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Abstract

Recent asset-pricing models incorporate jump risk through Lévy processes in ad-

dition to diffusive risk. This paper studies how to detect stochastic arrivals of small

and big Lévy jumps with new nonparametric tests. The tests allow for robust analysis

of their separate characteristics and facilitate better estimation of return dynamics.

Empirical evidence of both small and big jumps based on these tests suggests that

models for individual equities and overall market indices require incorporating Lévy-

type jumps. The evidence of small jumps also helps explain why jumps in the market

index are uncorrelated with jumps in its component equities.

JEL classification: G12, C12, C14
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1. Introduction

Evidence of stochastic skewness and kurtosis of asset return distributions is well known. A large

stream of literature has been devoted to developing better models to incorporate these dynamics

and studying their important implications for financial management. Examples include models

with stochastic volatility and jumps for derivative pricing, bond pricing, and risk management.1

This literature is expanding with more advanced continuous-time models using general Lévy jump

processes. These models nest most of the existing asset-pricing models and turn out to be flexible

in explaining various types of jump risk structures, especially small-jump dynamics that can

be described by neither stochastic volatility nor rare Poisson-type jumps. Not only can they

accommodate such returns but they also provide pricing formulas as tractable as other, simpler

models. Accordingly, their extensive applications have appeared in recent studies such as Carr

and Madan (1998), Carr and Wu (2003, 2004, 2007), Huang and Wu (2004), and Bakshi, Carr,

and Wu (2008).

In light of this fast-growing literature and subsequent efforts in developing better inference

methods (see, e.g., Aı̈t-Sahalia, 2004), we are motivated to distinguish the presence and dynamics

of different types of Lévy jump arrivals. As in Aı̈t-Sahalia (2004), we categorize Lévy jumps into

Poisson-type as big jumps and the other type as small jumps. In principle, big jumps are changes

in asset prices that are rare and much larger than what can be explainable by a diffusion process.

These jumps can be detected by applying tests that look for large returns. Recognizing jumps

in discrete observations from continuous-time models becomes more difficult if the jump sizes are

smaller, because they are of a size that could be in principle attributed to a diffusion process,
1 See Merton (1976), Bakshi, Cao, and Chen (1997), Andersen, Benzoni, and Lund (2002), Duffie, Pan, and

Singleton (2000), Aı̈t-Sahalia (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Johannes (2004), Piazzesi

(2003), and Pan (2002).
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which makes their direct detection impossible. However, we introduce a new, indirect way to

identify their stochastic patterns and show when those jumps should not be simply neglected. We

use the intuition that small jumps can be revealed by the fact that returns of a particular size

appear with higher frequency than would be expected from a diffusion process.

The ability to detect small jumps is important, first because it provides a robust solution to

determine whether incorporating Lévy jumps is ever necessary, as opposed to using a Poisson

jump-diffusion process in setting up pricing models for a certain asset class. Second, different

jump sizes have different implications for investors depending on their levels of risk aversion.

Because our test is designed to detect when these different types of jumps arrive and their size

distributions, a better understanding of their separate dynamics and systematic patterns can be

achieved, which is expected to be helpful for various financial applications such as market timing,

risk management, and asset pricing.

We construct our nonparametric jump test statistics for finding realized returns that are

unusual relative to volatility levels estimated based on a consistent estimator for instantaneous

volatility in the presence of Lévy jumps. For big jump arrivals, we suggest a detection rule

determined from the asymptotic null distribution of the maximums of our test statistic, according

to an extreme-value theory. For smaller jump arrivals, we first suggest assessing any presence of

Lévy jumps by what we call our QQ test, which is designed to compare realized test statistics

with synthetic data generated from the asymptotic null distribution of our test statistic. Once we

observe an unusual pattern in the QQ test, we propose using a belief measure constructed to allow

us to compute how likely it is that a particular return is due to the jump part of the model. This

gives us a threshold to detect arrivals of jumps smaller than big jumps. The application of these

two rules allows the decomposition of jump risk, which makes their separate inference possible.
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We also study how our jump test reacts to arrivals of jumps in the continuous limit and prove

that the likelihood of failing to detect any kind of Lévy jumps becomes negligible as we increase

the frequency of observations. Therefore, one can detect all sorts of jumps more precisely with

observations sampled at higher frequency.

In finite samples, big and small jumps detectable by our rules are frequency-specific. We

specify the detectable big and small jumps as a function of data frequency and explain how we

can detect them. Simulation studies support our contention that our test can distinguish most

Lévy jumps as we increase the frequency of observations. We assume in this study that we have

high-frequency observations. As long as high-frequency data are available, our methods can be

applied to all sorts of financial time series including individual stocks, indices, interest rates,

volatility, exchange rates, or other types of security prices.

