0} and {4, as}:

1
v ) —0- —
(e ) A=A4, a0 0 16 <0,
U, (a, )\)‘ ~ 0.0909 — 0.0710 > 0.
A=a=M\4

Therefore, in this parameter region, there exists a unique threshold boundary which separates
the optimality regions for S and CE-SUB and which does not change with A\. And it is straight
forward that the boundary line goes through the point {3, a.(A3)} since it is the point when
T = Thp_gup- We define this threshold as constant ay = ac(A3). This horizontal boundary
extends from {ay, az} to {\s, oy }.

Definition and monotonicity of A\;(«a).

Finally, we compare 7y g p under the second case in Prop. C.2 and 7§ under the first
case in Prop. C.4. More specifically, we explore the parameter space at the intersection of
constraints A < o < of and 0 < a < af. We denote the difference between optimal profits
under strategies CE-SUB and S as:

N Db Db 1
Ya(@,X) £ 1o (2_)\_ 1—|—pb—pb> T 16(1—a)

(%

C

“3we know that the intersection is unique because o = X is increasing in \, whereas ot is decreasing in .
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As p, maximizes 75 5_gpr g, using Envelope theorem, we get:

OVy(a,N) i B 1
oo (a—(1—a)py)? 16(1 — )2
OV, (a, \) _ ﬁ S0
O\ A2
As it turns out, in this range of the parameter space, w changes signs. As such, it is

not possible to characterize the threshold between S and CE-SUB as a function of A (there
exist values of A for which increasing « leads to multiple crossings between optimality regions
for S and CE-SUB).

Nevertheless, moving horizontally, given that % > 0, a threshold (crossing) boundary

between optimality regions for CE-SUB and S, within this particular region of the parameter
space, is unique for every «, if it exists.

Next, we show that such a threshold boundary does indeed exist in this region.

We look at two particular cases for this region:

— First, we consider points on the boundary a = af(\). Note that, in this region, we
have A < a < o}(\) (since we consider the intersection of constraints A < o < af and
0 < a < o). Given that ot is decreasing, as shown above, it means that in this region we
have A < of(X) < a#(0) ~ 0.1352 < 1.9 From Prop. C.2, given that in this parameter
region we have \ < %, we consequently get of = &' (see equation (C.1)), which satisfies

E(a,A) =0 and % < 0. Similarly, from the Envelope theorem, we get:

0=(a, \) p?

o e > 0.
Therefore,
0= (a,\
oty _ R -
o\ 9E(@A) [a=at(N)
Oa

Thus, af(\) = &'()\) is strictly increasing in A in this region. Therefore, it is invertible.
On the boundary a = af()), we obtain.

« 1
lIla: 5 = -
(a )\> A=af~1(a) (\/E + 1)2 16(1 — Oé)

< 0. (C.5)

— Next, we consider the intersection point between o = af and o = \, which is {0.1195,0.1195}.

C-4We can achieve the same conclusion the following way. The intersection point between boundaries o = o (\)
(decreasing) and o = A (increasing), which occurs approximately at {0.1195,0.1195}, achieves the maximum A for

this region, which is smaller than %
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At this point, we obtain:

U, (a, ) = 0.0909 — 0.0710 > 0. (C.6)
a=A=0.1195
Therefore, in this parameter region, there exists a sub-region where ¥, < 0 (S dominates
CE-SUB) and a sub-region where ¥, > 0 (CE-SUB dominates S). Given that, for any A, as
we increase «, there can be at most one crossing point between optimality regions for S and
CE-SUB, then there exists a unique threshold boundary, which we define as A;(«), which
separates the optimality regions for CE-SUB and S. It satisfies: -

IR PN . Pb
16(1—a) Mo(@) 14pp—B)°

«

Let’s next examine the domain of A\;(«). For that purpose, we look at the monotonicity of
U, (a, \) in terms of A on two particular boundaries:

— First, we consider the line & = A (boundary in limit). On this line, we get:

Db Db 1
v, ,)\’ —p (222 - .
@], =n (25 1+pb—p;> 16(1— )

Again, we reminder the reader that we could have written the profit for CE-SUB in
terms of p, at the boundary when oo = A - however, on this boundary, whether we write
the profit in terms of p, or p,, we obtain the same profit because on that particular line,
Pa = pp. Then,

0V, (a, ) ‘ _o(1 n Db B 1
ax  bea P\XT OO —Dm2) 60— 12

Let’s check the sign o

. OU
we can write 2¥z(@A) _ @13 Ghere.
oA q14’

f %’ . Bringing all the terms to a common denominator,
=«

q13 =16(1 — \)*pi + 163N — 2)(1 — N)2p; + 1502 (1 — A)%pf + 203 (1 — N)pp — A4,
qu1 =16(1 — X)2N*(A+ Apy — pp)? > 0.

Therefore, the sign of w is the same as the sign of the numerator, ¢i3.

Recall from Prop. C.2 that pj is the unique solution to the cubic equation Ggypy(py) =
0. We use this property of p, to reduce the expression of ¢13 from a quartic polynomial
in pp to a quadratic one, as follows:

q13 = (41 = 160% — 5A® + 2\ + 15) pj + 2A (4A* — 8A% + 3X\ — 15) p, + A% (8A% — 8A + 15) .
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Denote:

Agg & (4N = 160% — 5A% + 20 + 15)
By 22X (4X° — 8)% +3) — 15)
Co1 2 A% (8N — 8A + 15) .

Then qi3 = Ay1p} + Byapy + Cpa. Define quadratic function HgUBS(p) £ Agap? +
By.1p + Cp 1. In this range of the parameter space, it can be shown that:

B2, —4A;1C1 = 16X (A(A(—4(XA — 6)A — 15) + 4) + 55) > 0.

Hence, there are two real solutions to the equation HgU p.s(p) =0, namely:

_Bx,l - \/Bg’l - 4Az,1Cx,1 _Bz,l + \/Bil - 4A:1:,1Cx,1

o _ o
and =
le 2Ax71 pH2 2AI71
It can be shown that p%l < p%g < 125 when X < % (which is satisfied in this region

of the parameter space, as per the above argument). From the proof of Prop. C.2, we
know that Gsypp(p) > 0 on (—o0,pp) and Gsypp(p) < 0 on (pp, 00). It can be proved
directly that GSUB’b(pgl) < 0. Hence, p, < p%l < p%Q.

Furthermore, it can be shown that A, 1 > 0, which indicates that HgU p.s(p) is convex.

Therefore, HgUB s(pp) > 0. Thus, W \ > 0. Thus, on the portion of boundary
’ =«

a = X\ within this particular region (0 < o < ai), as we increase A\ (or, equivalently, as
we increase «), there can be at most one crossing point that separates the optimality
regions for S and CE-SUB, and, moreover, the crossing (if it exists) can be only from S
to CE-SUB as ) increases.

On the asymptotic boundary A = «, when o« — 0, 7§ > 75 _gyp (as per inequality
(C.5), given that limy o af = 0); when a — of, 7% < 7} gy (as per inequality (C.6)).
Therefore, there exists a unique intersection point between \;(«) and A = a within this
region. And it is straight forward to see that the intersection point is {cy, a;} since it is
the point when 7§ = 755 _ gy - More precisely, when Az (o) = ay.

Second, we consider the boundary o = a#()\) (boundary in limit). On this line, we can
get:

% p !
U, (at(N),\) = py <2 - jb - - pb) - 16(1—af(N)’

Differentiating with respect to A, and using Envelope theorem as p; is maximizing

TCE—_SUB, We obtain:
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oV, v 1 ot . pp
o \(ad —(1—ab)p)? 16(1—ab)2) oX N2’
dat(n) o3 DT, (a\) OV, (a,\)
where =535 = — 552y, with —52% and —45~ expressions derived in equations

(C.3) and (C.4).

Let’s check the 81gn of w. Bringing all the terms to a common denominator,

OWa (@t NN _ q15

we can write N , where,
g6’

q16 = — (1 —a)\*(a+ap, — pp)*
X (16a()\ +1)2(4aX + o+ 3) + (—a(8) + 7)2 — 16X — 15) \/a(A + 1)(ar + 1)) >0,

and q15, via degree reduction (since, as per Prop. C.2, py is the unique solution to the
cubic equation Gsypp(ps) = 0), can be simplified from a quartic polynomial in py to a
quadratic function g5 = Agmgpg + Bz apy + Cp 2 with:
Aup 2 4(1 — )X’ (da(A +1) (a® (48X* — 104X — 29) — 2a° (64A% + 28X + 51)
+a (64A% — 16X — 29) +48(A + 1)) + (o (—192X% + 320X + 347) + o® (512X% + 576\ + 301)
~4ar (64)” + 80X + 35) — 64X — 60) Va(A + D(@A+ 1)) ,
Boo 2 704)\ (da(X+1) (o’ (48X° + 8X% + 15X +4) — 2a” (64X° + 28)\% 49X — 6)
+ X (642% — 16X — 29) + 48A(A + 1)) + (= (a® (192X% 4+ 128)% + 53X + 49))

2

(512A% 4+ 576A% + 189X — 15) — 4a) (6427 + 80X + 35) — 4A(16) + 15)) /(A + 1) (aX + 1)) ,
Con 2 % 2)2 (2a3 (96X% + 148X\ + 59\ + 7) — o” (48)\2 (4¢m n 3)
+ A (200/a(x + T)(@A +1) +6) +43/a(h + D)(ad + 1) + 1283 — 10)
+a (32)\2 (4 a+ D(ar+1) — 3) +16) (11 At D(ar+ 1) — 12)

+85y/a(A + D)(@A+ 1) = 96) + 2(16A + 15)y/a(A + (@A + 1)),

where, for simplicity of notation, we dropped the superscript and used « instead of
OV 5 (a,\)
[22)

ai()\). Since g1 > 0, the sign of 9 is the same as the sign of the numerator, ¢5.

Define quadratic function HSUB,S(p) £ A;,;,gp2 + Byop + Cp2. In this range of the
parameter space, it can be shown that:

B2y —4A;2C2 > 0.

Hence, there are two real solutions to the equation Hgyr B.5(p) = 0, namely:

—Buz— /B2y —44:2C0
24,9

_Bcc,2 + \/B2 - 4Ax QCz 2
2Aaz 2

and pgo =

PH1 =
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It can be shown that pg1 < pga < ﬁ when A < % (which is satisfied in this region
of the parameter space, as per the above argument). From the proof of Prop. C.2, we
know that Gsypp(p) > 0 on (—oo,pp) and Gsypp(p) < 0 on (pp, 00). It can be proved
directly that Gsypp(Pr1) < 0. Hence, py < pr1 < pa2.

Furthermore, it can be shown that A, > 0, which indicates that Hsy B,s(p) is convex.
Therefore, Hgyp,s(py) > 0. Thus, w > 0. Hence, on the line a = a*()\), when
we increase A, there can be at most one crossing point that separates the optimality
regions for S and CE-SUB, and, moreover, the crossing (if it exists) can be only from S

to CE-SUB as \ increases.

As o' is increasing in A (and spanning the entire interval (0, 1]) and ot is decreasing in
)\, there exists a unique intersection point between af and af . Defining this point as
A1, 0t (A1)}, with o (A1) = af(Mz1).

On the asymptotic boundary a = of, when a — a¥(\1), TS > Thp_gup (as per
inequality (C.5)); when o« = A, 7§ < 75p_gyp (as per inequality (C.6)). Therefore,
there exists a unique intersection point between \,(«) and af. We define this point as
{Az(0z), az}. At this point, we have 7§ = 7nip_pr = Top_gyp- As such, it can be
easily seen that A;(ay) = 1.

As M\ (a) only intersects once boundaries & = A and a = o*()\), it means that A\.(a) is
properly defined on a € (v, vy ), as {a, A, (a) } stays inside this region of the parameter space
for all a € (o, o).

Thus, we completely characterized lines a1, as, and A, (in particular, segments, of(\), aq(+), o (*),
ac(+), agq(-), as well as constant thresholds Aj, A2, A3, a;), as well as threshold .

Comparison of a;(\) and as(\):

All segments in a1(A) on [0, 1] (i.e., af on [0, A1), g on [A1, A2), and ap, on [Ag, 1] satisfy a1 (A) > A
(with equality happening only when A\ = 1). At the same time, all segments of as(\) on [%, 1] (ie.,
o, on [é, )\3) and ag on [Ag, 1]) satisfy ag(A) < A. Thus, we have:

1
041()\) > Ozz()\) Ve |:4, 1:| .
Derivation of the dominating strategy in the entire region 0 < a < 1:

e When A < o < 1, it is easy to show, via direct comparison, that nf.;_p; > 7 . Therefore,
TLF is suboptimal in this region. Then, by the definition of a;(A) and A\, (), and in light of
the earlier analysis, we get:

— When a;(\) <a<1and A <a <1, CE-PL is the dominating strategy;

— When A < a < ag(A), we have two subcases:
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* When A < a < aj(A) and 0 < X < Az(a), then S is the dominant strategy;
* When A\, (a) <A< a < aj(N), then CE-SUB is the dominant strategy.

e When 0 < o < A, we first show that CE-PL is always dominated:

A(44+HBA—4(1+X)V A .
— When 0 < a < 1(6:24/\—7()\:—1)%§5) and 0 < a < A, then it can be shown that 77, » = % >

a(A+1)(zaA+a+1—2,/a(A+1)(aA+1))

Top_pL = =) . Hence, in this region, CE-PL is dominated.

~ When ARAOIND) ) 58— 4/ F (@A F D) and 0 < a < A, then

A1) (20204 a+1-2y/a(A+1) (ar+1
TrLE = % < Thp_pr = ol )( i (l_a)ga( (e )). Therefore, in this region, CE-
PL dominates TLF. Define the difference between optimal profits under CE-SUB and
CE-PL as:

a(A+1) <2a)\ tat+1-2/alh+ Dart 1))
(1—-a)? 7

Pa DPa
\Pe(a7)‘)épa (2_a_1+p _Pa>_
a

«

Bringing all the terms to a common denominator, we can write WU,(a, ) = ZlT;’ where:

qir = (1 —a)’p2 + (3 — a)a(l — a)*p?
—a(l - a) (2@3@ F1Par+ D)+ a2 (—202 - 30+ 1) —a(A + 3)) Pa

+a? <2\/a3()\ F1P(ar+ 1) —a? (202 4+ 3A+1) —a(A + 1)) ,
qiz = (1 — a)*a(a + ap, — pa) > 0,
where g13 > 0 is due to the fact that p, € (%, a). Therefore, the sign of We(a, A) is the
same as the sign of ¢17. Recall from Prop. C.2 that p, is the unique solution to the

cubic equation Gsyp.q(pa) = 0. We use this property of p, to reduce the expression of
q17 from a cubic polynomial in p, to a quadratic one, as follows:

q17 =

| R

x (1 — a)zapz

/N

+2(1 - a) (a)\(a(Z)\ £3) 1) = 20/a3(0A + 1)3(ar + 1)) Pa

— 203 A2\ +3) + 2) + 4 /a3 (A + 1)3(ar + 1) — 2a2)\).

Denote:

A2 (1-0a)a,
B.22(1—a) (a)\(a(2)\ +3) 4 1) — 2/B0+ 13 (ar + 1)) ,
Co 2 203N 2N +3) +2) + 4o /a3 (A + 1)3(aX + 1) — 202\

(1>

A

Then % X qi7 = Aep? + Bepa + Ce. Define quadratic function I:IgUvaL(p) 2 Ap? +
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Bep + C,. In this range of the parameter space, it can be shown that:
B? —4A.C. > 0.

Hence, there are two real solutions to the equation I:IgU 5 pr(P) =0, namely:

—B, — /B2 —-4A.C —B. ++/B% — 4A.C
~O and Z~9 )
. e ee eYe <>2 e 2 ee e e'

It can be shown that ﬁ%l < [)%2 < 12 From the proof of Prop. C.2, we know that
GsuB,a(p) > 0 on (—o0,p,) and Gsup,a(p) < 0 on (pg,0). It can be proved directly
that GSUB,a(ﬁ?{l) < 0. Hence, p, < ]5%1 < ﬁ%Q.

Furthermore, since A, > 0, ﬁgUB pr(p) is convex. Therefore, I:IgUB pr.(Pa) > 0. Thus,
U, (a, A) > 0, meaning that, in this region, CE-PL is dominated by CE-SUB.

When 5 + 8\ — 4y/(A + 1)(4\ + 1) < a < 1, we show that CE-PL is dominated by CE-
SUB. In this region, define the difference between optimal profits under CE-SUB and
CE-PL as:

1
\I’f(Oé,)\) épa <2 — % — mfjpa> — za()\"‘ 1)
(0%

— Qo

Do where:

Bringing all the terms to a common denominator, we can write W¢ (o, \)

q19 = p2(4 —4a) + 4p2(oz —3)a —f-paa2(—a()\ +1)+A+9) — ag()\ +1),
q20 = 4a(a + apg — pa) > 0,

where gog > 0 is due to the fact that p, € (%, a). Therefore, the sign of ¥ (a, A) is the
same as that of ¢19. Recall from Prop. C.2 that p, is the unique solution to the cubic
equation Gsyp,q(pa) = 0. We use this property of p, to reduce the expression of gig
from a cubic polynomial in p, to a quadratic one, as follows:

Q19 = Afp?2 + Bypa + Cy,

with

N
~
[1>

2(1 — ),
ala—6—(2—a)\)+ A -3,
ala— DA+ a+ 3).

Q5
[STS

Define quadratic function H gU 5 pLD) £ 4 fp2+B ¢p+Cy. In this range of the parameter
space, it can be shown that:

B} —4A;Cy = (a((a =2)A+a —6) + A = 3)> = 8(1 — a)a((a — L)A + a + 3) > 0.
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Hence, there are two real solutions to the equation flgU 5 pr(®) = 0, namely:

~Bj — /B3 — 4440y —Bjy + /B3 — 440y

O
P =
24, 2A;

and Py, =

It can be shown that 15%1 < ]5%2 < 1%;. From the proof of Prop. C.2, we know that
GsuB,a(p) > 0 on (—00,p,) and Gsyp,q(p) < 0 on (pg,00). It can be proved directly
that GSUB,a(p%H) < 0. Hence, p, < 15(1211 < ]5%2.

Furthermore, since Ay > 0, HgUB pr(p) is convex. Therefore, HSUB pr.(Pa) > 0. Thus,
U t(a, A) > 0, meaning that, in this region, CE-PL is dominated by CE-SUB.

Since CE-PL is always dominated when 0 < a < ), in this region we only need to compare
CE-SUB, TLF, and S. By the definition of ay(\) and oy, and in light of the earlier analysis,
in the region 0 < a < A we get:

— If max{a, %} <A<land0<a< az(A), then TLF is the dominating strategy;
— Else, if oy < a < A, then CE-SUB is the dominant strategy;
— Else, S is the dominant strategy.