There are other estimation methods available for this type of model. These use information

from either time-series asset return data or cross-sectional option price data. There are more

parametric approaches available such as Fast Fourier transform (FFT), calibration, maximum

likelihood, and Bayesian Markov Chain Monte Carlo methods.2 As is well known, the empirical

results based on parametric methods crucially depend on how the analyst specifies the models.

In general, nonparametric methods provide robust empirical evidence that is not sensitive to

model specification. There are a few nonparametric approaches proposed for dealing with similar

issues, such as detecting Lévy jumps, estimating volatility, or estimating jump activity when
2Carr, Geman, Madan, and Yor (2002) employ Fast Fourier transform (FFT) to convert the characteristic

function into a density function and match actual realized return data numerically using fine grids. Carr and

Wu (2003) and Huang and Wu (2004) apply a calibration approach to minimize pricing errors in option data,

and Carr and Wu (2004) apply maximum likelihood methods in the Kalman filter state-space framework. The

reverse question of distinguishing diffusion from jumps is studied by Aı̈t-Sahalia (2004) with a maximum likelihood

approach. Li, Wells, and Yu (2008) use a Bayesian approach.

3



there are Lévy jumps in continuous-time asset pricing models (see Aı̈t-Sahalia and Jacod, 2008,

2009a, 2009b; Barndorff-Nielsen, Shephard, and Winkel, 2006; Mancini, 2006; and Todorov and

Tauchen, 2008). We discuss the differences and provide simulation evidence of our test’s superior

finite-sample performance relative to a comparable test.

Finally, using our new tests, we perform empirical analysis on the overall U.S. market indices

and individual equities for five years from January 1, 2002 to December 31, 2006. We find

evidence of both small and big jumps in their prices. Specifically, our QQ tests, along with our

belief measures, reveal that more Lévy jump arrivals are found in individual equities (on average

0.78%) than in the indices (on average 0.50%). We also find more Poisson-type big jumps in

equities (on average 0.41%) than in the indices (on average 0.32%). This evidence of the dynamic

arrivals of small jumps in addition to big jumps suggests that the popular stochastic-volatility

models with Poisson-type jump models widely used in pricing assets such as derivative securities

are likely to miss some important intermediate movements in return dynamics. This evidence

also offers a resolution to the puzzle noted in Bollerslev, Law, and Tauchen (2008), that is, why

jumps detected in the index are uncorrelated with jumps detected in its component stocks since

the index can only jump when there is at least one jump in its component stocks. Existing jump

tests tend to miss these small jumps, and we interpret these to be the ones that make up the

jumps in the index.

The rest of the paper is organized as follows. Section 2 sets up a theoretical framework for

detecting jumps from Lévy jump-diffusion processes and introduces the test. Section 3 discusses

the jump detection rules and the asymptotic behavior of the test statistics. Section 4 investigates

the test’s finite-sample performance by simulation. Empirical evidence found in U.S. equity

markets is presented in Section 5. Finally, we conclude in Section 6.
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2. A theoretical model for the Lévy jump test

We fix a complete probability space (Ω,Ft,P), where Ω is a set of events in a financial market, {Ft}

is market information filtration over a time horizon [0, T ], and P is a data-generating measure.

This describes financial market uncertainty. We denote S(t) as the asset price at t under P and

write its continuously compounded return as d log S(t) for t ∈ [0, T ].

We model asset prices to evolve continuously as a particular Lévy jump-diffusion process

that is adapted to information filtration Ft. In general, sample paths of Lévy processes are

right-continuous with left limits, and have independent increments. They are used to capture

non-normal discontinuous increments with various jump dynamics and structures. Their features

are specified by the characteristic function whose exponent satisfies the Lévy-Khintchine formula

as in Bertoin (1998), displaying characteristics of the process such as its drift, diffusion, and

discontinuous components. The Lévy measure determines simultaneously the pure jump-size

distribution and intensity, including how often jumps of certain sizes occur over an interval. A

purely discontinuous Lévy process can be either a finite-activity jump process, which exhibits a

finite number of jumps in any finite interval, or an infinite-activity jump process, which exhibits

infinitely many jumps in any finite interval.