This completes the mapping of dominant strategy to the parameter space (we discussed the case

a > 1 at the very beginning of the proof).

Social welfare comparison.
It can be shown with relative ease, through direct comparisons of closed form solutions, that
SWrirp = % + 5 > max{SW¢y_p;,SWi}t. Thus, we only have to compare SW3, . with

2y/a+1
SWecE-suB,a, SWeE—suB,p, and m for « € (0,1). From Prop C.2, we know that p, € (%, a)

and py € (%, )\). It is straightforward to see that:

1 A\p? P2 1 A\p? 3N 1
SWeg-suBa == |1+ A —— — ————— 14+ X282 2D = SWE
CE-SUB, 2( + o2 (1+pa—%)2 <2 + o2 < 3 +2 TLF
1 P 1 1 P2\ 3x 1
SWep- =1+ X -2 -— (14222 s = SWE
CE—-SUBb 2( + \ (1+pb€f)2><2< + v ) <3 +2 TLF

2(Va+1)? 2 8

Thus, TLF yields the highest social welfare when a € (0,1). This completes the social welfare
analysis since we discussed the case a > 1 at the very beginning of the proof. ]

2 1 1 3x 1
Watl <55 =Wie.
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D Proofs of Results for the Setup with Adoption Costs

We first present the optimal strategies under each of the business models separately. As the proofs
require defining a lot of parameters, in the interest of avoiding notation abuse, we add a subscript
D to some of the newly defined parameters (to distinguish from parameters used in the previous
proofs)

Proposition D.1. Under CE-PL model, in the presence of adoption costs, the firm’s optimal
pricing strategy, the corresponding profit, and ensuing social welfare are:

0<a<13-4v10 a>13—-4v/10
(a)0§c<CT (b)cT§c<20z c> 2« 0<ec¢< 2 c>2a
y a?c—ct2a(1+a—+/(a+1)(a(c+2)—c)
PCE-PL ( T oz ) 3200 = ¢) - 32a—0) -
% 2a+a?(c+6)—c—4ar/(a+1)(2a+(a—1)c) (c—2a)? (c—2a)?
TCE-PL (I—a)2 8o } 8o )
SWg’E_PL SWCEpr,E (cf2a)((1460;721)c76a) ~ (072a)((146c:;21)076a) ~
Paid adoption in both periods only in period 1 | none only in period 1 | none
where

(8a3 +8a2 + 4a — (4a3 — 6o+ 2) c) @+ D@a - (1= a)o) + 20 ((:2 +e— 4) —a2(5e(c+ 1) + 14) + 2a(c +1)2 + (c — 1)e
2(1 — a)2(a + 1)(2a — (1 — a)c) ’

SWceE—pPL,D =

and threshold c'(a) is the unique solution to the equation ®pr p(a,c) = 0 over the interval
<CTL? 2a(1—12fo(la+1))>7 with

®pr, pla,c) 2 (1- a)4c4
+8(1 — )?(a(2 — 3a) + 1)ac?
+ (16(c(2 — 3a) + 1)*a? + 8(a — 1)*((a — 14)ax — 3)a?)
+ (320 (a(2 = 3) + 1) ((a — 14)ar — 3) — 1024(a — D)a* (@ + 1)) ¢
—2048(a + 1)a® + 160 ((a — 14)a — 3)?,

and

ga (6- %) o Ho<a<i,
L 0, if 1 <a<13-410.

Proof. In period 1, consumers with type 6 purchase the product iff 2a0 — ¢ > p. To make any
profit, the firm is constrained to trigger adoption in period 1 (otherwise, no customer would update
their priors and there will also be no adopters in period 2 either). To achieve that, the firm has to
set price p € (0,2« — ¢). Thus, it immediately follows that the firm can make profit iff 0 < ¢ < 2a.
As such, the firm does not enter the market if ¢ > 2.

In the remaining part of the proof we focus on the scenario 0 < ¢ < 2a. In period 1, the
marginal adopter has type 61 = c;—ap and the installed baseis Ny =1—-6; =1 — C;—ap.

At the beginning of period 2, the consumers who did not adopt in period 1 update their priors
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via social learning from a1 = « to:
1 c+p
a2:a1+(1—a1)N1:§ 2+c+p—T .

In period 2, new consumers purchase the product if their type 6 satisfies asf — ¢ > p. The
c+p

——F ———. We have new adopters in
T(tetp—E2) P

marginal potential consumer in period 2 has type 6 =

period 2 iff 0 < 0y < 0;. We have two cases:

e Case 1: 0<a< 1.
In this case, we have three subcases:

. _ 2 _
—Casel—1:0§c<%,0<p<w

11—«

Then we have 0 < 0y < 61. Then, Ny = 61 — 0y > 0. In this case, the firm’s profit

maximization problem becomes:

c+

max = TCE-PL = max = p 1-— 7 p P

0<p< 2atag=tai_c 0<p< 2etac—to?_c 5 2+c+p—<2)
2

It can be shown that (97%% <0 forpe (0 Zo‘mfiio‘fc) Thus, it is sufficient to

solve FOC:

orcp—pr _ —a ((c+p)?+4(p—1)) —4a(c+p) + (c+p)?

= = 0.
Op (c+p—alc+p+2))?

Without constrains, the FOC yields two solutions:

a’c—c+2a <1—|—a+ \/(a+1)(a(c—|—2)—c)>
b1,p = )

1—a?
a20—c+2a<1+a—\/(a+1)(a(c—|—2)—c))
b2.p = 1 o2 .

204ac—402—c¢

It can be shown that p; p > max ,pgyD} and pa p > 0. Comparing pa p

11—«
with Mo‘ffféa%, we have three subcases:
* Case 1-i-a: 0<a<%(\/§—1),0<c<w.

Then 0 < pop < Mo‘fff)‘z_c, and it immediately follows that pl.p_p; = p2.p =

a?c—ct+2a (1+a7 (a+1)(a(c+2) 7c)>

2a+a?(c+6)—c— 404\/(a+1)(2a+(o¢ 1))

*
1—a2 s and ToR_pL = =)
x Case 1-i-b: 0 < a < % (V3 -1), M%W<C<M‘
2 . s ‘
Then py p > M‘ﬁcfiﬁa—c. In this case, we have pip_p; — Mozlcfjaq This case

is suboptimal as optimal pricing is pushed into case 1-ii.
* Case 1-i-c: 5(\/3—1) <a<l.
> 2a4ac—4a’—c
e

2« 2« l1—a)c
Ty, = 2220200 (=)0

into case 1-ii.

— 402 —
204-1—0410_;%04 c7 and

Then p2 p In this case, we have pip_p;, —

. This case is suboptimal as optimal pricing is pushed
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_ 2a—40? 2a4ac—4a’—c .
Case 1-ii: 0 < c< =47, s <p<22a-—c.

Then we have 63 > 61. In this case, N» = 0; adoption takes place only in period 1. The
firm’s profit maximization problem becomes:

( c+p>
max TCE—_PL = max pll1-— .

—4a2— —_4a2—
2o¢+a1c7§a C§p<2afc 2a+oc1c7;1éa C§p<2a7c 20é

Since the profit function is quadratic concave in p, it is sufficient to use FOC. Uncon-
strained, FOC yields the following solution:

1
P3.D = 5(20( —c).

It is obvious that p3 p < 2a — ¢. Comparing p3 p with 2atac—da®—c

= , we have three

subcases:
* Case l-ii-a: 0 < @ < %, 0<c< (6—ﬁ>0@
2 .
Then 0 < p3p < 2atac—da’—c Then, we have the corner solution pfpn_p; =

-«
_da?— o . . .
2atac—da”—c¢ which is dominated by case 1-i-a (at the corner solution we have 6; =

11—«
62).
.. e
* Case 1-ii-b: 0 < o < %, (G—ﬁ)a§c< %'
2 —4a2— .
Then % <ps <2a—c. Thus, pip_pp =p3.p = 3(2a—c)and 75 _pp =
(e=22)?
8a

.o _ 2
* Case 1-ii-c: %§a<1,0§c<%.
Then 2a+alcf4a270

—
% _ (c—20a)?
TCE-PL = ~ 8a *

402

— Case 1-iii: % < c < 2.

Then 02 > 1. In this case, Ny = 0; adoption takes place only in period 1. The firm’s

< p3,p < 2a —c. Thus, pip_pr = P3p = %(204 — ¢) and

profit maximization problem becomes:

max T max 1 ctp
E-PL = - .
0<p<2a—c ¢ O<p<2afcp 2c

Since the profit function is quadratic concave in p, it is sufficient to use FOC. Uncon-

strained, FOC yields the same solution ps p = %(204—0). Then, plp_pr =p3 = %(204—0)

* _ (c—2a)?
and 7o _pp = g4 -

As cases 1-i-b, 1-i-c, and 1-ii-a are suboptimal, in order to determine the optimal strategy

2a—4a>
when 0 <c< 1o

I<a< % (\/§ - 1) we have (6 - %) o < az2alatl)) 2041:40[2_ Thus, we only need to

we are left to compare cases 1-i-a to cases and 1-ii-b and 1-ii-c. When

l1-a «
explore two subregions:

— Comparison Subregion 1: 0 < o < %, (6 — ﬁ) a<lc< 2o
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In this region, denote the difference between profits under case 1-i-a and case 1-ii-b as:

a 20+ 0%(c+6) —c—day/(a+1)2a+ (a —1)c)  (c—2a)?
Apr.p(a,e) = (1—a)? - 8a

Note that:

Apr p(a,e) >0 <= 4a?((14—a)a+3) — (1 —a)? — 2 —da(3a+ 1)(1 — a)c > 3202/ (a + 1)(2a — (1 — a)c).

It can be shown that the 402((14 — a)a +3) — (1 — a)? — ¢ — 4a(3a + 1)(1 — a)c > 0.
Thus, the sign of Apy, p(a,c) is same as the sign of ®pr, p(a, ¢), where:

> (D)

®prpla,c) = (4a2((14 —a)a+3)—(1-a)? - —4aBa+1)(1 —a)e)
— 10240t (o + 1) (20 — (1 — @)c).
=(1-a)d
+8(1 — a)*(a(2 — 3a) + 1)ac®
+ (16(c(2 — 3a) + 1)%a? + 8(a — 1)*((a — 14)ax — 3)a?)
+ (320°(a(2 — 3a) + 1) ((a — 14)ar — 3) — 1024(a — D)a* (@ + 1)) ¢
—2048(a + 1)a® + 160 ((a — 14)a — 3)%.

It can be shown that, in this region, %’2(0"0) < 0. Next, we check the sign of

®pr, p(a,c) at the two extremes in ¢ :
= 256(1 — 2a)%a’ > 0,
mfo-stn) T o0 TR
®prp(a, c)‘ et antesny = 16(1 = 20)%a7(a(4(a — T)a — 31) — 32) < 0.
—

®prpla,c) ‘

11—«

Thus, there exists a unique solution ¢ = cf(a) to the equation Aps, p(a,c) = 0 over
the interval ((6 - %) , M%‘W), such that when (6 - %) <c<cl, case 1-i-a

2a(1—2a(a+1))
-

dominates case 1-ii-b; when ¢! < ¢ < , case 1-ii-b dominates case 1-i-a.

— Comparison Subregion 2: % <a< % (\/§ — 1), 0<ce< W

In this region, the difference between profits under case 1-i-a and case 1-ii-c is again
given by ®pr p(a,c), as defined in equation (D.1). Following the same steps as above,

we can show that in this region as well we have %’Z(Q’C) < 0 and:

®prp(a, C)LZM_MW)) — 16(1 — 20)%a7 (a(4(a — 1) — 31) — 32) < 0.

-«

Then, we look at the other extreme in c:

=16(1 — )% (o — 26)a + 9).

c=0

®pr pla,c)
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It can be shown that:

(D.2)

>0 ,1<a<13-4/10,
<0 ,13-4/10<a<i(V3-1).

Thus:
* When % < a < 13—4+/10, there exists a unique solution ¢ = ¢f(a)P! to the equation

,w , such that when 0 < ¢ < ¢f,

. . .. 20(1—2 1
case 1-i-a dominates case 1-ii-c; when cf <c< W

Apr p(a,c) = 0 over the interval (0

, case 1-ii-c dominates
case 1l-i-a;

* When 13 —4v10 < a < % (\/5 - 1), case 1-ii-c dominates case 1-i-a.

In summary, in case 1, when 0 < o < 13 — 4y/10 and 0 < ¢ < ¢f(a), then we have Pop_pL =

a?e—ct2a(1+a—y/(at1)(a(c+2)—c) % 2a+a?(c+6)—c—dar/ (a+1)(2a+(a—1)c)
( I—a2 >7 TCE-PL = (1_{[)2 , and

(8a3 +8a2 + 4o — (4@3 — 6 + 2) c) \/(a +1)2a — (1 — a)c) + 204 (02 +c— 4) — a2(5c(c+ 1) + 14) + 2a(c + 1)2 + (¢ —1)c
2(1 — a)2(a+ 1)(2a — (1 — a)c) ’

SWép_prL =

(c—2a)?
8a

(c—2a)((4a—1)c—6a) )

. * 1 * —
Otherwise, pip_pr = 520 —c¢), T&p_pr = 1602

e Case 2: o> 1.
In this case, a; > a2 > a = 1. None of the period 1 non-adopters will purchase in period 2.
The profit maximization problem becomes:

ma, ma 1 ctp
X TCOE—PL = X — .
0<p<a—c ¢ 0<p<2a—cp 20

Then, prp_pr, = %(20‘ —C), Top_pr = %v and SWep_pp, = (c_za)((l460;;1)c_6a)‘ D

Proposition D.2. Under CE-SUB model, in the presence of adoption costs, the firm’s optimal
pricing strategy, the corresponding profit, and ensuing social welfare are:

e 0<a<l.
0<c<a a<c
PoE-suB Pa,D -
TCE-SUB T,0E—-SUB,D -
SWép_sup SW1 .cE-suB,D -
Paid adoption in both periods | none

where pq p is the unique solution to the equation Gsyp,p(p) = 0 over the interval [%, a— c)

D-1We use the same notation as in the prior case, since the solution is to the same equation, but over a different
range of a.
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with

Gsus,p(p) £ —2(1—a)’p® + p*(1 — a)((6 — a)ar+ 5(c — 1)c)

+2p ((a = 3)a® = 2(a — 1)*¢®* + a (a® — 6a + 5) ¢)
+(1—a)’® + 203 + (3o — 5)a’c + (a2 — o+ 4) ¢
and
c+ pa,D c+ Pa,D
T,0E-SUB,D = Pa,D | 2 — C+pa Sk
a 14ctpep— SBeD
2
o (C + pa,D) (C + pa,D) C(C + DPa, D)
SWice-supp =1—c— 502 - N ! Cﬂ,a =
C1Pa,D
2<1+c+pa7D—T‘l> e+ PaD -
e l<a<?2.
2(a—1a | 2(a—1)a o?—a o?—a
0<ec<=5m 3atl = C< oF1 afl Sc<a asc
* 2a—c c a—c _
PcE-suB 2(a+1) a—1 2
* (2a—c)? 2c(a—c—1) (a—c)?
TCE-SUB 1ala+tl) G 20 B
« (a—2)c? (a—c)(=(2a—1)c+3a)
SWeg_sun SWa cE-suB,D oz —ctl 2o i}
Paid adoption in period 1 in both periods in both periods none
40? (a(a+4)+1)+ ( 2(8a+7)— )c —4af( 2a+1)(a2+1)c
where SWo cp—suB,p = SaZ(at1)?
e 2<a<sy; (\/ + 3)
0<c<a-2 a72§c<2(;:+11>a 2(;;ll)a§c<“:;la “;;f§c<a a<c
2<a<3 3<a<i(VIT+3)
0<c<ecsuBp | csuBp <c<a—2
o 20—c a—c 20—c 2a—c c a—c
Pcp-suB 2(a+1) 2 2aF1) 2(aF1) a1 2 -
T (2a—c)? (a—c)? (2a—c)? (2a—c)? 2c(a—c—1) (a—c)? ~
CE-SUB 1a(a+D) Ia 1a(a+]) dala+D) (a—1)? %a
SWep_sus SWs ce—suB,D 7(%6)(7(;:324)”30) SWa.ce-suB,D SWa.cE-suB,D (((f:zl))r; —c+1 7(076)(7(3224%””) -
Paid adoption in both periods in period 1 in both periods in both periods in both periods in both periods none
where c1 sup,p = o — Vo +1—1.
o 1 (VIT+3) <a<4v2+5.
2(a—1 2(a—1 2_
0<c<ecisuBp | c,5UBD <c< (;a+1)a (L?a-‘—l)a <e< T aaﬂa <c<a a<c
* a—c 2a—c c a—c
Pce-suB 2 2(aF1) a—1 2 }
* (a—c)? (2a—c)? 2c(a—c—1) (a—c)?
TCE-SUB la dala+1) (a1 T2a B
(a—c)(—(4a—1)c+3a) (a—2)c? (a—c)(—(2a—1)c+3a)
SWeg_sus e SWa ce-suB,D a1z —ct1 lazofizfaletda) _
Paid adoption in period 1 in both periods in both periods in both periods none
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e 4/2+5<a.

2 2_
0<c<essup | e3suBD < ¢ < Yl Sce<a a<c
. a—cCc C a—cCc _
DPce-suB 2 a—1 2
% (a—c)? 2¢c(a—c—1) (a—c)?
TCE-SUB Ia (a—1)2 20 B
(a—c)(—(4da—1)c+3a) (a—2)c? (a—c)(—=(2a—1)c+3a)
SWeép-sus 8a? @z —ct1 Io? -
Adoption in period 1 in both periods in both periods none

(a—1)a(a+3)—2v2a(a—1)
a(a+6)+1 ’

where c3 suB,pD =

Proof. In period 1, customers subscribe iff af — ¢ > p. To make profit, the firm is constrained to
set 0 < p < a — ¢. Thus, it immediately follows that the firm can make profit iff 0 < ¢ < a. As
such, the firm does not enter the market if ¢ > «.

In the remaining part of the proof we focus on the scenario 0 < ¢ < «a. In period 1, the marginal
adopter has type 61 = C?LTP and the installed baseis Ny =1—6; =1 — Cj'Tp.

At the beginning of period 2, the consumers who did not adopt in period 1 update their priors
via social learning from a1 = « to:

c+
a2:a1+(1—a1)N1:1+p+C—Tp.

In period 2, new consumers subscribe to the product/service if their type 6 satisfies a2 — ¢ > p.

We have two cases:

e Case 1: 0 < < 1.

In this case, a; < as < a = 1. The marginal customer type for period 1 non-adopters at the
+ .
ﬁ < #y. Thus, all customers with types 6 € [02,61)

are new adopters in period 2 (i.e., fresh subscribers). In the case of period 1 adopters (i.e.,

beginning of period 2 is 6y =

with type 0 € [0, 1]), their valuation of the product updates upwards and there is no more
adoption cost in period 2 (since adoption cost is a one-time cost). Thus, all adopters in period
1 continue to subscribe in period 2. The profit maximization problem becomes:

_ c+p c+p
max p(l—0;+1—106y) = p<2— o _1—|—c—|—p—c+p>'

O<p<a—c

max

max TCE-SUB = 0<pen—c

O<p<a—c
o

2
9°ToE-_SUB

92 < 0. Hence, FOC is sufficient to determine the optimal price.

It can be shown that
We have:

omcep-sup _ Gsus,p

dp "~ Qsusp’
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where:

Gsup.p(p) £ —2(1 — a)?p® + p*(1 — )((6 — a)a +5(c — 1)c)

+2p ((a = 3)a® = 2(a — 1)*¢®* + a (a® — 6a + 5) )

+ (1 —a)?c +20° 4+ (3a — 5)d’c+ « (a2 —5a + 4) 2,
Qsvp.p(p) £ ala—(1—a)c— (1 —a)p)* > 0.

Thus, when solving FOC (%% = O), it is enough to look at the numerator. We further

have two cases:

— Case 1-i: 0 < a< 1.

In this case, Ggyp,p(p) is cubic in p and, thus, the equation %’;’D(m = 0 has two
solutions:
a+ac—c —a? + 3o+ 2ac — 2c
P1,suB,D = ﬁ and P2,SsuB,D = 3(1 — a)
It can be shown that p; syp,p > @ — ¢ and p2 syp,p > @ — ¢. Thus, W < 0 for

all p € (0,0 — ¢). Evaluating Ggyp,p(p) at various threshold points, it can be shown
that:

(% c
Gsup,p(0) > Gsup,p <?) >0 > Gsup.pla—c).

a—cC

Thus, GSUB7D(p) = 0 has a unique solution p, p € [ 3

, o — c) over the real line, which
is also the optimal profit-maximizing price in this region (p&p_syp = Pa,p). More
precisely, %Eéi“m(m > 0 for p € (0,p,,p) and %E‘aim(m < 0 for p € (pa,p, @ — ¢).

P P
The formulas for the optimal profit and associated social welfare follow trivially.

— Case 1-ii: a=1.
In this case, Gsup,p(p) = —2(c+ 2p — 1). The equation Ggyp,p(p) = 0 has a unique

solution p, p = 1?: € [%, 1-— c). Therefore, pfp_gyp = Pa,D-

e Case 2: 1 < a.

In this case, a1 > a2 > a = 1. None of period 1 non-adopters will subscribe in period 2 as
they revise downwards their perceived valuation of the product. On the other hand, period
1 subscribers, when exploring renewing their subscription for period 2, have to consider the
tension between two opposing forces: (i) the downgrading in the perceived valuation (which by
now has been calibrated to the real value through experience learning) and (ii) the reduction
in adoption cost (the adoption cost is incurred only at adoption time and, as such, returning
customers would no longer incur that cost in period 2). Thus, the marginal adopting customer
type in period 2, 6, satisfies §o = max{6#;, min{1,p}}. Since 0 < p < a — ¢, comparing a — ¢
with 1, we get three cases:

—Case2-i: 0<c<a—-1,0<p<1.
In this case, @« — ¢ > 1 > p and 0y = max{0;,p}. Comparing ¢; and p, we obtain two
sub-cases:
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In this case, 81 > p and all period 1 subscribers continue to subscribe in period 2.
Thus, the profit maximization problem becomes:

c+p
max mwop-syp = max 2p|1l-— .
0<p<— O<p<af1 «

Since the profit is quadratic concave in p, it is sufficient to use FOC to derive optimal
price. Unconstrained, FOC yields the following solution:

o —C

2

P3,SUB,D =

Comparing p3 sup,p with —=5, we obtain two sub-cases:

- Case 2-1-A-I: 0 < ¢ < O‘;J:la
In this case, p3 sup,p > 5. Then, php_gup = o7 and 7&p_gyp = %
- Case 2-i-A-II: O‘*O‘<c<oz—1
In this case, p3 suB,p < ﬁ. Then, pfp_gup = P3,SUB,D = % and 5p_qup =

(a—c)®
20 ¢

In this case, 02 = p > 61 and the profit maximization problem becomes:

( c+p >
max 7CEp-SUB = Max p 2 — —p.
< <5 <p<1 «

Since the profit function is quadratic concave in p, it is sufficient to use FOC to
identify the optimal price. Unconstrained, FOC yields the following solution:

B 200 — ¢ <1
P4,SUB,D = 72@ i 1) .

Comparing ps sup,p with — we obtain two sub-cases:

17

. ( 1)
. Case 2-i-B-I: 0 < ¢ < 3a+1°‘.

. 20—
In this case, pssupD > 357, Pop-sup = P4SUBD = 3(a11) "CE-SUB =
(2a—c)?
da(a+1)"
- Case 2-i-B-1II: (3 +1) <c<a—1
In this case, py suB,p < 55 5, and php_sus — -%7. This case is suboptimal as

we are pushed into case 2-i-A.

Since O‘;fla > 2(3%;11)0‘, comparing case 2-i-A (both subcases) against case 2-i-B-I and
reorganizing, we get:
2(a—1)a
* Case 2-1-a: 0 < ¢ < =5 H

. 2c(a—c—1) (20—c)?
In this case, @12 < Za(atD)’
M * — M
2(at1)’ TcEp-SUB = da(a+1)"

i.e., case 2-i-B-I dominates case 2-i-A-1, pfrp_qyp =
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s 1. 2(a—Da a?—a
x Case 2-i-b: “Safl S c < ol

In this case, as discussed above, case 2-i-B-1I is dominated by 2-i-A-I. Thus, p&p_gyp =
c * _ 2c¢(a—c—1)
a-1' TCE-SUB = ~(a—1)2
* Case 2-i-c: a:;la <ec<a-1.
In this case, as discussed above, case 2-i-B-1I is dominated by 2-i-A-II, Thus pfp_gyp =

a—c % _ (a=0)?
3 TCE-SUB = 24 *

— Case 2-ii: 0<c<a—-1,1<p<a-c
In this case, s = 1. There are no subscribers in period 2. The profit maximization
problem becomes:

c+p
max T7Tcp—syp = max p|1l-— .
1<p<a-—c 1<p<a—c (0]

Since the function is quadratic, it is sufficient to use FOC. Unconstrained, FOC yields
the following solution:

o —C
P3,SUB,D = 5 <a-—c

Comparing p3 sup,p with 1, we obtain three sub-cases:

x Case 2-ii-a: 1 < a < 2.

i 1
In this case, p3 syp,p < 1, and thus pp_gyp =1, Tep_syp = 1 — %
x Case 2-ii-b: 2 < a, 0<c< a—2.
2
1 — a—cCc
In this case, p3.sup.p > 1, Pop_sup = PsUBD = %5°, Tep_sup = ok
x Case 2-ii-c: 2<a,a—2<c<a-—1.
i 1
In this case, p3 suB,p <1, pfp_syp =1, Top_sup =1 — %

— Case 2-iii: a—1<c¢c<a,0<p<a—c<1.

In this case, -5 > 1 > p. Thus, ) > p and 62 = ¢;. The profit maximization problem

becomes:
ma max 2p|1 ctp
X TCE- = X - :
0<p<a—c CE-SUB 0<p<a—c b «Q
* __ a—c * _ (a=¢)?
It follows that PcE—suB = "3 s TCE—-SUB — "~ 2gq -

Let us summarize case 2 (and in particular compare 2.i and 2.ii cases). It is easy to see that
2(a—1)a
3a+1

a—2< 2o Comparing o« — 2 and

ol , we get three cases:

- 1l<a<2
It can be easily shown that case 2-i dominates case 2-ii-a when ¢ < o — 1. Combining
with case 2-iii, we extend the region to ¢ < a.

~2<a<}(VIT+3).

In this case, we have o — 2 < 2a—la

3a+1

2_
<% H"‘. We further have four sub-cases:
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*x 0<c<a-—2.
In this region, denote the profit difference between case 2-i-a and case 2-ii-b as:
a Qa—0)? (a—0c)? —+2a—1)c—(a-3)a

H L _ —
LSUBD = yo(a + 1) dor Aa+1)

The equation Hy syp,p = 0 has two solutions:
cisupp=a—Va+1-1 and csupp=a+Va+1-1

We have ¢ sup,p < o —2 < ¢ sup,p- Comparing c1 syp,p with 0, we get:
- If2 <a <3, then ¢ syp,p <0 and Hy syp,p > 0forall c e [0, —2), i.e. case

. . .. 20— 2a—c)?
2-i-a dominates case 2-ii-b. Thus, pp_oyp = ﬁ, TOBE_SUB = W, and

402 (a(a+4)+1)+(a2(8a+7)71)0274a(2a+1)(a2+1)c

SWeg_sup = 8aZ(a+1)2

cIf3<a<$(VIT+3)and0 < c< ey supp =a—va+1-1, then Hy supp <
0, i.e. case 2-ii-b dominates case 2-i-a. Thus, pip_syp = %55 Top_sup =
(a—c)? * _ (a=¢)(=(4a—1)c+3a)
0‘4; ) SWC’E*SUB == 832 e

cIf3<ax< % (\/17+ 3) and ¢ syp,p <c<a—2,then Hy sypp >0, ie. case

. . .. 20— 2a—c)?
2-i-a dominates case 2-ii-b. Thus, pfp_gyp = ﬁ, TOE_SUB = m, and

4a? (a(a+4)+1)+(a2(8a+7)71)0274a(2a+1)(a2+1)c

SWép_sup = 8a2(a+1)2
*xa—2<c< 2(30;;11)0‘.
Y . . .
In this region, it can be shown that ﬁo(‘ai)l) >1-— %, i.e. case 2-i-a dominates
2a—c (c—2a)?

.o * _ * _ * —
case 2-ii-c. Thus, Pog_sup = s(at1) TCE-SUB = tatatn): 4 SWep sup =
4o¢2(a(a+4)+1)+(a2(8a+7)—1)02—4a(2a+1)(oc2+1>c

8a?(a+1)?
2(a—1)o a’—a
* 3a+1 <c< a+l *
In this region, it can be shown that % > 11— %1, i.e. case 2-i-b dominates
- * _ _c * _ 2c¢(a—c—1) % .
case 2-ii-c. Thus, pip_qup = a1 TOE-SUB = ~(a=1)Z and SWip_oqup =
(a—2)c? —e+1
(a=1) :
CYZ*CM
| <c<a. ]
. . . 2_ —
In this region, it can be shown that, when < —* < ¢ < a—1, we have % > 1_%,
_ )2
ie. case 2-i-c dominates case 2-ii-c, and pip_sup = %55 Top_sup = (0‘2;) ,
SWep_sup = (afc)(f(js{ Letda) Combining with case 2-iii, we extend the region
2
to £ =2 <c¢<a.

a+1
—a>1(V17+3).
2(a—1)a

X 2_
In this case, we have =3 == < a — 2 < 7. We further have four sub-cases:

a+1

* 0.<c< HEe

Following the same steps as in the above case, it can be shown that 0 < ¢ suB,p

2ala It can be shown that 2Ao=Da i < 4y/2 45

3atl C2,SUB,D- can be shown that ¢1,sup,p < =357 W a < + 0.
We have the following sub-cases:

and
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CIf %(\/ﬁ+3) < a<4V245 0<c¢< €1,sUB,D, case 2-ii-b dominates

case 2-i-a. Thus, prp_gyp = %, ToE_SUB = (0‘4_;)2, and SWip_syp =
(a—c)(—(4a—1)c+3a)
8a? :

I3 (VIT+3) <a<4v2+5and ¢y supp < ¢ < 2(;;11)@’ case 2-i-a dominates

- * _ 2a-—c * _ (20—¢)? * _
case 2-ii-b.  Thus, pop_syp = 3(at1): TCE-SUB = Za(at1) °WCE-SUB =

4a2(a(a+4)+1)+(a2(8a+7)—1)02—4a(2a+1)(cx2+1)c

8a2(a+1)2
- If @ > 42 + 5, then C1,SUB,D = 2(:?&;11)&. Case 2-ii-b dominates case 2-i-a.
_ a— _ (a—c)? _ (a—c)(—(4a—1)c+3a)
Pep-suB = 55 Top—suB = ~ 4o a0d SWep_gup = 802 :
2(a—1)a
3aT1 <c<a-—2.

In this region, denote the profit difference between case 2-i-b and case 2-ii-b as:

a2c(@—c—1) (a—c)?

. s
2,SUB,D (a_ 1) 1o
 —(@®+6a+1) 4 2a (e +2a —3) ¢ — (a—1)%a?
B 4(a—1)%a '

The equation Hs syp,p = 0 has two solutions:

(a —Da(a+3) — 2v2a(a — 1)

©3,5UB,D = ala+6)+1 ’
) _ (a—Da(a+3)+2v2a(a—1)
4,5UB.D = ala+6)+1

It can be shown that c3 sup.p < o —2 < cs suB,p. We have c3 sup,p < % iff
a < 4v2 4+ 5. We get the following sub-cases:

. If% (\/17 + 3) <a< 4\/§—|—5, then C3,5UB,D < 2(3?0;‘_11)(%. ThllS, HQ,SUB,D > 0 for

all c € [2(3?&;12&,& — 2). Case 2-i-b dominates case 2-ii-b. We have pfp_g;p =
* 2 —c—1 % —92)¢2
ocil7 TCE-SUB = %’ and SWCE—SUB = % —c+ 1.

If o > 4v2 + 5 and % < ¢ < c3,5UB,D, then case 2-ii-b dominates
N2
case 2-i-b. Thus, prp_gup = “5°% TCp_sup = (a4;) , and SWep_gyp =
(a—c)(—(4a—1)c+3a)
8a? :
- Ifa>4v2+5and c3,5UB,p < ¢ < a — 2, then case 2-i-b dominates case 2-ii-b.
o _ 2c¢(a—c—1) _ (a—2)c?
Thus, pop—sup = a=1 Tep-suB = (a=nyz > WA SWep_syp = Goqyz —c+1.
2_
a—2<c¢< O‘QH‘”.
In this region, it can be shown that 2'3((2‘_;10)_21) >1— <l je case 2-i-b dominates
. 2c(a—c—1
case 2-ii-c. Thus, pip_syp = 557 TCE_SUB = 70((2‘_16)2 ), and SWip_sup =

e et 1.

a2—a
Tl <c<a.

AV
In this region, it can be shown that when 0‘;:1“ <ec<a-—1, (QTC) > 1— %,
(a—c)

i.e. case 2-i-c dominates case 2-ii-c and pip_gyp = 55 TeE_SUB = aa
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*
SWCEfSUB

o’—a
to a+1 <c

(a—c)(—(2a—1)c+3a)

4a?
< Q.

. Combining with case 2-iii, we extend the region

O]

Proposition D.3. Under TLF model, in the presence of adoption costs, the firm’s optimal pricing

strateqy, the corresponding profit, and ensuing social welfare are:

O<a<l a>1

0§c<% S<e<a c>a 0§c<% %§c<oz c>a

1 - 1 .

Prie 2 s 2 a

- 1 e(1-3) ; 1 c(1-%)
. [e3
d a+(a—1)c 3 a a®(atac—c

Paid adoption in both periods in both periods none in both periods in both periods | none

Proof. Under TLF, all customers get the product for free in period 1, but they incur adoption cost
¢. Thus, customers of type 6 start the free trial iff ad > c. It is straightforward to see that there
is no adoption if 0 < a < ¢. In the remaining part of the proof, we focus on the more interesting

scenario in which adoption can take place, i.e. 0 < ¢ < a.
The marginal adopter in period 1 has type 61 = 5. The size of the adopter population in period 1
is Nl =1- g.
At the beginning of period 2, adopters in period 1 purchase the product iff § > p (they already
incurred the one-time adoption cost during the free trial in period 1). Period 1 adopters, through
WOM, will help the non-adopters update their priors at the beginning of period 2 - however, the
consumers who did not adopt in period 1 still have one free-trial period available to them and thus,
regardless of how they update their priors, they will not contribute revenue to the firm. Hence,

the only revenue can come from consumers who took advantage of the free trial in period 1. Thus,
the firm must set p € (0,1). The marginal paying customer in period 2 has type 62 = max{61,p}.

Comparing p with 8;, we get two cases:

e Case 1: 0 <p< S =0
In this case, 65 = 61 and the profit maximization problem becomes:

It follows that p%;r 1 <. This case is suboptimal as p7; - is pushed into case 2 region.

e Case 2: £ <p<1.
In this case, 63 > 61 and the profit maximization problem becomes:

0<p<

‘We have two subcases:

— Case 2-i: f 0< c< 5, prrp = %,

L o * __ C *
— Case 2-ii: If § <c<a,prrp =5, Trrp

*

TrLrp =

&
max 7rrp = max p (1 — —) .
s 0<p<< «

max 7rrr = max p(l —p).
£ <p<1 =<p<1

1
L
s (1-2)
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To get the social welfare, we further consider the non-adopters in period 1. Non-adopters in
period 1 update their priors via social learning from a; = « to:

C
a2:a1+N1(1—a1):1—|—c—a.

For a period 1 non-adopter of type 6 < #; to adopt in period 2 under free trial, it must be the

case that 6 > 52 £ 17o—=- Comparing 0~2 with 67, we further split cases 2-i and 2-ii each into two

+ (e
subcases as follows:

e Case 2i-a: 0<c< g, 0<a<l.

In this case, 0y < 01, SWep sup = ac®(at+2(a—1)c)

2(at+(a—1)c)?

c+%.

e Case 2-i-b: 0<c< §,a>1
In this case, 672 > 01, SWep_sup = %c <(20;;21)C — 2) + %.
e Case 2+i-a: § <c<a,0<a<l

2a47(1fa)204+2(17a)2ac3+(a2fa4)02+2(a72)a3c
202 (a+ac—c)? :

In this case, 65 < 61, SWép_sup =

e Case 2-ii-b: § <c<a,a>1.

In this case, 6, > 0y, SWen sup = (a—c)(—(o;—l)c-m). -

«

Proposition D.4. Under S model, in the presence of adoption costs, the firm’s optimal seeding
ratio, pricing strategy, the corresponding profit, and ensuing social welfare are:

0<c<2x 20 < ¢
Region A (described below) Otherwise
* 2a—(Ta+1)c+t *
Ps - (1oéa = Pce-pPL -
k* —8a?+2a+(a—1)c+t 0
S 4(1—a)(2a—c) -

(6a+3(a—1)c—t)(2a—(Ta+1)c+t)?