We are interested in detecting and understanding the dynamics of such Lévy jumps in the

asset returns in the following framework. Although a Lévy process itself often encompasses a

diffusion component, we set in this paper a pure Lévy jump process to be added to a Brownian

motion process to describe their dynamics separately. When there is no jump in the market, the

asset price S(t) is represented as

d log S(t) = µ(t)dt + σ(t)dW (t), (1)

where W (t) is an Ft-adapted standard Brownian motion. The drift µ(t) and spot volatility σ(t) are
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Ft-measurable functions such that the underlying process is a diffusion that has only continuous

sample paths. When there are Lévy jumps, S(t) is given by a Lévy jump-diffusion model as

d log S(t) = µ(t)dt + σ(t)dW (t) + dL(t), (2)

where L(t) is an Ft-adapted Lévy jump process with a Lévy jump measure ν and independent of

W (t). We do not specify drift, diffusion, or jump processes further with any particular measure

until the simulation study.

Observation of S(t), or equivalently log S(t), only occurs at discrete times 0 = t0 < t1 < ... <

tn = T that span the fixed time interval [0, T ]. For simplicity, this paper assumes that observation

times are equally spaced: ∆t = ti − ti−1. This simplified assumption can easily be generalized

to non-equidistant cases by letting maxi |ti − ti−1| → 0. We also impose the following necessary

assumption on price processes throughout this paper (mathematical forms of this assumption are

provided in the Appendix):

Assumption 1. Properties of drift µ(t) and diffusion σ(t) processes

1. µ(t) and σ(t) are smooth and not changing dramatically over a short time interval.

2. µ(t) and σ(t) can be stochastic and can depend on the price process.

3. σ(t) > 0 for all t ∈ [0, T ] .

We only assume a certain level of smoothness in these two coefficients. This assumption is

satisfied for most Itô processes that are used for continuous-time asset-pricing models.3 We do
3Examples are the constant drift and diffusion coefficient model as in Merton (1976), the stochastic volatil-

ity model in Heston (1993), and its extended versions studied in Bakshi, Ju, and Ou-Yang (2006), which allow

nonlinearities in the drift coefficients and more flexible diffusion specifications.
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not impose any specific assumptions on dependence between the process driving volatility and

the price process. Therefore, they can depend on each other, though they do not have to. This

assumption excludes jumps in volatility.4

For our analysis using high-frequency data, the drift (of order dt) is mathematically negligible

compared to the diffusion (of order
√

dt) and the jump component (of order greater than
√

dt). The

drift estimates tend to have higher standard errors so that they cause the precision of variance

estimates to decrease if included in variance estimation. Omitting drift in our analysis, i.e.,

µ(t) = 0, is in fact desirable. Hence, in what follows, we state our results ignoring the drift.

2.1. Definition of the nonparametric Lévy jump test

In this subsection, we address the basic intuition behind our development of the new Lévy jump

test statistic. Then, we provide its mathematical definition.

The intuition that gives rise to the formation of our test is similar to that of Lee and Mykland

(2008), who study a Poisson-type jump test. We first measure local movement of the return process

over a window of fixed size and estimate instantaneous stochastic volatility. The last observation

in a window is then compared to the estimated stochastic volatility. By going through tests over

time, we distinguish jump arrivals.

The main difference between our Lévy jump test and the Poisson jump test by Lee and

Mykland (2008) is the stochastic-volatility estimation in the presence of different types of jumps.

When there are infinite-activity Lévy jumps in price processes, which we consider in this paper,

the scaled realized bipower variation used for their Poisson jump test is no longer sufficient for
4Although a study by Duffie, Pan, and Singleton (2000) allows correlated double jumps in volatility and in

returns, empirical evidence of jumps in volatility is inconclusive in the literature and depends on the methodologies

used. For example, see Chernov, Gallant, Ghysels, and Tauchen (2003) and Eraker, Johannes, and Polson (2003).
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us to consistently estimate volatility movements. There are two different consistent estimators

proposed for integrated volatility in the presence of Lévy jumps in the literature. One is truncated

power variation, which is the power variation based on retaining only small increments. The other

is multipower variation, which is the scaled sum of the pth power of q successive absolute returns

for any p > 0 and any integer q ≥ 1. Because the infinite-activity jumps are likely to appear in

successive returns, and hence multipower variation tends to overestimate instantaneous volatility,

we use truncated power variation in the construction of our test (see, e.g., Aı̈t-Sahalia and Jacod,

2009b; Barndorff-Nielsen, Shephard, and Winkel, 2006; Huang and Tauchen, 2005; Mancini, 2006).

We now turn to the theoretical setup for the Lévy jump test statistic. Remember that n is the

number of observations over the fixed time horizon [0, T ]. The distance between two successive

observations is ∆t = T
n . Consider a local movement of the process within a window of size K +1.