TS 128(1—a)a(2a—c) (2ot (a—1)c+t) TCE-PL -
SWE SWs.p SWeE_pL -
Paid adoption in both periods same as CE-PL | none
where:
SWs,p = (2a(l = ¢) +¢)(2a(1 — do) + (a = De+1) + ((6a + 3(a — 1)c — t) (=160 (c(16¢ + 15)

16(1 — a)a?
—18) + a*(c(c(86¢ + 325) — 228) + 4(4t — 3)) + 2a(c(c(—46¢ + 10t + 15) — 5t + 6) — 2t)
+(2¢ = 1)(c — t)(3c + t)) (4a®(56a — 3) + ((29ax + 38) — 3)c” — 2c(2a(a(4ax + A7) — 3)
+(a— 1))+t — da(da + 1)t)) / (2 (40° (64a — 3) — ((a — 1)(43a — 3)c?)
+2¢(2a(a(320 — 55) + 3) — 5at + t) + 2 — dat)” (4(a — 1)(c — 2a))) :

and t = (2a+ 17ac — ¢)(a(c + 2) — ¢). Region A corresponds to parameters o and ¢ satisfying:
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0<c<ca) ,if0<a<d,
and
E <a<al(e).

ct(a) and a't(c) are defined the proof below.

Proof. First, we point out that CE-PL is a particular case of S with seeding ratio set to zero.
Throughout the proof, we will show that in certain regions CE-PL dominates S with non-zero
seeding ratio - that is equivalent to saying that the optimal seeding ratio will be 0 in those regions
(i.e., S defaults to CE-PL).

If @ > 1, seeding brings no benefit as any social learning calibrates perceived valuations down-
wards, and, as such, S defaults to CE-PL.

Thus, we are left to explore the non-trivial case of 0 < a < 1. It is straightforward that the
firm can make profit iff 0 < ¢ < 2a. In the remaining part of the proof we focus on the scenario
0 < ¢ < 2a. We have two cases:

e Case 1: 0 <p<2a—c.
In this case, there are paying adopters in period 1 (potentially alongside seeded customers if
k > 0). The marginal paying adopter in period 1 has type 61 = C;—ap. The marginal seeded
adopter in period 1 has type Ogeeq = 5 (unlike in the baseline model, in the scenario with
adoption cost not all seeded customers adopt).
Thus, the total number of adopters in period 1 is Ni ¢ot1 = K (1 — i) +(1-k) ( — C;r—ap) =
204%5(1—1@)_ In period 2, the potential customers who have not adopted in period 1 update

their prior beliefs via social learning as follows:

(1-—a)2a—c—p(l— k))
2

az = a1 + Nitota(l —a1) = a+

A customer of type 6 who has not adopted in period 1 (via paying for license or through the

seeding program) will adopt in period 2 iff 6; > 0 > 0, = +(17a)(§jfkp<1fk)) . Comparing 6,
o 2

and 6y, we have:

—4a? +2a+ac—c¢
01 > 05 — p<

(1—a)(1—k)
Comparing % with 0, we have:
—4a? + 2 - 1 200 — 4a?
Zjai;_a;) C>0 = 0<o<<§ and 0§c<%<2a.
Comparing % with 2a — ¢, we have:
402+ 2 — 202
o tlatac c<2a—c — 0<k< a < 1.
(1—a)(1—k) (1—a)2a—rc)
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Since in this case we consider p € (0,2 — ¢), we have four sub-cases:

2
— Case 1-i: O<a<2,0<c<20‘4a 0<k<m0§%.
In this case, 0 < % < 2a — ¢. We have two sub-cases:

—4024+204ac—c
x Case 1-i-a: O<p<—( k)

In this case, 6; > 6. Customers with type 6 € [02,60;), who have not been success-
fully seeded in period 1, adopt in period 2.
The firm’s profit maximization problem becomes:

max TS

—4024+2a+ac— 202
0<p< (?7a)?17%3 £,0<k< (17(1)?20(76)

c+p

= max p(1—k) (1 - :
—4a242a+ac—c 202 (afl)(72a+cfkp+p)
0<p< <1fa><1tk) O<k< =y 2a=0) a+ 20

It can be shown that 8 ’TS < 0. Thus, it is sufficient to solve FOC:

drs _ (k= 1) (02 (2 2e( + p + p(h(d = kp) +p+4) — 1) + 2(e(2 = 2kp) + (k= Dplkp = 2) ~ (c~ kp+p)2) _
dp 2a+ (a—1)c+pla—ak+k—1))2 o

Without constraints, the FOC yields two solutions:

f\/a (a(c+2)—c)(a+(a—1)k+1)(2a+(a—1)ck)

_ 2a + (a—1)e+ ot (a—1k+1
V2 a(a(ct+2)—c)(at+(a—1)k+1)(2a+(a—1)ck
204 (0 1)e - 2¢/a( tl(—&-(a(—l)kl—l )(2a+(a—1)ck)

It can be shown that p; p g > % and p2 p g > 0. Comparing ps p,s with

—40%42a4ac—c
=) (i-k) > We have:

—4a% + 20+ ac—c
e S TE
aa+ (a—1)c)2a+ (a—1)ck
= Ao’ <\[\/ a—l—(o)zi(l)k—l-(l =
a2a + (a—1)e)(2a + (o — 1)ck)
a+(a—1)k+1
— 8ot + 803 +20((1 —a)c—2a)+k (8(ar — Dad + (o —1)e((1 — a)e — 2a)) < 0.

— gat<?

Without constraints, 8a*+8a’+2a((1—a)c—2a)+k (8(ar — 1)a® + (. — 1)e((1 — a)c — 2a)) =
0 yields one solution:

20(2a2a(a+1) — 1) —ac+c)
(1—a)(B8a3+c%—aclc+2))

k1,p,s =
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Notice that:

S8(a—1Da + (a—1)ec((1—-a)e—2a) >0 <= c¢(2a+ (a—1)c)—8a®>0
kips>0 <= (c2a+ (a—1)c)— 8043) 2a2a(a+1)—1)—ac+c) <0,
20/

k 2 —1)¢) —8a® < 0.
1,D,S<(1_a)(2a_c) < c(2a+(a—1)c) —8a’ <

Then, we obtain four cases:
- Case 1-i-a-I: ¢(2a + (o — 1)c) — 8a® > 0.
In this case, p2 p.s < % Thus, pg = p2,p,s. The profit maximization

problem becomes:

max (—(a —De(a+ Ba—-—1k+1)+ 2\/5\/04(204 +(a—1)e)(a+ (a— 1Dk +1)2a+ (o — 1)ck)+

ogk<%
2a(—a(k+3) +k—1))/ ((a—1)%(k—1)).

It can be shown that %Lks < 0. Thus, kg = 0, S defaults to CE-PL.
- Case l-i-a-II: ¢(2a + (o — 1)¢) — 8a® < 0, 2a(2a(a +1) — 1) + ¢ — ac > 0,
0<Ek<kips.
—40?+204ac—c

_ 20+ac—2
In this case, P2.D,5 > ~(1=a)(i-k) PG = oot

—rah—ita- The profit maximization

problem becomes:

. (20— 1) (k — 1)(2a + (a — 2)c)

2a(2a(2a(a+l) 1)—ac+c) —a+ (a— 1 k; + 2
0<k< )(8a3+c 7ac(c+2)) ( )

It can be shown that Apy p(a,c) < 0 in this case, which corresponds to the

second case under CE-PL. For any k € [0,k p.s), (za—l_)f)[k;(z)(fg;(_(;—z)c) <
(0_820?‘)2 = m&p_pp- Therefore, this case is sub-optimal, as it is dominated by

not seeding anymore.
- Case l-i-a-IIl: ¢(2a + (o — 1)c) — 8a® < 0, 2a(2a(a + 1) — 1) + ¢ — ac > 0,
kips <k <q 20°

1—-a)(2a—c) "
In this case, p2.ps < %. Thus, pg = p2.p,s. It can be shown

a—z < 0 as well. Therefore, k§ = k1 p,s. It can be shown that Apz p(a,c) <
0 in this case, which corresponds to the second case under CFE-PL. For any
k€ [kzl’ag, %) g < w = n&p_pr- Lherefore, this case is sub-
optimal, as it is dominated by not beeding anymore.
- Case 1-i-a-IV: ¢(2a + (o — 1)c) — 8a2 < 0, 2a(2a(a+1) — 1) + ¢ — ac < 0.

In this case, p2 ps < W. Thus, pg = p2,p,s. Same as case 1-i-a-I,
Irs < 0. Thus, ki = 0, S defaults to CE-PL.

Thus, under case 1-i-a, S either defaults to CE-PL or is strictly dominated by CE-

PL.

x Case 1-i-b: w<p<2a—c.

(I—a)(1-k)
In this case, 8 < 65. There are no new adopters in period 2. The firm’s profit
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maximization problem becomes:

, max , TS
—4da“4+2at+ac—c 2a
ey (ik)  <P<20—c0<k<G—y@azg
c+
= max , p(1—k) <1— 5 p>‘
—4da“4+2at+ac—c 2 «
(1—a)(1—Fk) Sp<20‘7c’0§k<(17a)?2oﬁc)

It trivially follows that kg = 0. S defaults to CE-PL.

20—4a? 202
— Case 1-ii: 0 < a < 2, 0<e< ==, (1=0)(2a=0) <k<l1.

In this case, % > 2a — ¢. B2 < 61. Customers with type 6 € [02,0:1), who
have not been seeded in period 1, adopt in period 2. The firm’s profit maximization

problem becomes:

max TS

0<p<22a—c <k<1

a2
'(1— a)(2a c)—

c+p
= max p(1 — k) 1— — - .
0<p<2a—c 202 p o+ (a—1)(=2a+c—kp+p)

'(1—a)(2a—c) = 2«

Similarly to case 1-i-a, it can be shown that p; p ¢ > 2a — c and py p,g > 0. Comparing
p2,p,s With 2a — ¢, we have:

P2.D,s <2a—c¢

a2a+ (a—1)c)(2a + (a — 1)ck)
a+(a—1)k+1
2 _ 202a+ (v — 1)e) (2 + (v — 1)ck)
at(a—1k+1
— (1-a)*(c—20)%*+2(1 — a)(2a — ¢)ack + 4a*(c — a(a + 2)) < 0.

< (a—1)ck+2a(a— ak+ k) <\[\/

— ((a—1)ck+2a(a—ak+k))

Without constraints, (1 — a)?(c — 2a)?k? +2(1 — a)(2a — ¢)ack + 4a?(c — ala+2)) =0
yields two solutions:

hop s — % + Va2(da(a +2) + (c — 4)c)
” (1—-a)2a—-c)

k3D57—ac—\/a2 da(a+2) + (c—4)c)
” (1—a)(2a—rc) '

2 2 .
It can be shown that k3 p g < (1_63%#_0) and k2 p g > mff% Comparing k2 p g

with 1, we obtain three cases:

x Case l-ii-a: « (2a + Vda(a +2) + (c — 4)c — 2> + ¢ > 2ac.
In this case, ko ps > 1, ie., pops < 2a —c. Thus, pg = p2ps. The profit
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maximization problem becomes:

max (—(a —De(a+ Ba—1)k+1)+ 2\/5\/a(2a 4+ (a—De)(a+ (a— 1Dk +1)2a+ (o — 1)ck)+

20
T=a)(2a—cy Sk<1

2a(—a(k+3) +k—1)) /(e —1)%(k — 1)).

It can be shown that %L,f < 0. Thus, kg = % Therefore, this case is

weakly dominated by case 1-i. Thus, this case is strictly dominated by CE-PL.
* Case 1-ii-b: « (2a + VAa(a +2) + (c —4)c — 2) fe< 200 —2 < k<

(1-a)(2a—c)

ka2 p,s-
In this case, p2 p,s < 2a — c¢. Thus, py = p2 ps. Similarly as case 1-ii-a, we get
%L,f < 0. Thus, kg = % Therefore, this case is also weakly dominated and

is strictly dominated by CFE-PL.
x Case 1-ii-c: « (2a +V4a(a+2) + (c —4)c — 2) +c<2ac, kaps < k<1
In this case, p2 p,s > 2a — c¢. We can see that, for any k in this region, 7g(p) is

strictly increasing in p and the profit in this case is strictly dominated by the profit
under Case 2.
— Case 1-il: 0 < a < %, 20‘17_‘:0‘2

In this case, % < 0. 02 > 04, the profit maximization problem becomes:

c—+
max TS = max p(l1—k)(1— an
0<p<2a—c,0<k<1 0<p<2a—c,0<k<1 2

< c < 2.

It trivially follows that kg = 0. S defaults to CE-PL.

— Case 1-iv: % <a<l.

In this case, % < 0. 02 > 04, the profit maximization problem becomes:

c+p
max TS = max p(1—Fk)(1-— .
0<p<2a—c,0<k<1 0<p<2a—c,0<k<1 2a
It trivially follows that kg = 0. S defaults to CE-PL.

e Case 2: p>2a—c.
In this case, there are only seeded consumers in period 1 (i.e., no unseeded customer is willing
to pay for the product based on priors). Hence, Ny ot = k(1 — 5=). At the beginning of
period 2, the un-seeded customers update their priors to:

c
ag = a1+ Nigotat(1 —a1) = a+ (1 - a)k (1 B %) '

The marginal paying customer in period 2 has type 0y = et j Comparing 6, with

a+(1fa)k(17i
1, we obtain:

1 k
0 <1 — p<a—ak—|—k‘—|—20<—a+/€—2>.
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Comparing a — ak + k + %c (—g +k— 2) with 2a — ¢, we have:

PP LA = k> 202 >0
a— —c|—— — a—c .
2 a - T (1-a)(a—-c)
Comparing % with 1, we have:
202 1 2a(1 — 2
< <1 = O<a<i and 0<c<20lz20)
(1-a)(2a—2c) 2 1 -«
Thus, we obtain that:
1 20(1 — 2 202
<1l —=0<a<=-,0<c< o a), a <k<1,
2 11—« (1—-a)(2a—-c)

1
and2ac§p<aak+k+2c(k+k2>.
o

Otherwise, #2 > 1. There are no paying adopters in period 2, i.e., the firm does not make any
profit.

When 6, < 1, the firm’s profit maximization problem becomes:

max TS

2a—c§p<a—ak+kz+%c(— §+k—2) , % <k<1

c+p
= max p(1—Fk)|1— — |-
2a—c<p<a—ak+h+ie(—E4h—2), =200 <<l a+(1-—a)k(l-x%)

202
'(1—a)(2a—c)

Since it is quadratic in p, it is sufficient to use FOC. Taking the first order derivative of the
profit w.r.t. p, we get:

ors 2a(k — 1)(c+ 2p)
op  (a—1)ck+2a(a —ak +k)

—k+1.

Without constraints, the FOC yields one solution:

ac(k —2) — ck + 2a(a — ak + k)
pb3.D.s = dor .

It can be shown that p3 p g < a+ %c (—g + k- 2) — ak + k. Comparing p3 p s with 2o — ¢,
we obtain:

- k> 2a(3a — ¢)
a—c .
P3.D,5 = T (1-a)2a—2c)

It can be shown that (12—0{05?(0;;(:—)@ > (1_a2)‘2‘22a_c). Comparing % with 1, we obtain:

2a(3a — ¢) 1 2a(1 — 4a) 1 1 2a(1 — 4a)
1l = 0 — and —_— - — and —_— .
(1—a)(2a—c)< ( <a<gande< ——0r or {g<a<gande>——0
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Comparing %gia) with 0 and w, we obtain three cases:

— Case 2-i: 0<oz<%.

In this case, 0 < 20‘1(:(?‘) < 2&(11__(12‘1). We obtain three cases:
s 2a(1—4a) 202 2a(3a—c)
* Case 2-1-a: 0 S c < 13 (1—04)?204—(:) § ]{5 < W

In this case, p3.p,s < 2a — c¢. Thus, p§ = 2o — ¢. The profit maximization problem

becomes:

, max TS
2c 2a(3a—c)
(1—a)(2a—c) <k< (1—a)(2a—c)
2
= max 1-k)R2a—¢)|1-— .
202 4 20(3a—c) ( I ) ( o + lazbk(c=20)
(1=a)(2a—0) "< {T=a)@a=0) 2a

P2rg
Ok?2
seeding ratio. We have:

It can be shown that

< 0. Hence, FOC is sufficient to determine the optimal

ons 40220+ (a — 1)e) B
E%__@ad<«a—DdHQaM—ak+mﬁ1>_Q

Without constraints, FOC yields two solutions:

—202 + 2a+/2a + (a — 1)c

ksps =

(1—a)(2a—-c¢) ’
I —2a? — 2a4/(2a + (. — 1)c)
D (1—a)2a—c) '

It can be shown that k5 p g < % and k4 ps > #2204—0) Comparing

k4, p,s with 1, we obtain two sub cases:
- Case 2-i-a-I: \/a(c+2) —c+c < 4a.
—ac+2a(—2a42+/a(c+2)—c—1)+
In this case, ky p s < 1, p5 = 2a—c, kg = kyp s, g = * a< ° a_fl(c ) ) c.
It can be shown that under both the first and second case in CE-PL, we have
Ty < Tep_pr- Thus, it is dominated by CE-PL.

- Case 2-i-a-1I: \/a(c+2) —c+c > 4a.

In this case, k4 ps > 1, pg = 200 — ¢, kg = 1, 75 = 0. Thus, it is dominated by

CE-PL.
x Case 2-i-b: 0 < ¢ < QO‘l(igia), (1270‘0({33&;67)0) <k<l1.

In this case, p3.ps > 2a — c. Thus, pg = p3 ps. The firm’s profit maximization

problem becomes:

max s
2a(3a—c) <k<1

(1—a)(2a—c)
e (k — 1) (ac(k — 2) — ck + 2a(a — ak + k))?
= X
2a(3a—c) Sksl 8a (—a(c + 2)k + Ck + 2&2(k — 1))

(1—a)(2a—c)
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We differentiate mg w.r.t. k:

6(97;5 = ((c(2a — ak + k) + 20((a — )k — @) ((« = 1) ((a = Dk(2k — 1) — 2a)—

2ac (o + o+ 4(a — 1)%k* + ((7 — 5a)a — 2)k) + 4a*((a — 1)k — a)(—2a+
2(a— 1)k +1)))/ (8a((a — 1)ck + 2a(a — ak + k))?) .

cQa—ak+k)+2a((a—1)k—a)

Sa((a—T)ckt2ala—aktR)? < V- Denote:

It can be shown that:

Gps(k) &= ((a = 1) ((a — 1)k(2k — 1) — 2a) — 2ac (@® + a + 4(a — 1)%k?
+((7 = ba)a — 2)k) + 4 (( — 1)k — @) (—2a + 2(a — 1)k + 1))
= —2(1 - a)?(2a — ¢)?k?
+ (a—1) (40*(4a — 1) + (@ — 1)e® + 2a(2 — 5a)c) k
+2a (20%(1 — 20) + (a — 1)e® + a(a + 1)) .

It is straightforward that Gp g(k) is concave. Without constraints, Gp s(k) = 0
yields two solutions:

k ~ —8a?+2a+ (a—1)c++/(2a+ 17ac — ¢)(a(c+2) —c)

608 = 41— a)(2a—0) ’

—8a? + 2a + (a — 1)c — /(2a + 1Tac — ¢)(a(c + 2) — ¢)
4(1 — a)(2a —¢)

k7 ps =

It can be shown that k7 p g < (IZ_OZS))(O;;C_)C

2a(3a—c)
(1-a)(2a—c)’
- Case 2-i-b-I: a(9¢+2) + /(2a + (o — 1)) (2a + (17a — 1)¢) > 32a% + c.

In this case, kg.p s > M Denote t = (2a+ 17ac —¢)(a(c+2) — ¢), We
s (1—a)(2a—c)

) and k¢ ps < 1. Comparing ke p s with

we obtain two sub-cases:

can further get:

x _ 202 —2actack—ck—202k+2ak _ 2a—(Ta+1)ct+t * _ _ —8a%+2a+(a—1)c+t
bs = 4ol - 16c ’ kS - kG,D,S - 4(1-a)2a—c)
(6a+3(a—1)c—t)(2a—(Ta+1)c+t)?
128(1—a)a(2a—c)(2a+(a—1)c+t) ?

x
7TS—

2a(l —¢) +¢)(2a(1 — 4a) + (a — Ve +¢)
16(1 — a)a?

—18) + o (c(c(86¢ + 325) — 228) + 4(4t — 3)) + 2a(c(c(—46¢ 4 10t + 15) — 5t + 6) — 2t)
+(2c—1)(c = t)(3c+1)) (4a®(56a — 3) + ((29ax + 38) — 3)c” — 2c(2a(a(dax + 47) — 3)
+(a—1)t) + ¥ — da(da + 1)t)) / (2 (4a®(64a — 3) — ((o — 1) (43 — 3)c?)

SW = + ((6a + 3(a — 1)c — t) (=160 (c(16¢ + 15)

+2c(20(@ (320 — 55) + 3) — bat + t) + 12 — dat)” (4(a — 1)(c — 2a))) .

- Case 2-i-b-II: a(9¢ +2) + /(2a + (@ — 1)c)(2a + (17 — 1)c) < 3202 + c.

. 20(3a—c) x _ 20(3a—c) * (2a—c)(2a(4a—1)—3actc)
In this case, k¢, p,s < =) @a—0)" Thus, kg = —a)@a—c) s = (=) (da—0) .

It can be shown that under both the first and second case in CE-PL, we have
g < Thp_pr- Thus, it is dominated by CE-PL.

2a(1—4a) <c< 20(1—2a)

* Case 2-i-c: =55~ < -
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In this case, p3ps < 2a — c. Thus, pg = 2a — c¢. Following the same step in

case 2-i-a, we obtain that % <ksyps <1landksps < % Thus,
—act+2a( —2a+24/a(c+2)—c—1)+c
ki = kyps, m5 = ( T ) . It can be shown that under both
the first and second case in CE-PL, we have 7§ < nfp_py. Thus, it is dominated
by CE-PL.
— Case 2-ii: % <a< %
In this case, %gia) <0. p3ps < 2« 2— c. Thus, p§ = 2a — c. Following the 2same
step in case 2-i-a, we obtain that (1_(5)?#_6) < ksps < 1 and ksps < (1_(3%

—act+2a (—2@—}—2\ /a(c+2) —c—l) +c

— . It can be shown that under both
the first and second case in CE-PL, we have 75 < 75 p_p;. Thus, it is dominated by
CE-PL.

— Case 2-iii: % <a< %

Thus, kg = ks p,s, mg =

2a(1—4 2a(1-2 20 (3a—
a1(13aa) > a(ll,aa), Thus, % > 1. p3ps < 2c —c. Thus,

pg = 2a—c. Following the same step in case 2-i-a, we obtain that % < ksps <

20/(3a—c) 202 . . —ac+2a<—2a+2\/a(c+2)—c—1)+c
(l_aa)éa—c_c) and k5,D,S < 7(1—04)?204—5)' Thus, kS = k‘47D,5, Tg = P .
It can be shown that under both the first and second case in CE-PL, we have mg <
Tep_pr- Lhus, it is dominated by CE-PL.

In this case,

In summary, only under case 2-i-b-I, S can be optimal. We further explore the boundary between
S and CE-PL. Recall that the condition for case 2-i-b-I is: 0 < ¢ < %gia), and a(9c + 2) +
Vv (2a+ (a —1)e)(2a + (17a — 1)c) > 32a% + c. This region is only relevant to case (a) and case
(b) under CE-PL. The last inequality can be rewrite as:

V(2a+ (a —1)e)(2a + (17a — 1)¢) > 32a% 4+ ¢ — a(9c + 2). (D.3)

We first check whether the R.H.S. is positive. Denote Hg1(«,c) £ 3202+ ¢ —a(9c+2) = 2a(16a —
1) + (1 — 9a)c. We obtain two cases (we reorganize the case number to avoid it goes too deep):

e Case 1: 0<0¢<%.
20(1—16a)
1-9«

with 0, we obtain two sub

In this case, Hg1(a, c) is increasing in ¢, 3202 +c—a(9c+2) > 0 is equivalent to ¢ >

It can be shown that 20(11_;(160‘) < 20‘1(:?). Comparing W
cases:

— Case l-i: 0<a< %6.

In this case, 0 < QQ(II_Z)Z?Q) < 20‘1(:i0‘). We obtain two sub cases:
20(1-16c)

* Case 1-i-a: 0 < ¢ <
In this case, 3202 + ¢ — a(9¢ + 2) < 0, the inequality D.3 is always satisfied. Recall
that for CE-PL, the boundary between two cases is ¢l (), where ¢f(a) is the unique
solution to the equation ®py, p(a,c) =0 and ®pr, p(a, ¢) is decreasing in c. It can

be shown that @pL,D(a,c)) > (. Thus, W < cf(a). This case falls

o= 2a(1-16a)

1-9«a
into the region of first case under CE-PL.
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Next, we compare the optimal profit between S and CE-PL. We first simplify the
optimal profit under S as (move the square root to the numerator):

Tg = (\/(2a + 17ac—¢)(a(c+2) —¢) (4a2 + (17042 —18a +1) ¢® + da(9a — 1)c)
— (=8a® + (71a® — 109a* + 37a + 1) ¢ + 2a (1090* — T — 3) ¢ + 4a*(3Ta + 3)c))
/(64(1 — a)a(2a — ¢)(2a+ (a — 1)c)) .

It can be shown that under this case, 75 > 75 p_p;. Thus, S dominates CE-PL.

Case 1-i-b: w <ec< w.

In this case, 3202 4 ¢ — a(9c + 2) > 0. We take square both sides of the inequality
D.3. After the simplification the inequality is equivalent to:
4 (1 —9a)c+2a(8a —1) <0,

which is equivalent to:

1

1
2(—\/17a2—10a+1+9a—1> <c<§<\/17a2—10a—|—1+9a—1).

It can be shown that:

1 20(1 -1
7<—\/17a2—1004+1+9a—1) < 201~ 16a)
2 1—9a
1 20a(1 — 4

<7(\/17a2—10a+1+9a—1) o 201~ da)
2 1—-3a

Thus, the inequality D.3 is equivalent to: M <ec< % V1702 —10a + 1 + 9o — 1).

Lo —

Then we compare S with CE-PL. We first check the relationship between
1 (\/170[2 100+ 1+ 9a — 1) and ¢f ().

It can be shown that ®pr, p(a, c)‘ ) ; > 0 is equivalent to %7 <
=% (V17a2=10a+1+9a—1)

a < 1—16. We further get two sub cases:
- Case 1-i-b-I: 0 < a < %7
In this case, we have % (\/17042 — 100 + 1 + 9c — 1) > cf(a). Thus, we consider
two regions:

Region 1: W <c<cl(a).

In this region, denote the profit difference between S and CE-PL as:

Hgo 2 (\/(Qa +17ac — c)(a(c +2) — ¢) (40 + (17a” — 18a + 1) ¢® + 4a(9a — 1)c)
— (—8a” + (71a® — 109a” + 37a + 1) ¢* + 2 (109a” — T4 — 3) ¢® + 4a®(37a + 3)c))
/(64(1 — a)a(2a — ¢)(2a + (a — 1)c))
20+ a@*(c+6) —4y/a2(a+1)(2a + (a — 1)c) — ¢
(1-a)? '

Thus, the boundary between S and CE-PL satisfies: Hgo = 0. We simplify the
equation Hgo = 0 by getting rid of the fraction and square root. We finally get
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Hgo = 0 is equivalent to Hg 3 = 0, where Hg 3 is defined as:

Hgss 24(a+1)(2a — ¢)*(2a + (a — 1)c) (¢* — 128a*(c + 6) + 5a’(c(27c + 92) — 52)
+ a®(c(184 — 109¢) 4 4) — ac(27c +4))* — (8a® (a(a(544a + 451) + 30)
— 1) +2(a—1)*(a+1)(26a — 1)ct — (o — 1)(a(a(5a(27a — 134) — 604)
—14) + 1) + 2a(a(a(a(a(320 — 1147) 4 760) 4 1310) + 72) — 3)c?
+4a® (a(a(a(448a — 1137) — 1279) — 83) + 3)c)”.

We can obtain that:

W =2(1 — a) (64(a — 1)a° (a(a(32a(192cc — 287) + 3653) — 232) + 3)
+4(a—1)*(a +1)(26 — 1) ((104a + 23) — 27)c°
—4(a — 1) (aaa(a(5a (3159 + 1238) — 36154) — 7416) + 12637)
—658) +6)c” + (a(a(a(afa(a(a(1244050 — 24086) — 663362)
4 406518) + 503028) — 359002) + 30266) — 1414) + 31)c5
—2(a(a(a(a(a(a(3a(10a(1584a + 1693) — 197561) + 329621)
+ 774877) — 651119) 4 108631) — 10665) + 375) — 3)c
+ da(a(a(a(a(a(a(a(96a(64a + 603) — 216517) + 132899) + 637875)
— 745325) + 236785) — 33335) 4 1425) — 15)c* — 1602 (a(a(a(a(a(2a
(16a:(384cr + 395) 4 13645) + 142805) — 295747) + 151714) — 26660)
+1285) — 15)c® + 160> (a(a(a(3a(a(64a(192a + 269) + 25401)
— 108576) + 221380) — 46398) + 2445) — 30)c? — 320t (a(a(a(2c(48
(2560 4 223) — 54221) + 84329) — 20999) + 1191) — 15)c) .

MIS;((:O"C) =2(1 — a)?(320° (a(a(a(32a(64a + 119) — 7417) + 2777) — 195) + 3)
—16(—260° + o + 260 — 1)%c” 4+ 28(a — Da(a + 1) (a(a(5a(351a
+67) — 4007) + 323) — 6)c® — 3(a(a(a(a(a(a(a (24881 + 16764)
— 151172) — 13428) + 156486) — 18412) + 1324) — 60) + 1)c”
+ 10a (e a(e(a(a (432002 + 8967 — 57883) — 9445) + 102601)
—23019) + 3311) — 183) + 3)c* — 8a*(a(a(a(a(a(a(64a(16a + 179)
— 32993) + 206) + 159649) — 76108) + 15505) — 930) + 15)c°
+ 4803 (a(a(a(a(a(32a(32a + 65) + 4601) 4 19957) — 19506) + 4954)
—315) 4 5)c? — 160 (a(a(a(3a(128a(16a + 39) + 9573) — 46856)
+ 14346) — 960) + 15)c) < 0.

As it turns out, in this range of the parameter space, MS%OEQ’C) changes signs.

As such, it is not possible to characterize the threshold between S and CE-PL
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as a function of ¢ (there exist values of ¢ for which increasing « leads to multiple
crossings between optimality regions for S and CE-PL).

Nevertheless, moving horizontally, given that 8]{3’8#0(04’0) < 0, a threshold (cross-
ing) boundary between optimality regions for CE-PL and S, within this partic-

ular region of the parameter space, is unique for every «, if it exists.
Next, we show that such a threshold boundary does indeed exist in this region.

We look at two particular cases for this region:

(1) First, we consider points on the boundary ¢ = %. It can be shown
that Hsyg(()d,c)‘ sa(i—16m > 0- Thus, § dominates CE-PL on ¢ = %gfa).
C=T19a

(2) First, we consider points on the boundary ¢ = % (\/17042 —10a+ 1+ 9a — 1>.

It can be shown that Hg 3(c, c)‘ ) < 0. Thus, CE-PL dom-
c=3(V1702=10a+1+9a—1)

inates S on ¢ = % (\/17a2—10a+1+9a—1>.

Therefore, in Region 1, as we increase ¢, there can be at most one crossing
point between optimality regions for S and CE-PL, then there exists a unique
boundary, which we define as ¢,(«), which separates the optimality regions for
S and CE-PL. It satisfies:

Hgs(a,c1(a)) =0.

Region 2: cf(a) <c< 3 (\/17a2 —10a+ 1+ 9a — 1).

In this region, denote the profit difference between S and CE-PL as:

Hsy, 2 (\/(Za + 17ac —c)(a(c+2) —¢) (4a2 + (17042 — 18a + 1) A+ 4a(9a — 1)c)
— (=8a” + (T1a® — 1090” + 37a + 1) ¢® + 2a (109a* — T4a — 3) ¢ + 4a*(37a + 3)c))
/(64(1 — a)a(2a — ¢)(2a + (. — 1)¢))

(e 200)?
8a

Thus, the boundary between S and CE-PL satisfies: Hg4 = 0. We simplify the

equation Hg4 = 0 by getting rid of the fraction and square root. We finally get

Hgs = 0 is equivalent to Hgs = 0, where Hg 5 is defined as:

Hss 220+ (a — 1)c)(2a + (17a — 1)¢)® — (—4a?(16(a — 1)a + 1) + 8(a — 1)c?
+ ((23a + 10) — 1) + 4a(a(24a — 5) + 1)c)?.
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We can obtain that:

m{sgo(f"c) = —4(—40*(16(a — D)a+ 1) + 8(a — 1)c® + (a(23a + 10) — 1)c?
+4a(a(24a — 5) + 1)e)(—4a(8a(da — 3) + 1) + 4¢ + (23 + 5)c?
+2(20(36a — 5) + 1)c) + (¢ + 2)(2a + (17a — 1)c)?
+3(17¢ + 2)(2a + (a — 1)¢)(2a + (17a — 1)¢)? > 0.

(MS’;(EO"C) —16(16a(a(6a — 5)(8a — 3) — 1) — 24(ar — 1)%¢°

—5(a — 1)(a(23a + 10) — 1)c? + 8a(a(a(89a — 137) + 15) + 1)
+ 1202 (a((133 — 53a)a — 34) + 2)c?
+ 1603 (a((17 — 49a) + 10) — 2)¢) < 0.

Therefore, a threshold (crossing) boundary between optimality regions for CE-
PL and S within this particular region is unique for every ¢ and for every « (i.e.,
if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region
of the parameter space. We look at two particular functions for this region,
%9150‘) and ¢ = £ (\/17042 — 10 + 1 + 9« — 1) and examine the
sign of Hg 5(a, ¢) along these boundaries.

(1) On the boundary ¢ = 3 <\/17a2 —10a+ 1+ 9a — 1), we obtain:

Hgs(a, c)‘ ) < 0. Thus, CE-PL dominates S on ¢ =
c=1 (V1702 =10a+1+9a-1)

%<\/17a2—10a+1+9a—1>.

(2) On the boundary ¢ = %‘(11_;910?0‘), we obtain:

Hgs(a, c)‘c_m(l_wa) > (. Thus, S dominates CE-PL on ¢ = %glfa).
- 1-9a

namely ¢ =

Therefore, in this parameter region, there exists a unique threshold boundary,
which we define as ¢;(«), which separates the optimality regions for CE-PL and
S. It satisfies:

Hg (o, cp(a)) = 0.

dHg 5(a,c)
o : a ) .
Also, it is straightforward that % = —omse@a > 0. Hence, cp(@) is increas-

. . de
mg i «.

It can be shown that there are two intersection points between ¢,(c) and cf(a),

ie, (0,0) and (cy, ;) (where ¢, = 0.0231 and «, =~ 0.0117). Thus, cy(«) is
properly defined and increasing on (0, ).
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It can be shown that c¢,(«) is also passing through (¢, ), thus, ¢, () is prop-
erly defined on (ozx, %7)

. 1 1
- Case 1-i-b-II: = < a < 4.

In this case, we have 3 (\/17a2 —10a + 1+ 9a — 1) < cf(a). Thus, the profit
difference between S and CFE-PL is:

Hsa 2 (\/(2a + 17ac —¢)(al(c+2) —¢) (4a2 + (17042 —18a+1) ¢ 4+ 4a(9a — 1)c)
— (=8a” + (T1a® — 1090” + 37a: + 1) ¢® + 2a (109 — T4a — 3) ¢ + 4a*(37a + 3)c))
/(64(1 — a)a(2a — ¢)(2a + (a — 1)c))

_ 2a +a?(c+6) —4y/a2(a+1)2a+ (a—1)c) — c
- a) ‘

Similarly, we can simplify Hg2(a, ¢) and finally analyze Hg3(a,c). Following
8HS’3(OJ7C)

the same step in case 1-i-b-I, we can get that in this region, —=5—= < 0.
M%OW changes signs. As such, it is not possible to characterize the threshold

between S and CE-PL as a function of ¢ (there exist values of ¢ for which
increasing « leads to multiple crossings between optimality regions for S and
CE-PL).

Nevertheless, moving horizontally, given that 9Hss(a0)

5.—— < 0, a threshold (cross-
ing) boundary between optimality regions for CE-PL and S, within this partic-
ular region of the parameter space, is unique for every «, if it exists.

Next, we show that such a threshold boundary does indeed exist in this region.

We look at two particular cases for this region:

(1) First, we consider points on the boundary ¢ = %;fa). It can be shown
that Hg3(a, c)‘ > 0. Thus, S dominates CE-PL on ¢ = W.