With the first K realized returns in the window just before testing time ti, the instantaneous

volatility is estimated based on the realized truncated power variation. We then take the ratio

of the last realized return from time ti−1 to ti in the window to this estimated volatility in order

to determine whether there is a jump between ti−1 and ti, as well as its size.5 The mathematical

notations are as follows.

Definition 1. The piecewise constant process T (t), which will be used to test whether there was
5In our setup, if one is concerned about the presence of jumps in volatility, one can use the last K observations

in the window after testing time ti to estimate the instantaneous volatility and take the ratio of the first realized

return in the window to this estimated volatility to form a test statistic. This statistic is valid in the presence of

jumps in volatility because the volatility processes are right-continuous with or without jumps. All the theoretical

results presented in the following section are also valid with this alternative definition.
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a Lévy jump from ti−1 to ti, is defined for t ∈ (ti−1, ti] as

T (t) ≡ log S(ti)/S(ti−1)

σ̂(ti)∆t1/2
, t ∈ (ti−1, ti] (3)

where for any g > 0, 0 < ω̃ < 1/2, and t ∈ (ti−1, ti],

σ̂(t)
2 ≡ ∆t−1

K

i−1∑

j=i−K

(log S(tj−m+1)/S(tj−m))2 I{|log S(tj−m+1)/S(tj−m)|≤g∆teω}. (4)

Notice that the realized truncated power variation is in the denominator of the statistic, which

makes our technique robust to the presence of jumps. We only use K+1 (window size) observations

included in the local window. We discuss how to choose K in Section 3.1.

3. Asymptotic theory of inference

This section explains the theories behind our proposed tests and discusses how we recognize big

and small Lévy jump arrivals. Assuming that model (2) is true, we first prove that it is legitimate

to estimate the instantaneous volatility σ(t) as in Eq. (4) at any time and use it for our jump

test. Next, we describe the limiting behavior of our test statistic and explain how one can detect

big jump arrivals using an extreme value theory. Then, we explain what we call our QQ test,

which is designed to assess any presence of Lévy jumps, and we introduce our belief measure to

detect small jump arrivals. We also prove that when Lévy jumps are present, we can detect Lévy

jumps with probability approaching 1, as we increase the frequency of observations.

3.1. Instantaneous volatility estimation

Proposition 1 below shows why the usage of the realized truncated power variation is valid for

the instantaneous volatility estimation in the denominator of the test statistic.
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Proposition 1. Let σ̂(t) be as in Eq. (4), K → ∞, and ∆tK → 0. Suppose the asset return

process follows (2), and Assumption 1 is satisfied. Then, as ∆t → 0,

σ̂(τ) P−→ στ (5)

for any stopping time τ > 0 independent of the process S(t).

The proof of this proposition is in the Appendix. It establishes a pointwise convergence in (5),

stating that as long as we use frequent-enough observations and choose the window size properly,

instantaneous volatility can be consistently estimated at any time. In order to retain the benefit

of the truncated power variation, the window size K + 1 must be large enough but smaller than

the number of observations n, so that the effect of Lévy jumps in the window on estimating

instantaneous volatility disappears, and hence only the volatility level will be extracted. In finite

samples, we find from our simulation study that too-large window sizes increase the computational

burden without much improvement in the precision of estimation. One way to choose a window

size is to find an optimal K = b̃∆tec, with −1 < c̃ < 0 for some constant b̃. We use this approach

for our analysis.

3.2. Recognizing arrivals of big Lévy jumps

We now study how the jump test process T (t) interacts with the arrival of Lévy jumps and how to

detect big jump arrivals. To investigate the interaction, we suppose that the realized return now

follows the Lévy jump-diffusion model as in Eq. (2). Here, it is important to notice that jumps

are countable, even if there can be an infinite number of jumps within a finite interval. Hence,

there are time points when there is no jump. We prove that the test process remains bounded in

probability at those times without a jump: more precisely, when there is no jump in between two
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countable observation times. In particular, the test statistic at those times follows approximately

a normal distribution in the limit. On the other hand, at the times of jump arrivals, it grows

to infinity as ∆t goes to 0. Therefore, in theory, we can detect the arrival times of Lévy jumps

eventually. Theorem 1 below formally describes the limiting behavior of our test statistic. The

proof is relegated to the Appendix.

Theorem 1. Let T (t) be as in Definition 1 and K → ∞ and ∆tK → 0. Suppose the process

follows (2) and Assumption 1 is satisfied.