_ 2a(1—16a)
="1-9a

(2) First, we consider points on the boundary ¢ = % (\/17042 —10a+ 1+ 9a — 1).

It can be shown that Hg3(c, c)‘ ) < 0. Thus, CE-PL dom-
c=3 (V1702 =10a+1+9a—1)

inates S on ¢ = % (\/17042—1004+1+9a—1>.

Therefore, as we increase ¢, there can be at most one crossing point between
optimality regions for S and CFE-PL, which is defined as ¢,(«) in case 1-i-b-I.
Thus, we can further extend the domain of ¢,(«) to (az, %)

— Case 1-ii: % <a< %.

%‘;aﬁa) <0<c< %gia). Therefore, Hg; > 0. We square both

sides of the inequality D.3 and follow the same step in case 1-i-b. The inequality D.3 is

In this case,
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equivalent to:

1
0§c<§(\/17a2—10a+1+9a—1).

Also, it can be shown that 3 (\/17012 — 10 + 1+ 9a — 1) < cf(a). Therefore, in this
region, the profit difference between S and CE-PL is:

Hso 2 (\/(Qa + 17ac —¢)(a(c+2) —¢) (4o¢2 + (17042 —18a+1) ¢ + da(9a — 1)c)
— (—8a” + (71’ — 109a” + 37a + 1) ¢ + 2a (1090” — T4a — 3) ¢* + 4a°(37a + 3)c))
/(64(1 — a)a(2a — ¢)(2a + (a — 1)¢))

20+ a?(c+6)—4y/a2(a+1)(2a+ (a—1)c) — ¢
(1—a)? .

Similarly, we can simplify Hg2(a, c) and finally analyze Hg3(c,c). Following the same
step in case 1-i-b-I, we can get that in this region, %y < 0. BHS%C(O"C) changes
signs. As such, it is not possible to characterize the threshold between S and CE-PL as
a function of « (there exist values of a for which increasing ¢ leads to multiple crossings
between optimality regions for S and CE-PL).

Nevertheless, moving vertically, given that m{sé#oga’@ < 0, a threshold (crossing) bound-
ary between optimality regions for CE-PL and S, within this particular region of the

parameter space, is unique for every c, if it exists.
Next, we show that such a threshold boundary does indeed exist in this region.

We look at two particular cases for this region:
(1) First, we consider points on the boundary o = ;. It can be shown that

Hgyg(a,c)‘ . > 0. Thus, S dominates CE-PL on a = %.
T

(2) Then, we consider points on the boundary o = %. It can be shown that
H&g(()é,c)‘ . <0. Thus, CE-PL dominates S on o = 5.
=y

Therefore, as we increase «, there can be at most one crossing point between optimality
regions for § and CE-PL, then there exists a unique boundary, which we define as &f(c),
which separates the optimality regions for S and CE-PL. It satisfies:

Hgs3(al(c),c) = 0.
It is straightforward that the domain of &' (c) is (0, ca(s))-

e Case 2: %§a<%.
In this case, Hg1(a, ¢) is decreasing in ¢, 32a*+c—a(9c+2) > 0 is equivalent to ¢ < %;fa)
It can be shown that 20‘(1_910?0‘) > 2a1(£gia). Thus, 32a% + ¢ — a(9c + 2) > 0. We square both

1—
sides of the inequality (D.3) and follow the same step in case 1-i-b. The inequality (D.3) is
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equivalent to:

1
0§c<§(\/17a2—10a+1+9a—1).

Comparing % (\/ 1702 — 10+ 1 + 9a — 1) with 2041(:;1(04)7 we further get two cases:

— Case 2-i: é§a< 1—17(5—2\@).

In this case, % (\/17042 —10a+1+ 9 — 1> < 2a1(:ia)_ It can be shown that

% <\/17042 —10a+1+9a — 1) < cf(a). Therefore, in this region, the profit difference
between S and CE-PL is:

Hso 2 (\/(204 +17ac — c)(a(c +2) — ¢) (40 + (17a” — 18a + 1) ¢® + 4a(9a — 1)c)
— (—80¢3 + (71a3 —1090” + 37a + 1) &+ 2a (109042 — Tda — 3) & 4 40°(37a + 3)c))
/(64(1 — a)a(2a — ¢)(2a + (a — 1)¢))

20+ a*(c+6) —4y/a2(a+1)(2a + (a — 1)c) — ¢
(1-a)? '

It can be shown that Hg3 < 0, i.e., Hgo < 0. Thus, S is dominated by CE-PL.
— Case 2-ii:  (5—-2v2) <a <.
In this case, % <\/17a2 — 10+ 1+ 9« — 1) > %g;ta). Comparing

2a(l1—4a)

ﬁ with ¢f (),

1
we further have two cases:

* Case 2-ii-a: w < cl(a).

The profit difference between S and CE-PL is:

Hso 2 (\/(204 + 17ac—c¢)(a(c+2) — ¢) (4a2 + (17042 —18a +1) A+ 4a(9a — 1)c)
— (=8a” + (7T1a® — 1090 + 37a + 1) ¢ + 2a (109a” — T4a — 3) ¢® + 4a° (37a + 3)c))
/ (64(1 — a)a(2a — ¢)(2a + (a — 1)c))
20+ a®(c+6) —4y/a2(a+ 1)(2a + (a — 1)c) — ¢

- (1-a) '

It can be shown that Hgo < 0. Thus, S is dominated by CE-PL.

* Case 2-ii-b: %g;ta) > cf(a).
The profit difference between S and CE-PL is:

Hs, 2 (\/(204 + 17ac — ¢)(a(c+2) — ¢) (4a2 + (17042 —18a +1) &+ 4a(9a — 1)c)
— (—8a’ + (71’ — 1090” + 37a + 1) ¢® + 2a (109a” — Tda — 3) ¢® + 4a°(37a + 3)c))
/ (64(1 — a)a2a — ¢)(2a + (o — 1)c))
(= 20)?
8a
It can be shown that Hg4 < 0. Thus, S is dominated by CE-PL.

To summarize, we define ¢f(a) as:

o) & cala) L ifa, <a< &,
] ala) Lif0<a<a,.
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Then S dominates CE-PL if and only if:

0<c<cia) ,if0<a<qs,
and
&= <a<al(c).

Proof of Proposition 3

When « > 1, by directly comparing profits and social welfare values from Propositions D.1-D.4, it
can be easily seen that CE-PL is always the dominant strategy for the firm, whereas TLF' is always
the strategy that yields the highest social welfare.

The bulk of the proof, below, is addressing the considerably more complex case 0 < a < 1.

Let us define:

d1(c) & ayple) ,if0<c<cy

[ Ge(c) ,if0<c<ey,
dac) 29 du(c) ,if ey <c<e,
Gp(c) L ifep <e< e,

and

Gg(c) ,if0<c<cs,
as(c) =¢ dg(c) ,ifes <c < es,
Ge(c) L ifeg < e < e,

,if 0 < e <es,
aT(c) Jifes <e< 61(1—16),

joN
N
—~
)
SN—
(1>
—N
> O
Q
—
)
SN—

where functions éq(-), &(:), Ge(-), da(:), de(-), ds(-), dq(-), as well as constant thresholds ci, ca,
c3, ¢4, and c¢5 are defined and further analyzed below. &f(c) and ¢f(a) are defined in the Prop D.4.
For ease of identification, Figure D.1 contains the illustration of these boundaries and thresholds
(this is a more detailed version of Figure 3 from the main body).

e Definition of ¢; and d&,(c). Monotonicity of d,(c).
We first compare CE-PL and TLF under the intersection of regions 0 < ¢ < § and 13—4v/10 <
a < 1, it can immediately follws that this is a non-empty region. In this region, define the
difference between optimal profits under CE-PL and TLF as:

a (c— 204)2 1

U, p(a,c) S 1

()



Figure D.1: Adoption Costs Scenario - Optimal Business Model - Marked Boundaries

We can obtain that:

OVyp(a,c) 1 c? 50
da 2 8a? ’
OV,pla,e) 1 /¢
dc 4 (a <

Therefore, a threshold (crossing) boundary between optimality regions for CE-PL and TLF
within this particular region is unique for every ¢ and for every « (i.e., if we look vertically
or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely a = 13 —4+/10
and o = 1 and examine the sign of ¥, p(«, ¢) along these boundaries.

— On the boundary a = 13 — 4+/10, we obtain:

1 2 1
U, pla, - (4\/10 13) ( 810 — 26) - <o
@.(a, ¢) a=13-4y10 T2 + et 4

— On the boundary a = 1, we obtain:

1

wwﬂmcw = ~((c—4)c+2)>0.
a=1 8

Therefore, in this parameter region, there exists a unique threshold boundary, which we define

as dg(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

(c—2d4(c))* 1
Saalc) 1 0
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04 p(ac)

Also, it is straightforward that aégc(c) = — 3w, @ > 0. Hence, dq (c) is increasing in c.

da
It is straightforward there is a unique intersection point between é,(c) and ¢ = 0, i.e., (0, %)
Moreover, there is a unique intersection point between &, (c) and o = 2¢, i.e., (¢ = %, %).

Thus, &,(c) is properly defined and increasing on [0, ¢1).

Definition of ¢, c3, d4(c) and é.(c). Monotonicity of é.(c).
e

We then compare CE-PL and TLF under the intersection of regions § < ¢ < « and the

union of regions 0 < o < 13 — 4\/1O,cT <e¢ < aand 13 —-4v10 < a < 1 (In this union

f : * _ (C—QO&)2
oI regions, Top_pr, = Sa

under CE-PL and TLF as:

). In this region, define the difference between optimal profits

v = —
b,D(av C) S o
We can obtain that:
C{’\IJb,D(Oz,C) - 1 B C((Oz + 16)6 — 804)
Oa 2 8as ’
Oy p(a,c)  (a+8)c—2a(a+2)
Jdc - 402 ’

As it turns out, in this range of the parameter space, 8\Ijbgofa’c) and 8%’50(&’0) changes signs.

As such, it is not possible to characterize the threshold between CE-PL and TLF as a func-
tion of ¢ or a.

Nevertheless, we first find the point that satisfies the equation ¥, p(a,c) = 0 (i.e., on the
boundary between CE-PL and TLF') and has a vertical tangent line, i.e., %a(a’c) =0. We
can obtain that with in the above mentioned region, there is only one point that satisfies the

condition, which is (20v/5 — 44,4 (v/5 — 2)). We define ¢ = 20v/5 — 44,4 (v/5 — 2).

Next, we define &;(c) and é.(c) by splitting the boundary ¥y p(a,¢) =0

at (20v/5 — 44,4 (v/5 — 2)).

It is straightforward that when ¢ > 20v/5 — 44, Uy, p(a,¢) > 0, ie., CE-PL dominates TLF.
Then, we focus on the case when ¢ < 20/5 — 44.

We first construct a line go through (O, %) and (20\/5 —44 4 (\/5 — 2)) And it is straight-
(8v5-17)c | 1

forward that the expression of the line is: a1 = S(5vA-11) + 3.
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If a3 < a < 2¢, we obtain that:

0V, pla,c) 1 e((a+16)c — 8a)
Oa T2 8ol >0,
OV p(a,c)  (a+8)c—2a(a+2)
Oc N 402 '
As it turns out, in this range of the parameter space, %c(a’c) changes signs. Nevertheless,
moving vertically, given that %a(a’c) > 0, a threshold (crossing) boundary between opti-

mality regions for CE-PL and TLF, within this particular region of the parameter space, is

unique for every c, if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely a@ = ayo =
i (\/5 + 3) c and a = 1, and examine the sign of ¥y, p(c, c) along these boundaries.

— On the boundary a = «49, we obtain:

" c (c ((9117 - 4077\/5) ¢ — 3580125 + 802608) +64 (3881\/5 - 8679)) +512 (123 - 55\/5)
e = 0.
b,0{e C)‘“:"% 64((8\/5—17)c+20\/5—44)2 =

— On the boundary a = 1, we obtain:

1

qu,D(a,c)‘ = 2(2-3¢)%>0.
a=1 8

Therefore, in this parameter region, there exists a unique threshold boundary, which we define

as dp(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

(c—2a4(c)? € (1 _ ﬁ@)) =0.

8ay(c) dyp(c)

It is easy to obtain that (c1,35) is on dy(c). Thus, (c1,3) is the unique interaction point
between av = 2¢ and d&p(c). Thus, &(c) is properly defined on [c1, ¢2).

Then we construct a line go through (0,0) and (20\/5 — 44,4 (\f — 2)) And it is straight-
forward that the expression of the line is: oo = % (\/5 + 3) c.

We can obtain that when o2 < o < o1, ¥y p(er,¢) < 0, TLF dominates CE-PL.

If ¢ < o < a9, we obtain that:

OV pla,e) 1 e((a+16)c — 8a)

da T2 8o’ <0,
0V, p(a,c) (a4 8)c—2a(a+2)

dc - 42 > 0.
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Therefore, a threshold (crossing) boundary between optimality regions for CE-PL and TLF
within this particular region is unique for every ¢ and for every a (i.e., if we look vertically
or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely o = ¢ and
a=aqp= % (\/5 + 3) c and examine the sign of ¥y, p(a, ¢) along these boundaries.

— On the boundary a = ¢, we obtain:

~ S50

Uy, p(a,c) 3
a=c

— On the boundary o = «g9, we obtain:

U, p(av, c) :2—5v€+11>0

a=a2

Therefore, in this parameter region, there exists a unique threshold boundary, which we define
as d.(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

e-2ae)r_o(-af) _,

8a(c) de(c)
94 ( ) 8\Ilb7D(o¢,c)
Also, it is straightforward that <5< = — 75 ey > 0. Hence, ée(c) is increasing in c.
O

A 1-—<—~
Moreover, by solving the system of equations ¢/ = 0 and (0_8?340?(8)) - C( d:EZ)(C))

get there is a unique intersection point (it is around (0.2255,0.2329)) between ¢! and é.(c),

=0, we can

denote it as (c3, &c(c3)). Thus, é.(c) is properly defined and increasing on [c3, ¢2).

Definition and Monotonicity of &4(c).

We then compare CE-PL and TLF under the intersection of regions § <c < aand 0 < a <
13 — 4410, 0 < ¢ < ¢, it can immediately follows that this is a non-empty region. In this
region, define the difference between optimal profits under CE-PL and TLF as:

a20+0%(c+6) —day/(a+1D)2a+(a—1)c)—c c¢(1-2)
Yapla,c) = (o —1)2  a

First, we can obtain that in this region, when § < ¢ < %o‘, Vip(e,c) <0, ie, TLF domi-
nates CE-PL.

79



Next, we check the case when %a < ¢ < a. We can further obtain that:

0¥y pl(a,c) & cla—c)  —da—2a%c+6)+8a/(a+1)(2a+ (a—1)c) +2¢
) — + +
O a3 as (a—1)3

2a(c+6) — \/(;li(f;((;;ri)(zl_)nc) —4y/(a+1)2a+ (o —1)c) +2

+ (@=1)? <0,
a2 _ 2(0(271)04 -1
0¥y p(a,c) c V(a+1)(2a+(a—1)c) N c-a_ g
dc a2 (v —1)? a? '

Therefore, a threshold (crossing) boundary between optimality regions for CE-PL and TLF
within this particular region is unique for every ¢ and for every « (i.e., if we look vertically

or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely ¢ = %a and

¢ = « and examine the sign of ¥4 p(a, ¢) along these boundaries.

— On the boundary ¢ = %04, we obtain:

2 <a(3a +26) — 6v6\/ala+ 1)(a+2) + 8) —9
= < 0.
c=2a 9(0& — 1)2

— On the boundary ¢ = «, we obtain:

a(a(a+6)—4\/m+1)

pu— > 0.
c=« (Oé — 1)2

\I/d’D(Oz, C)

Therefore, in this parameter region, there exists a unique threshold boundary, which we define
as &g4(c), which separates the optimality regions for CE-PL and TLF. It satisfies:

20+ a?(c+6) —da/(a+1)2a+ (a—1)c) —c c(1-£

(a—1)2 a
9 B\Ild’D(a,c)
Also, it is straightforward that Ogc(c) = —gw 5@o > 0. Hence, Gq(c) is increasing in c.
da

e Definition and Monotonicity of d&.(c).
It is easy to obtain that when ¢ < o < 2¢, 7L > Top_suB, i.e., TLF dominates CE-SUB.

We then compare CE-SUB and TLF under the intersection of regions « > 2¢. In this region,
define the difference between optimal profits under CE-SUB and TLF as:

¢+ pap ¢+ Pa,D > 1

\I/e,D(a7c) £ Pa,D (2 - o l+ctpap— ¢+Pa,D Z
a, «
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Then, using the Envelope theorem (since pq p € (O‘gc, o — c) maximize Tcp syp), we have:

Pa,p(C+ Pa,D) ( c+pa;+pa’D )2 + 1)

0¥, p(a,c) ( o= tetpa, 0+l
’ = > 0,
toJe! a?

0V, p(a,c) - 1 (1 - a)a(c+ pa,p) B 1 <0
e PP\ Ta T ara-Det (- Dpap)?  SFEB oy por1) <O

Therefore, a threshold (crossing) boundary between optimality regions for CE-SUB and TLF
within this particular region is unique for every c¢ and for every « (i.e., if we look vertically
or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter
space. We look at two particular delimiting boundaries for this region, namely a = 2¢ and
a=2c+ % and examine the sign of V. p(a, c) along these boundaries.

— On the boundary a = 2¢, we obtain:

2¢(c+ pa.p) ¢+ Pa,D 1
v ) = — : — : 2)—=<0.

e:n(@,¢) P L < 2¢% + 2¢pa,p + ¢ — Pa.D 2c * 4

The above inequality is satisfied for all p € (O‘gc, a— c).
— On the boundary 2¢ + %, we obtain:

2(¢c + pa,p) ¢+ Pap 1
\PE,D(Q7 C)’ = Pa,D <_ ’ - ’ +2)--
2c+% 4ec+1 _Q(Cz;ﬁalvD) +C+pa,D +1 4

6c(2¢ (8¢ +2¢+1) +1) +1
8(4c+1)(2¢(12¢ +7) + 3)

1
(Plug po.n = §(2¢+ 1))

> 0.