A. For any stopping time τ , such that ∆S(τ) = 0 almost surely (i.e., there is no jump at time τ

almost surely), as ∆t → 0,

T (τ) D−→ N(0, 1), (6)

where N(0, 1) denotes a standard normal random variable.

B. Define the time of the kth jump bigger than h by

τk,h = inf{t > τk−1,h,∆L(t) > h}. (7)

Then, as ∆t → 0,

P

(
min

k

T (τk,h)
h/(σ(τk,h)

√
∆t)

≥ 1

)
→ 1. (8)

Therefore, T (τh,k) →∞, as ∆t → 0.

Here, one can test for the presence and arrivals of big jumps by the following rule. To come

up with the big-jump test, we hypothesize that our realized returns come from model (1) and we

consider how large the magnitude of T (t) can be by studying the asymptotic null distribution of

its maximums in the following proposition. This offers the big-jump detection region. This idea
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was also used in Lee and Mykland (2008) and we can apply the same in our case for Poisson-type

big jumps. The following proposition is taken directly from Lee and Mykland (2008) and we state

it for the convenience of readers as well as for our further discussion.

Proposition 2. Big Lévy jump-detection rule

Let T (t) be as in Definition 1 and K →∞ and ∆tK → 0. Suppose the process follows (1) and

Assumption 1 is satisfied. Then, as ∆t → 0,

maxt∈(ti−1,ti] for 0≤i≤n |T (t)| − Cn

Sn
→ ξ, (9)

where ξ has a cumulative distribution function P (ξ ≤ x) = exp(−e−x),

Cn = (2 log n)1/2 − log π + log(log n)
2(2 log n)1/2

and Sn =
1

(2 log n)1/2
. (10)

Notice that the test T (t) is defined as a piecewise constant and the maximum in Eq. (9) is the

same as if it were taken at all observation times ti. The main use of Proposition 2 is to set up

the big-jump rejection regions of our test: namely, we detect a big jump arrival at testing time ti

if the absolute value of the test statistic is bigger than qα̃Sn + Cn, where qα̃ is the α̃ quantile of

the limiting distribution of maximum ξ.

Combining the results of Proposition 2 and the results of Theorem 1, we see that any jump of

a fixed size will be detected by our procedure and see how we categorize big jumps. Specifically,

Theorem 1, Part B states that at the time of a jump of size h, the test statistic grows at least

as fast as h/(σ(τk,h)
√

∆t), which is of the order of ∆t−1/2 = n1/2. On the other side, for the

significance level α̃, remember that the big-jump detection cutoff for our test is set in Proposition 2

as qα̃Sn+Cn, which is of the order of
√

log(n) =
√
− log(∆t). An immediate consequence of these

12



facts is that as ∆t decreases, we are able to detect smaller and smaller jumps. In particular, we

should be able to detect all jumps of size hn, where hn/
√
−2max(σ(t))∆t log(∆t) →∞. In other

words, we expect to detect jumps of a size larger than
√
−2max(σ(t))∆t log(∆t), and we will

not be able to detect jumps of a size smaller than
√
−2max(σ(t))∆t log(∆t) with our big-jump

detection rule. Notice that this threshold
√
−2max(σ(t))∆t log(∆t) converges to zero as ∆t → 0.

Therefore, we can detect more jumps as we increase the frequency of observations.

3.3. Assessing Lévy jumps: QQ test and multiple test adjustment

The big-jump test described in Section 3.2 will detect jumps that are much larger in size than the

natural variation of the diffusion process. In this subsection, we describe a test that can detect

the presence of Lévy jumps that are smaller than jumps detectable by our big-jump test. Instead

of looking for unusually large returns as our big-jump test does, it looks for returns that occur

with unusual frequency. In particular, the test marks the presence of Lévy jumps if it finds the

number of test statistics of a particular size to be significantly different from what would have

been expected under the no-jump model. In other words, it looks for an over or underabundance

of test statistics across all possible values through a multiple test. The test can, therefore, sense

rather small jumps provided they are prevalent enough. We call this the QQ test in this paper.

To be more specific, suppose we have a time horizon [0, T ] over which we are interested in

finding the presence of Lévy jumps. Every time we have a realized return within the time horizon,

we can perform a single test at a particular time using the following asymptotic distribution of

our test statistic. This proposition can be also deduced from Theorem 1, Part A. We state it

along with related properties for our further discussion.
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Proposition 3. Let T (t) be as in Definition 1 and K →∞ and ∆tK → 0. Suppose the process

follows (1) and Assumption 1 is satisfied. Then, as ∆t → 0,

T (t) D−→ N(0, 1), (11)

where N(0, 1) denotes a standard normal random variable, and hence, as ∆t → 0,

Φ(T (t)) D−→ U(0, 1), (12)

where Φ(z) is the cumulative distribution function (CDF) of standard normal variable z and

U(0, 1) denotes a uniform random variable.

Proposition 3 is the basis for our multiple test. This result suggests comparing the distribu-

tion of our observed test statistics computed from realized asset returns with standard normal

distribution using the QQ-plot (a QQ-plot is a simple diagnostic tool for identifying differences

in distributions (such as non-normality) from which data have been taken). If there is no jump

present, the distribution of the test statistics {T (tK+1), T (tK+2), . . . , T (tn)} in theory would con-

verge to an i.i.d. standard normal as n →∞. Hence, a QQ-plot of the standard normal quantiles

versus the quantiles of the test statistics should also converge to a 45-degree line in the limit.

However, because of random variability and discreteness as well as the stochastic volatility

estimation risk, the QQ-plot can deviate from the 45-degree line even if there is no jump. There-

fore, we need to assess how much of this deviation is natural under the no-jump model. For this

purpose, we apply a procedure based on ideas in Hernandez-Campos, Samorodnitsky, and Smith

(2004). Specifically, we investigate the asymptotic null distributions of quantiles as follows.

First, remember that we had n observations and that the first K observations are used for

volatility estimation. Hence, we have n−K test statistics, normally distributed under the no-jump
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model. We simulate m independent copies of a data set containing n−K i.i.d. standard normal

variables. For each of the m data sets, we plot the QQ-plots with dot-dashed lines. These m

QQ-plots create an envelope that shows the natural deviation of the QQ-plot from the 45-degree

line under the no-jump model. This gives us the asymptotic null distributions of quantiles. If the

QQ-plot of the data leaves the envelope, i.e., if any realized quantile lies beyond its generated null

distribution, we conclude that there is a significant departure from the no-jump model.

The number of synthetic datasets m used to create the envelope controls the statistical signif-

icance level of our multiple tests. Under the null, a simple calculation reveals that the probability

that a particular test value lies outside the envelope is 2/(m+1). However, since the data consists

of a large number (n−K) of test statistic values, we need to do a multiple testing adjustment to

control the overall significance level α̃ of our test. For example, one could apply the Bonferroni

adjustment leading to m = (n−K)/α̃−1. However, Bonferroni adjustment is known to be overly

conservative and we do not recommend its use in practice. Instead, we suggest adjustment based

on simulation of the extremes of the normal QQ-plots.

The approach used to find m is as follows. When there is no jump at any time during the entire

time horizon, test statistics will be approximately normally distributed as stated in Proposition 3.

We first apply the true distribution function (standard normal CDF) of the test statistic to both

the test statistic and the envelope. We know that all the statistics and envelopes transformed

according to the distribution function follow a uniform distribution, as stated in Proposition 3.

Now, notice that the probability that the transformed test statistic trace stays inside the envelope

becomes

P

(
min

j=1,...,m
U(k),j ≤ U(k) ≤ max

j=1,...,m
U(k),j , k = 1, . . . , n−K

)
, (13)

where U(k) represent the transformed test statistic values. They are the order statistics based on
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i.i.d. U(0,1) random variables Ul, l = 1, . . . , n−K. Similarly, the U(k),j represent the transformed

envelope. They are the order statistics based on i.i.d. U(0,1) random variables Ui,j , i = 1, . . . , n−

K independent of Ul.

For any fixed n − K and desired overall significance level α̃, we then find m for which the

probability in (13) comes as close to 1−α̃ as possible. These m can be simply found by simulation,

and the recommended values of m for various numbers of statistics n−K and significance levels α̃

are listed in Table 1. As seen in the table, given the number of available observations, we require

a greater m for a lower overall significance level. And for a fixed significance level, as we have

more observations, a greater m would be required.

3.4. Recognizing arrivals of small Lévy jumps

As noted in Section 3.3, the presence of jumps that are not detectable by our big-jump rule can

still be assessed by our QQ test, since the QQ test is more sensitive to the presence of Lévy jumps

than the big-jump test. Provided that we assess their presence using the QQ test, we still would

like to be able to distinguish arrivals of these small jumps to determine which returns are due to

the jump part. In the case of the big-jump detection rule, the flagged test statistics are so large

that it is virtually certain they are the result of a jump. In the case of the QQ test, we only detect

a significant overrepresentation of a particular value of a test statistic that could also be present

just through normal fluctuation from the no-jump model. Therefore, it is possible that some of

the returns flagged by the QQ test are due to jumps while others are not. In other words, there

can be false arrival detections if we use only the QQ test. In order to control such false detections,

we propose a way to measure the belief or likelihood that a particular realized return at a testing

time is not due to normal random fluctuation from the diffusion model.