Therefore, in this parameter region, there exists a unique threshold boundary, which we define
as d.(c), which separates the optimality regions for CE-SUB and TLF. It satisfies:

PaD 2_C+pa,D_ C+Pa,D _120
@ ae(c) 14+ c+pap— ¢+Pa,D 4 ’

Ge(c)
94 8&/67D(a,c)
Also, it is straightforward that agc(c) = — v 5@ > 0. Hence, Ge(c) is increasing in c.
da

e Definition of ¢; and &(c). Monotonicity of ay(c).
We further compare CE-SUB with CE-PL. From the definition of &,(c), we know that d,(c)
has a unique interaction point with y axis, i.e., (0,3). Given that dq4(c) is increasing in ¢,
CE-PL can only have the possibility to become the dominant strategy when % < a < 1. Also,
from the definition of é(c), we know that &.(c) has a unique interaction point with o = 1,
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ie., (1— 7 . CE-SUB can only have the possibility to become the dominant strategy when
() < c¢ < 1— —=. Thus, we only need to compare CE-SUB with CE-PL in the intersection of
<a<1 0<c<1— and a > 2c.

%\~ =

77

In this region, define the difference between optimal profits under CE-SUB and CE-PL as:

c+paD ¢+ Pa,D (e 20)
& ltctpgp— Tl 8a

qje,D(a7 C) £ pa,D (2 -

Then, using the Envelope theorem (since p, p € ( ) maximize Tcp suB), we have:

a\I/f’D(CY,C) _ c? + SCpa,D + SPZ,D i Pa, D(C+pa,D)2 1
da 302 @t(@-1ct(a—Dpep? 2
OV pla,c) c 1 (@ — Da(e+ pa.p) 1 1
—_— = a - : — - <0
Oc 4a+p’D a+(a+(a—1)c+(a—1)pa7[})2 —WT”’D-FC-i-pa,D-Fl +2

Therefore, a threshold (crossing) boundary between optimality regions for CE-SUB and TLF
within this particular region is unique for every ¢ and for every « (i.e., if we look vertically
or horizontally), if it exists.

Next, let’s check the sign of M. Bring all the terms to a common denominator, we
can write %a(ac) = Z; LD where:

01,0 = 85 p(1 — @) +8p p (a(3a —2) + 3(a — 1)%¢)

+p2 p (—4a” (a? =2 — 1) + 25(c — 1)%c* + 16a(3c — 2)c)

+2pap (—4(a —1)a® +5(a — 1)2¢° + a(13a — 9)¢? — 4(a — 2)a’c) + (a + (a — 1)c)? (¢ — 4a?),
q2.p = 8a*(a+ac—c+apap — pap)? > 0.

Thus, the sign of 991.0(0) ¢ the same as the sign of the numerator, ¢ p. We use

GsuB,p(Pa,p) = 0 to reduce the expression of ¢; p from a quartic polynomial in p, p to
a quatratic one, as follows:

q1,p = ﬁ x (P2, p(1 — @) (20° (a((a — 3)a +10) + 2) + (a — 1)°c* — 4a*(1 — a)c)

~+ Pa,D (740;’( (@ —4)a+5)+2) —2(a—1)*c® — 2a(5a — 1)(a — 1)*¢® — 40°(a((a — 4)a 4+ 9) + 2) (o — 1)c)
+4a*(a+1) — (@ =1 —2aB8a —1)(a—1)*¢ — o (a(2(a — 4)a + 15) + 3)(a — 1)c?

—2(a = 5)a’ (e — 1)e - 8a’c).
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Denote:

A=(1-0a) (2@2(a(( —3)a+10) +2) + (a —1)3c2 — 402(1 — @)c)
= —4c’(a((a —4)a+5) +2) — 2(a — 1)1 — 2a(5a — 1)(a — 1)%c
— 4 (a((a—da+9)+2)(a —1)c
C=4a*(a+1) - (a—1)*" —2aBa—1)(a—1)2 - ?(a(2(a — 4)a + 15) + 3)(a — 1)c?
—2(a = 5)at(a — 1)c — 8ae.

Then, ¢1,p = ﬁ X (ApiD + Bpa,p + c). Define the quadratic function Hsyg pr,p(p) =S
Ap? + Bp + c. In this range of the parameter space, it can be shown that B2 —4AC > 0 and
A > 0. Hence, there are two real solutions to the equation Hsyp pr.p(p) = 0, namely:

—B - VB2 -4AC —B++VB?2—-4AC
PH1 = 9 and pgo = 54 .

Gsus,p(p) = 0. Moreover, from the proof of Prop. D.2, we know that Gsup,p(p) > 0 on
(955, pa,p) and Gsyp,p(p) < 0on (pa,p, a—c). It can be proved directly that Gsyp,p(pm1) >

0 = GsuB,p(Pa,p). Hence, %5
that A > 0, which indicates that HSUB,PL(p) is convex. Therefore, Hsyp pr,p(p) < 0.

< pH1 < Pa,p < & — ¢ < py2. Furthermore, it can be shown

Hence, in this region of the parameter space:

0V p(a,c)

B < 0.

So far, we proved that a threshold (crossing) boundary between optimality regions for CE-
SUB and CE-PL within this particular region of the parameter space is unique for every c
and for every a (i.e., if we look vertically or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the parameter

space. We look at two particular delimiting boundaries for this region, namely ¢ = 0 and
c=1- \/5 and examine the sign of ¥ p(a, c) along these boundaries.

— On the boundary ¢ = 0, it defaults to our basic model. And from Prop 1, we know that

— On the boundary c =1 — \[, we obtain:
~pa,p + 25— 1 1 do+ V2 -2)°
\I’f,D(a7C) 1 = Pa,D a\/i + 1 1 1+2 —% < 0.
=" R

Therefore, in this parameter region, there exists a unique threshold boundary, which we define
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as &y (c), which separates the optimality regions for CE-SUB and CE-PL. It satisfies:

9 €+ Pa,D €+ Da,D (C - 204)2 -0
Pa,D - T X ( ) - PR - 3 = U.
&ee) 1+ c+pop— 22 o
o . a4 (c) O2s.5(@0) . .
Also, it is straightforward that == = — i@ < 0. Hence, & #(c) is decreasing in c.
da

As Ge(c) is increasing in ¢, there exists a unique intersection point between d.(c) and é¢(c).
Defining this point as (c4, de(ca)). At this point, we get n5p_oyp = Top_pp (from the
definition of G&y(c)) and 7l ,_qyp = mppp (from the definition of éc(c)). Thus, 75, _p; =
e (€4, Ge(cq)) s also on Gq(c). dg(c) is properly defined and decreasing on [0, ¢4).

Definition of ¢5 and d4(c). Monotonicity of d4(c).
We further compare TLF with S. From Proposition D.4, we know S dominates CE-PL when:

0<c<cia) ,if0<a<is,
and
& <a<al(e).

In this region, we further consider two regions:

— Region 1: 0 <c¢ < §.
In this region, it can be shown that 7§ < 77, i.e., TLF dominates S.

— Region 2: § <c<a.
In this region, define the difference between optimal profits under S and TLF as:

U, p(a,c) 2 (\/(Qa + 17ac — ¢)(alc+2) —¢) (40¢2 + (17042 —18a+1) & + 4a(9a — 1)c)
— (—8a” + (71a® — 109a” + 37a + 1) ¢ + 2 (109a” — T4 — 3) ¢® + 4a®(37a + 3)c))

/(64(1 — a)a(2a — ¢)(2a + (. — 1)¢)) — M

«

First, it can be shown that when § <c < 3[7‘1, U p(a,c) <0, ie., TLF dominates S.

Then we focus on the region ?jTO‘ < ¢ < a. We obtain that:

0¥, pla,c)
O

0¥, pla,c)
Oc

<0,
> 0.

Therefore, a threshold (crossing) boundary between optimality regions for S and TLF
within this particular region is unique for every ¢ and for every « (i.e., if we look verti-

cally or horizontally), if it exists.

Next, we show that such a threshold boundary does indeed exist in this region of the
parameter space. We look at two particular delimiting boundaries for this region, namely
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= 2 and ¢ = « and examine the sign of ¥, p(a, c) along these boundaries.

T da
* On the boundary ¢ = %, we obtain:
a (639a2 — 51\/a2(3a + 5)(5la + 5) + 330a + 215) — 5\/a%(3a + 5)(5la + 5)
v - .
S Y 1280(c — 1o <0

Thus, on the boundary, TLF dominates S.
On the boundary ¢ = «, it is easy to get mp;» — 0, whereas 7*S > 0. Thus,

*

wg > T, O dominates TLF.

Therefore, in this parameter region, there exists a unique threshold boundary, which we
define as Gy4(c), which separates the optimality regions for S and TLF. It satisfies:

U, p(by(c),c) =0.

ov (a,c)
~ g,D
Also, it is straightforward that 8a§c(c) = — 95, paa > 0. Hence, G, (c) is decreasing in c.
da

As d4(c) > c and ¢1(55) &~ 0.0876 > -, there exists a unique intersection point between
dg(c) and &' (c). Let us define this point as (c5,d4(cs)). Then, d4(c) is properly defined
and increasing on [0, ¢5).

Thus, we completely characterized lines af(c), cq(a), a1(c), éa(c), ds(c) and éy(c), (in particular,
segments, Gq(c), dup(c), Ge(c), da(c), Ge(c), ay(c), dgy(c), as well as constant thresholds ¢, ca, c3,

C4, C5).

Comparison of &;(c) and d&z(c):

When 0 < ¢ < ¢4, we already showed that éy(c) is decreasing in ¢ and Ge(c) is increasing in c.
Furthermore, these two lines intersect at the point (c4, ée(c)[d(c)]). Thus, we have df(c) > Ge(c),
i.e., dl(C) > dQ(C).

Comparison of &s(c) and as(c):

The support for éy(c) is defined within 0 < o < § < de(c). Thus, é4(c) < de(c). For the other
segments of da(c) and és(c), we have to compare TLF and CE-PL. Thus, it immediately follows
that Ga(c) > as(c).

Derivation of the dominating strategy in the entire region 0 < a < 1:

e By the definition of éy(c) and ée(c), we know that when as(c) < a < d&q(c), CE-SUB
dominates CE-PL and TLF. S can only dominates CE-PL within a subregion in 0 < o < %.
Thus, CE-SUB also dominates TLF as well when ds(c) < a < éq(c).

e By the definition of ds(c) and @s(c) (including the comparison between TLF with CE-SUB,
CE-PL, and 9), it is straightforward to see that TLF' is the optimal strategy when és(c) <
a < as(c).

e Building on Prop. D.4, we can get that S is the optimal strategy when a < dés(c) and
c < cta).
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This completes the mapping of dominant strategy to the parameter space (we also discussed the
case a > 1 at the very beginning of the proof). O

E Details of Extension 3 - Imperfect Self-Learning with 3 Periods

In this E-companion section, we present the details for the third robustness check, involving an
extension of the main model to 3 periods and accommodating for imperfect self-learning.

As noted in Section 3.1, the baseline model treats TLF as a free trial followed by either a
perpetual or a per-period subscription license - with only one post-trial period, these variants are
equivalent. However, over a longer horizon (of 3 or more periods), the type of license that comes
after the free trial makes a difference in the way adoption unfolds. As such, we retain the TLF
notation for free trials followed by a perpetual license, and introduce a fifth go-to-market strategy,
TLF-SUB, which entails per-period subscription licensing after the end of the free trial. We point
out that, as of September 2025, the most prominent mobile app marketplaces, Apple App Store
and Google Play Store, natively support TLF only for subscription-based apps (with T'LF for
one-time purchase apps being possible only through developer-implemented workarounds). Thus,
distinguishing T LF' from TLF-SUB is of practical importance for mobile app developers evaluating
go-to-market options for products with multi-period adoption horizons.

This framework of imperfect self-learning also allows us to implement a more complex social
learning model as well. Adopters are the ones spreading WOM at the end of any period of use.
However, as different adopters can purchase for the first time a license in different periods, in the
context of imperfect learning, there may be scenarios in which different past adopters end up with
different updated priors at the same moment in time. For example, in the context of 3 periods,
some adopters may purchase in period 1 while others purchase in period 2. Thus, at the end of
period 2, some existing adopters may have been using the software for two periods (engaging in two
consecutive periods of self-learning), whereas others experienced the software for just one period.
As such, in the context of imperfect learning, non-adopters have to internalize outside signals with
potentially different values, from different adopter groups.

To characterize the adoption trajectories, we add clarifying subscripts A or N to the priors
for periods 2 and 3 to show the adoption before that respective period. For example, ag n (a2,4)
represents the perceived quality at the beginning of period 2 among those period-1 non-adopters
(adopters), and a3 na (a3 a4) represents the perceived quality at the beginning of period 3 among
those adopters who have first adopted in period 2 (adopted in period 1 and continued to stay
as adopters in period 2). In this illustrative extension we keep things simple and assume that
customers who exit the market after previously adopting or trying the product for free (under
TLF, CE-SUB or TLF-SUB) do not continue to send any more WOM signals afterwards (beyond
the last period of use), do not engage in any subsequent valuation learning, and, as such, do not
return to the market. We also assume that adopters stop paying attention to outside signals once
they start using the product, pivoting entirely to self-learning from that point onwards. We leave it
for future research to explore the many other possible combinations of learning and entering/exiting
the market for settings with 3 or more periods.F!

E-1This is not relevant for the setting in the main model with only 2 periods since WOM updating takes place at
the end of period 1 and any learning during period 2 does not impact revenue.
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Let us formalize the learning mechanisms in this extension. In the beginning of period 2,
period-1 adopters’ perceived valuation, updated via one period of imperfect self-learning is
a27A:a1+5(a—a1), (El)
in which § > 0 captures the degree of adjustment from imperfect self-learning. Our main setup
is a special case of this extension setup, with § = 1, such that the adopters update their priors
accurately to the true per-period value a after a single period of usage. When ¢ € (0, 1), the adopters
are learning from their usage, update in the correct direction, but, during a single period of use,
“travel” only part of the distance between old prior and true value. When § > 1, the self-learning
process can cause “overshooting,” the adopters may excessively adjust their perceived utility upon
usage past the true value (shifting from underestimators to overestimators or vice-versa). Entering
period 3, we have to consider two subgroups of existing adopters - “veteran” adopters (those who
adopted the product in both periods 1 and 2, whether freely or through a paid license - N2 44 total)
and “recent” adopters (those who stayed out of the market in period 1 but adopted in period 2
- Na Natotar)- Each of these subgroups engaged in imperfect self-learning in period 2, but they
started from different priors (at the beginning of period 2). Their updated priors entering period
3 (at the end of period 2, after self-learning but before disseminating WOM) differ as follows:

2)

az aa = az 4 +9d(a—aga), (E.2
3)

E
a3 NA = ag N + 0(a—az N), (E

1
in which az 4 = a1 + §(a — ay) is defined above in (E.1), and as v = a; + N%,, (02,4 — a1)
represents period 1 non-adopters’ perceived quality factor at the beginning of period 2 (updated
via social learning at the end of period 1). We assume non-adopters in period 2 are influenced

by the average outside signal and the total volume of such signals. Specifically, these period 2
. N. otal X N otal X
non-adopters are drawn towards a weighted average ag gy, = —2ato! a3’?\gt tQZ’NA't tal ZA3NA - of

the outside signals from the two period 2 adopter groups, after their self-learning, with N ;o101 =

N AAtotal + N2, N A total- Thus, non-adopters in period 2 that are still in the market, enter period
3 with updated priors:

1
a3 NN = a2 N + Ngwtotal X (a3,avg - CL2,N) (E4)
1
J— w w
=asn x (1 =N, total) + a3,avg X No'yora

NQ,AA,total % Nw N2,NA,total

w
2,total + a3,NA x N2 Jtotal”

1
= az,N X (1 - N2wtotal) +asz.a4 X N.
’ 2,total

NZ,total

Note that under perfect self-learning (6 = 1), both recent and veteran adopters send exactly the
same signal (the true value) via WOM. As such, under 6 = 1, the social learning in (E.4) is
consistent with the social learning in the main model in equation (1), for any strength w of WOM
effects. An alternative candidate parameterization of ag yn in which each outside signal value (as
opposed to the average) receives separate weights similar to those in equation (1), while tempting
to consider, leads to inconsistency with perfect learning. -2

E-214 may feel tempting to consider a alternative dlfferent parameterization a3 Ny = az N + N2 ‘AAtotal ¥ (a3 AA —

1
az,n) +N2 Natotar X (3,44 —a2,N) = a2 N X (1 —Nz “aatotal ~ NN A totar) 03,44 X N2 AA total TA3,NA X N2 NA,total
as a direct extension of the social learning in equation ( ). Note that the weights for the old prior and the outside
signals end up different from the ones in (E.4). However, when 6 = 1, we would end up with identical outside WOM
signals (as,aa = as,na = a) weighted differently, depending on the origin of the signal. Thus, such an alternative
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Figure E.1: Optimal strategies - model with 3 periods and imperfect self-learning (w = 1)

A—N9 A—DNDR A= A—=14

Figure E.2: 3-Period optimal strategies with imperfect self-learning and individual depreciation

In the numerical illustrations below, we consider intermediate strength of WOM effects (w = 1).
However, qualitatively similar insights as in Section 6.2 hold under social learning of more general
intensity (with stronger WOM effects inducing an increase the optimality region for S, in the
presence of individual depreciation and/or adoption costs).

In the absence of individual depreciation and adoption costs, even under imperfect self-learning
(regardless of the degree § of such imperfect self-learning) and more than two periods, it turns out
that S is still dominated in all regions of the parameter space. This can be seen in Figure E.1. We
already covered previously the dynamics at play in the top part of the figure, when customers enter
the market with intermediate to high priors. When initial priors are very low, free trials help ignite
consumer self-learning. However, for obvious reasons, the benefit of free trials gets significantly
diminished when the rate of self-learning, 4, is very low (bottom left corner) as customers do not
update their WTP fast enough for the firm to be able to charge a higher price. In the absence of
depreciation or adoption costs, when § < 1, TLF and TLF-SUB yield identical outcomes. However,
when § > 1, TLF strictly dominates TLF-SUB as the firm will use the perpetual license for the
remaining two periods to take advantage of consumers overshooting true value through self-learning
and will charge a higher price, before they get another chance to recalibrate priors downwards.

Figures E.2 and E.3 illustrate our optimal go-to-market strategies in the current extension
under individual depreciation and under adoption costs, respectively. This time, again, S emerges
as the optimal strategy in bottom left corner. Our previous insights from Figures 2 and 3 remain
qualitatively unchanged in the 3-period setting with imperfect self-learning. As long as § < 1,
increasing the self-learning rate (towards perfect learning) will expand the optimality regions for S
and, at the same time, will also lead to TLF-SUB and T LF more or less trading places.

parameterization of a3 yn would be inconsistent with the main model with perfect self-learning.
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Under individual depreciation, for higher A, as more value remains in the second and third
period, it matters how much of it has not yet been understood (through self-learning) after the free
trial. With reduced self-learning (low d as in panel (a)), there is still significant potential for self-
learning to adjust priors substantially in period 2, after the free trial. As such, a per-period license
after the free trial allows the firm to better monetize the tradeoff between continued self-learning
and depreciation (TLF-SUB dominates TLF'). However, if the self-learning rate is higher, there is
less ground left to cover in period 2 in understanding the true value (as most of it has been learned
during free trial). At the same time, even moderate depreciation starts eating more and more of
the value in period 3 (as depreciation compounds). As such, at intermediate depreciation values,
TLF starts overtaking TLF-SUB. As § gets larger, consumers update their priors very close to the
true value during the free trial, and depreciation will eventually dominate the benefits of continued
self-learning in period 2. In period 3, we will start seeing churn of consumers under TLF-SUB.
Regular T LF, with perpetual license, can better manage that scenario, as long as the depreciation
is not too severe (in which case S will take over).