We now proceed to define a belief measure to control false detection. Here, we need some
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Table 1: Number of synthetic datasets m needed for the QQ test†

n−K α̃ = 1% α̃ = 5% α̃ = 10% n−K α̃ = 1% α̃ = 5% α̃ = 10%

78 5,503 932 422 96 6,089 1,044 456

100 6,211 1,063 463 130 7,057 1,189 510

250 9,204 1,513 649 260 9,334 1,533 658

288 9,668 1,584 683 390 10,716 1,744 753

480 11,498 1,864 803 500 11,658 1,888 813

520 11,815 1,912 823 780 13,557 2,158 930

960 14,451 2,288 988 1,000 14,618 2,314 1,000

1,440 15,859 2,562 1,111 1,560 16,112 2,620 1,137

1,920 16,789 2,775 1,203 1,950 16,841 2,787 1,208

2,500 17,691 2,956 1,280 2,880 18,194 3,040 1,318

3,900 19,320 3,217 1,403 4,680 20,031 3,329 1,457

5,000 20,295 3,371 1,477 5,760 20,873 3,461 1,521

7,200 21,816 3,609 1,593 7,800 22,165 3,663 1,618

10,000 23,284 3,838 1,689 14,400 25,028 4,109 1,793

15,600 25,429 4,171 1,816 17,280 25,949 4,251 1,846

23,400 27,556 4,500 1,940 25,000 27,920 4,556 1,961

28,800 28,714 4,678 2,006 31,200 29,173 4,749 2,033

46,800 31,613 5,123 2,171 50,000 32,030 5,187 2,194

57,600 32,941 5,326 2,245 86,400 35,697 5,746 2,398

93,600 36,268 5,833 2,430 100,000 36,747 5,906 2,452

115,200 37,791 6,064 2,483 117,000 37,908 6,082 2,485

172,800 40,953 6,543 2,521 234,000 43,489 6,925 2,524

345,600 46,983 7,449 2,524 432,000 49,107 7,767 2,524
† Number of synthetic datasets m needed to obtain a desired overall significance α̃ for the multiple test,

when we have n − K multiple tests. The values in this table were simulated and smoothed using a

monotone quadratic regression spline.
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notation. Recall that (3) effectively defines n different test statistics and encodes them in the

test statistic process T (ti). The first K test statistics are not well defined because our volatility

estimator needs the first K observations. Hence, we take the remaining n − K test statistics,

order them as in the following Definition 2, and use them as a basis of our test.

Definition 2. Let the ordering function r(i) be defined to satisfy T (ti) = T(r(i)) for all i =

K + 1, .., n, where the observed test statistics are {T (tK+1), T (tK+2), . . . , T (tn)} and their order

statistics are {T(1), . . . , T(n−K)}, so that {T(1) ≤ .. ≤ T(n−K)}.

Notice that each of the intervals ((T(r−1) + T(r))/2, (T(r) + T(r+1))/2)) contains exactly one

value of the test statistic, that is T(r). We now show that under the no-jump model, the expected

number of test statistics in this interval is also about one. Recall that Proposition 3 implies that

the T (ti) are asymptotically independent normal random variables under the no-jump model.

The following proposition gives us guidance in setting up our belief measure.

Proposition 4. Let T(1), . . . , T(N) be the order statistics computed as in Definition 2 from a

sample of N independent standard normal random variables. Then, the random variable Br =

Φ((T(r) + T(r+1))/2) − Φ((T(r−1) + T(r))/2) have Beta(2, N − 1)/2 distribution. Furthermore, its

expected value is EBr = 1/(N + 1) and the covariance is

Cov(Br,Bl) =





N−1
2(N+2)(N+1)2

if r = l,

N−3
4(N+2)(N+1)2

if |r − l| = 1,

− 1
(N+2)(N+1)2

if |r − l| > 1.
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The proposition is proved using simple algebra. We omit the details to save space. This

proposition suggests using the following test statistic as a first step toward defining our belief

measure:

l̃(r) = 1− (n−K + 1)
(
Φ((T(r) + T(r+1))/2)− Φ((T(r−1) + T(r))/2)

)
,

where r = 1, .., n − K. Here, the first term, 1, is the number of test statistics in the interval

((T(r−1) + T(r))/2, (T(r) + T(r+1))/2), while (n−K + 1)Φ((T(r) + T(r+1))/2)−Φ((T(r−1) + T(r))/2)

approximates the expected number of test statistics observed in the same interval under the

no-jump model, according to the first part of Proposition 4. Now, if we have a significant over-

representation of test statistics of a certain size, the spacings in between them would be shorter

than expected, leading to a smaller expected number of test statistics in the interval than that

under the null. The value of l̃(r) then becomes closer to one, indicating that this particular test

statistic is more likely due to a jump.