(a) 6=02 (b) 6 =0.6 (c)o=1 (d)d=14
2
Q 3 Q
0.8 0.8 0.8 0.8
8w ;o g &
@ g 9 TLF
0.6 g 0.6 0.6 0.6
s CE-PL s S TLF CE-PL 3 CE-PL
0.4 0.4 CE-PL 0.4 0.4
0.2 0.2 0.2 0.2
S No Market Entry _ No Market Entry S No Market Entry S No Market Entry
-
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
c c c c

Figure E.3: 3-Period optimal strategies with imperfect self-learning and adoption costs

When accounting for adoption costs, we assume that the free trial is available only in period 1
- customers that skip it because of the adoption costs will no longer have the same opportunity in
periods 2 or 3 to enroll in a free trial. Again TLF-SUB overtakes T LF for low self-learning rate
and lower costs, but roles swap when self-learning rate gets higher and/or adoption costs get higher
(but not too high). When costs are not too high TLF-SUB can better manage social learning for
those customers that avoided the free trial due to adoption cost. However, when adoption costs
are higher, it becomes gradually harder to woo anyone that skipped the free trial through WOM
effects in a subsequent period. This is where offering a perpetual license instead of a per-period
subscription license allows for better amortizing of these costs over time.

F Extension 4 - Model with Adoption Costs and Endogenous Individual De-
preciation

We also explore a setting combining adoption costs with an endogenous depreciation rate, by
making A a decision variable. For the product to retain value beyond a single period of use,
the firm will have to develop product features that continue to be relevant over time or commit
to rejuvenating content. More precisely, in order for second-period continued use to generate a
fraction A of the original value for period 1 adopters, the firm will need to commit additional
development cost (). We assume that 7(0) = 0, i.e., with no additional effort, the product retains
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no value past a single period of use. We consider the development costs sunk for basic content
or features that are associated with limited use and we assume that the firm is at a later stage
in the development process when it has a minimum viable release candidate and it is deciding on
whether to pack additional value into it. Moreover, consistent with the literature, we assume r
is increasing convex (i.e., '(A) > 0 and r”(\) > 0). In particular, for this numerical exploration,
we consider a traditional quadratic cost function r(\) = pA2, with u > 0. We present in Figure
F.1 the optimal strategies under three different cost scenarios (u € {0.001,0.2,0.5}). We confirm
that all four strategies can be optimal. Resiliently, S can still emerge as the optimal choice under
small @ and small ¢ when the rejuvenation cost spans low to high. When rejuvenation costs are low
(1 = 0.001), the outcome closely resembles the one depicted in Figure 3 as the firm has an incentive
to choose high A in all scenarios. Other dynamics previously discussed remain qualitatively robust
(but the shapes of optimality regions change).

(a) 7(X) = 0.001)\2 (b) r(\) = 0.2) () r(\) = 0.5\

3 CE-PL 3

No market entry No market entry No market entry

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
c c c

Figure F.1: Optimal strategies - model with adoption costs and endogenous individual depreciation

G  Extension 5 - Model with Heterogeneous Consumer Priors

Previously, in the main body of the paper, we assumed that all consumers share the same prior
factor «, implying that they either all underestimate or all overestimate their true product valuation
when entering the market. In this section, we relax this assumption by allowing for heterogeneity
in priors, whereby some customers initially underestimate the value of the product whereas others
overestimate it. For o € (0, 1), we consider a Bernoulli distribution for the consumer priors whereby
a fraction 7 of consumers (denoted by group H) initially overestimate the value of the product at
a level ag; = (2 — a)a and the other fraction 1 — 7 of consumers (denoted by group L) initially
underestimate it at a level ar; = aa. The firm cannot tell group L and group H customers apart,
but it has an understanding of 7. Intuitively, when 7 = 0 or 7 = 1, this setup reduces to the
baseline model in Section 3.

Figure G.1 illustrates the optimal strategies when we extend the baseline model in Section 3
to account for heterogeneity in priors. In the absence of either individual depreciation or adoption
costs, S is always dominated, consistent with prior results. This is due to the fact that the focus
of S is mainly in generating WOM effects that enhance the valuation of consumers in group L. By
uniformly seeding also some of the customers in group H, who initially overestimate the value of the

90



CE-PL

0.8 1

T

Figure G.1: Optimal strategies - baseline model with heterogeneous consumer priors

product and have inherently higher WTP, the firm would lose the ability to monetize these overes-
timating customers, along with seeded but higher-valuation underestimating customers. Moreover,
WOM effects also impact negatively the perceived product valuation for the period 2 paying cus-
tomers in group H that did not adopt in the first period (if any), further reducing their WTP in
the second period. In contrast, CE-PL and CE-SUB can take better advantage of the existence of
an overestimating subgroup of consumers by charging a premium price from the beginning before
such customers have a chance to adjust downwards their priors through learning. T'LF can only
dominate when most consumers belong to group L, as it relies heavily on self-learning and mone-
tization of second period, as we discussed before. We emphasize that this figure is different from
prior figures as the y-axis reflects priors only for group L («).

Figure G.2: Optimal strategy - model with individual depreciation and heterogeneous consumer
priors

When we add individual depreciation to this setting (i.e., extend the model in Section 4 to

include heterogeneous priors), we confirm the previous finding that all four models (including .S)
can emerge as optimal, as shown in Figure G.2. Nevertheless, the ability of S to dominate when

91



customers underestimate the value of the product and there is significant depreciation hinges on
most customers belonging to group L - when 7 is small, in panel (a), the outcome resembles the
one in Figure 2. As the size of group L shrinks and the size of group H increases, eventually seeding
will no longer be optimal (we can see that the size of the optimality region for S is decreasing as
T increases - this region will eventually vanish). With homogeneous priors and depreciation (setup
in Section 4), seeding was optimal for high depreciation (low A) and heavy underestimation by
all consumers. However, under heterogeneous priors, when « is very low, the valuation for group
H is very large, diametrically opposite to that of group L relative to the true value. Hence, as
the market share of group H grows, the firm will increasingly focus on pricing high for group H
from the get-go (even to the extent of not serving group L at all) without sacrificing any of that
high-valuation demand pool to generate WOM effects.

Figure G.3: Optimal strategies - model with adoption costs and heterogeneous consumer priors

Similarly, we can show that our results with adoption costs from Section 5 are qualitatively
robust under the heterogeneous prior setting as well. In Figure G.3, we illustrate optimal strategies
for 7 € {0.01,0.025,0.05}. When group L is large (panels (a) and (b)), the outcome almost
resembles the one in Figure 3, and S can emerge as the optimal strategy when o and c are low.
Nevertheless, the region of optimality for S shrinks and vanishes relatively quickly as the size of
group H increases, because that group is far less constrained by adoption costs and already has a
high starting prior for the product, allowing the firm to price high without sacrificing revenue from
seeded high valuation customers over two periods. However, different from the market outcome in
Proposition 3, under the case when 7 > 0, the “no market entry” region shifts considerably to the
right due to overestimating consumers. In particular, in the heterogeneous priors setup, the firm
will stay out of the market iff the adoption cost is prohibitively high even for the overestimators
(i.e., ¢ > 2(2 —a)). Since the outcome is trivial for that region, it was cut off in the illustration, in
order to focus on the more interesting regions.

H Related Literature on Free Trials (T'LF)

The ability to influence consumer perceptions, purchase behavior, and dissemination of awareness
through sampling campaigns has been recognized for a long time (Hamm et al. 1969, Holmes and
Lett 1977, Goering 1985). Time-locked free trials and free demonstrations represent a special case
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of sampling where consumers get exposure to the full-feature product for a limited period of time.
Heiman and Muller (1996) explore the optimal length of free trials and demonstrations in the
context of physical goods, focusing in particular on cars and printers. In general, as physical goods
and some digital services have marginal costs, it may not be optimal to cover the entire market
through free trial campaigns. Accounting for such unit costs incurred by the vendor, Schlereth
et al. (2013) and Li and Wang (2018) explore the optimal market coverage of free trial campaigns.

The literature on properties and performance of TLF go-to-market strategies in the digital
space has progressed substantially in the last decade. Cheng and Liu (2012) and Dey et al. (2013)
explore when it is optimal to offer TLF in software markets and how the length of the trial period
should be calibrated. Cheng et al. (2015) compare TLF' against other free sampling strategies
(feature limited trials and hybrid feature/time limited trials). Wang and Ozkan-Seely (2018) show
that price can serve as a quality signal that complements direct experiential learning when TLF is
the dominant strategy (the optimal trial length is positive). Datta et al. (2015) and Foubert and
Gijsbrechts (2016) explore the impact of free trials on customer acquisition (conversion), churn,
and overall customer lifetime value in the long run. Lee and Tan (2013) and Chen et al. (2017)
investigate the interaction between WOM effects and free sampling strategies (including TLF') when
exploring their market outcome. Sunada (2018) explores optimal free trial length in the presence
of demand depreciation. Mehra and Saha (2018) study whether public betas and free trials should
be used in tandem or not. Reza et al. (2021) explore how promotion redemption and subsequent
usage are impacted when targeting existing users with hybrid time- and quantity-limited free trials.
Wang et al. (2023) examine how the competitive use of TLF in a duopoly setting depends on both
the magnitude of switching cost and the horizontal differentiation between firms. Yoganarasimhan
et al. (2023) investigate personalized-length vs. uniform-length TLF strategies, and the impact
of optimally-personalized free trials on short-term conversions and long-run customer loyalty and
overall revenues.

While market-wide free trial strategies are not that common in the markets for physical goods,
we do see widespread implementation of a seemingly similar, albeit quite different strategy - free re-
turns (or full money-back guarantees, MBGs within a certain time frame) - occasionally paired with
free shipping as well. Similar to free trials, MBG policies also help resolve consumer uncertainty
and the risk of a mismatch, and may also positively impact consumer adoption decisions and will-
ingness to pay a higher price (Che 1996, Suwelack et al. 2011, Bower and Maxham IIT 2012). Unlike
with free trials and demonstrations, under MBGs consumers gain experience with the product after
the purchase. At the same time, from the perspective of both consumers and providers/retailers,
such strategies may add considerable costs. For consumers, there are inconvenience costs associated
with the return process (repackaging the item, taking it to the retailer or a collection point, etc)
and consumers must incur these costs in order to receive the refund (because, unlike in the case
of free trials, consumers are charged upfront in the case of free return policies). Heiman et al.
(2001) explore consumer preference for free demonstrations vs. MBGs and analyze scenarios when
the two risk-reducing strategies complement or substitute each other. For providers/retailers, free
returns add considerable logistical costs as well. Part of it is in terms of labor costs to process re-
turns, which, alone, can in some cases cancel out the increase in revenue if we myopically consider
short-term profits (Patel et al. 2021). In addition, goods used and returned during the free returns
window in many cases exhibit wear and tear and cannot be re-commercialized as new items. The

93



salvage value of returns represents an important factor in the implementation of MBGs for physical
goods (Davis et al. 1995, Akgay et al. 2013) - some returns are unopened or in like-new condition
and can be put back on the shelf right away, others can be refurbished/recertified and sold at
a discount, and some necessitate retiring altogether, with the retailer (along with other entities
upstream in the supply chain) absorbing the overall cost associated with the retired item. Moor-
thy and Srinivasan (1995) explore how offering MBGs can also be used to signal product quality.
Furthermore, cross-channel full-refund or partial-refund returns (e.g., buy online, return in person)
have been considered as a feature to influence consumer adoption in omnichannel operations and,
potentially, help fight competition (He et al. 2020, Jin et al. 2020, Nageswaran et al. 2020).

In the context of digital goods and services, and more specifically software applications as well as
online services, the provider costs associated with offering time-locked free trials become negligible.
Once the product is built, inserting code to lock the product or service access upon the expiration
of the free trial can be done with very few resources. As such, it is feasible to offer market wide
free trials (TLF'). Also, similarly, for this specific category of products and services, the costs of
offering MBG's are negligible - once a user requests money back within an acceptable window after
purchase, it is very easy for the provider to reverse the online transaction. There are no actual
physical or digital returns for the products in this space - the license gets deactivated or the online
access is revoked. In software application and services markets, both TLF and MBG strategies
are employed.H"! One difference between TLF and MBG is that with MBG the customer pays
upfront, whereas with TLF, in many cases consumers can download the free trial without initiating
payment or providing details on how the payment will be processed (e.g., providing a credit card
account). Arguably, with TLF, more consumers can try the product even if they cannot afford the
paid version. However, with financial instruments that offer short-term access to capital (e.g., a
credit card), even such customers can try products offered with MBGs. Another difference is that
TLF is usually implemented by the developer and can benefit all consumers equally. On the other
hand, MBG strategies are traditionally point-of-sale (retailer) strategies and can differ in extent
across developer and various resellers of the same digital product.H2 Since in this paper we focus
on a single decision-making vendor for the product, this difference is irrelevant for our analysis. As
such, in the context of this study, in contrast to physical goods markets, in digital goods markets
the aforementioned two risk-reducing strategies - MBG and TLF - are more or less equivalent.
Given that, throughout this study we stick to TLF' terminology.

I Motivation for Including and Distinguishing Between Perpetual and
Subscription-Based Licenses; Relevance for the Mobile App Sector

In this E-companion section, we explain the rationale as to why, in the context of our framework
and analysis, we differentiate between subscription and perpetual license models for paid models
without free consumption (CE-PL and CE-SUB) and also for free trials (I'LF vs TLF-SUB in
Extension 3 in Section 6.3 and E-companion E). Moreover, we highlight how the inclusion of these
strategies is particular relevant for the mobile app sector.

H-1Tntuit Quickbooks and TaxAct desktop versions, as well as Autodesk online services all come with risk-free MBGs.
We already discussed several TLF' examples in the Introduction.

H-2For example, while offering a 15-30 day MBG for direct purchases, Autodesk (2025) also stated that, as of
December 2025, “Return policies for subscription and subscription renewal charges from third-party retailers or
authorized Autodesk partners vary.”
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e Motivation for including both CFE-PL and CE-SUB and distinguishing between them. Rele-
vance for the mobile app sector.

The strategies that involve no free consumption (CE-PL and CE-SUB) are included for
completeness of the argument. They are both observed in practice and, overall, the second
research objective (as defined on page 4 in the Introduction, as “to identify specific factors
that, when accounted for, support market scenarios under which S is the optimal strategy,
even in the presence of TLF”) would be pretty moot if, in the regions in which S could dom-
inate TLF (in the presence of the additional factors), S would in turn end up dominated by
strategies with no free consumptions. What we really want to explore is when S is the opti-
mal strategy, even with T'LF included in the choice set alongside other traditional strategies
without free consumption. It is this wider comparison that makes our results more relevant
from a practical standpoint.

CE-PL is the earlier, more established monetizing model for software (even before Internet
was open to the public). CE-SUB is a more recent model, with many digital subscriptions
being electronically renewed via the Internet. Some of the prior relevant studies focus only
on one of the models (e.g., Niculescu and Wu 2014 focus only on CE-PL). In particular, the
inclusion of CE-SUB in the analysis is of great importance to the exploration of go-to-market
strategies for the mobile app sector. In June 2016, Apple announced that they were “opening
auto-renewable subscriptions to all app categories including games, increasing developer rev-
enue for eligible subscriptions after one year, providing greater pricing flexibility, and more.”
(Source: Apple - Developer News, https://developer.apple.com/news/?id=06082016a,
accessed on 12/23/2025). Before that, Apple restricted this monetization mode solely to con-
tent apps such as magazines, newspapers, music/video streaming. For clarification, Google
allowed in the Google Play Store these capabilities since 2012. Hence, since 2016, the two
most prominent mobile app marketplaces became aligned in supporting widely the subscrip-
tion model. Thus, since 2016, mobile app developers can utilize two distinct paid models with
no free consumption - CE-PL and CE-SUB - across all major mobile app ecosystems. There-
fore, it is now of high practical relevance to the mobile app sector (an important segment of
the software market) to consider both of these options within the developers’ choice set.

From our analysis, it can be seen that in many cases, the optimality region of CE-SUB bor-
ders that of S or TLF. That means implicitly that CE-SUB is stronger that C'E-PL in those
regions and, as such, it directly erodes further into the optimality regions of S and/or TLF.
Consequently, it is an even stronger insight that S can emerge optimal under individual de-
preciation or adoption costs when both paid strategies without free consumption are part of
the developer’s strategy choice set (relative to a setting without CE-SUB).

e Motivation for distinguishing between TLF (which is free trial followed by perpetual license)
and TLF-SUB (which is free trial followed by subscription mode, as introduced in Extension
3 in Section 6.3 and E-companion E). Relevance for the mobile app sector.
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In December 2017, Apple started allowing developers to implement TLF via “discounted
introductory price” for an auto-renewable subscription (Source: Apple - Developer News,
https://developer.apple.com/news/?7id=12112017b, accessed on 12/23/2025). Before that,
Apple did not accommodate any form of TLF on the App Store. Thus, TLF is also now a
mainstream option across all mobile app ecosystems for subscription-based apps (Google Play
allowed native TLF since 2012). On the other hand, for software apps on desktop/laptop
systems, free trials have been offered for a long time for one-time purchase products. At
the same time, as of December 2025, free trials for one-time purchase mobile apps (through
which full-fledged functionality or content is available for a limited time) are still not directly
supported by either Apple App Store or Google Play Store. However, developers are allowed
flexibility in hardcoding such features in the apps, should they choose to (developers can get
creative with free apps with in-app purchases, somewhat approximating a native free-trial
implementation). We clarify in Section 3.1, when introducing TLF, that in the context of
the baseline model with 2 periods, it does not matter whether after the free trial we have per-
petual or subscription-based license since only one period of use is left in the game anyways.
Nevertheless, in Extension 3, in the context of a longer horizon with 3 periods (in Section
6.3 followed by details in E-companion E), we introduce TLF-SUB as different from TLF
(to differentiate between subscription and perpetual licenses after the free trial). In sum, the
inclusion of TLF-SUB model is highly relevant to the exploration of optimal go-to-market
strategies for contemporary mobile app markets.
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