However, Proposition 4 also states that, even though the expectation of l̃(r) under the no-

jump model is close to zero, the variance of l̃(r) remains bounded away from zero. Therefore, the

raw values of l̃(r) are not by themselves reliable measures of belief. To solve this problem, we

assume that the likelihood of a test statistic being the result of a jump is continuous as a function

of its size, which means that belief measures should be close if the values of the test statistics

are close. Thus, we suggest obtaining a smoothed measure l(r) by locally averaging the values of

l̃(r) for values of T(r) close to each other. In particular, we propose using the Nadaraya-Watson

estimator to do this smoothing. To use this estimator in practice, one of the parameters that

needs to be selected is the window-width. Window-width could be understood as the amount

of averaging to get our smoothed value l(r). The choice of window-width has been intensively

studied in the statistical literature. We have decided to use an automatic choice of window-width
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proposed by Ruppert, Sheather, and Wand (1995) called the DPI method. It follows from the

theory of smoothing, wherein under the no-jump model, l(r) P−→ 0. Interested readers can consult

Fan and Gijbels (1996) for more details.

This leads us to define the belief measure for a return at ti as

b(ti) = max(0, l(r(i)),

where r(i) is the ordering function as in Definition 2 and l(r(i)) is the smoothed value as described

above. We use b(ti) as a measure of the belief that a particular return is the result of a jump. In

particular, with a chosen false detection rate of α̂, it guarantees that among returns of likelihood

b(ti) ≥ (1− α̂), we would expect to have at least (1− α̂)× 100% of returns that are due to jumps

and at most α̂ × 100% of returns that are due to random fluctuations of the no-jump model.

Notice that we use this belief measure only after the QQ test rejects the no-jump model.

Finally, we summarize the use of our small-jump tests as follows. First, select the number of

traces m from Table 1 for creating the envelope in the QQ test according to the number of tests

and desired significance level α̃. Then, check if the QQ-plot based on realized test statistics leaves

the envelope. If it does not, conclude that there is not enough evidence to reject the diffusion

model. If the QQ-plot of realized test statistics does leave the envelope, we have enough evidence

to prove the presence of Lévy jumps. To locate actual arrivals of jumps, compute the belief

measure b(ti). Then, select a desired false detection rate α̂. Note that it is possible that α̃ 6= α̂.

Flag as Lévy jumps all returns with b(ti) ≥ (1−α̂). It is important to bear in mind that among the

flagged returns there could be as many as α̂×100% false positives. This belief measure converges

to one as we have bigger jump sizes, because the value of the test statistics converges to infinity

in such cases. To determine if Poisson jump-diffusion models are not sufficient to describe any

asset return dynamics, we can compare the results from our big-jump test with those from this
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small-jump test. If we find considerably more jumps from the latter test than from the big-jump

test, we can conclude that Lévy jumps are significant. Furthermore, to decompose Lévy jump

risk into big and small jumps, we can apply this approach along with big-jump detection rule

and categorize as big jumps those detected by our big-jump rule and as small jumps those not

detected by our big-jump rule but detected by our belief measure.6

4. Monte Carlo Simulation

In this section, we examine the finite-sample performance of our Lévy jump test using Monte Carlo

simulation. Our asymptotic argument requires continuous sampling, which cannot be perfectly

met in real applications. Through simulation, we show that high-frequency data allow us to

achieve better inference results. We also compare the results of our test to another comparable

existing Lévy jump test and present our superior performance. For all series generation, we use

the Euler-Maruyama stochastic differential equation (SDE) discretization scheme (Kloeden and

Platen, 1992), an explicit order 0.5 strong and order 1.0 weak scheme. We discard the burn-

in period—the first part of the whole series—to avoid the starting value effect, every time we

generate each series. For all cases in this section, we simulate returns at various frequencies such

as one minute, 15 seconds, or 5 seconds over one trading day, assuming 6.5 trading hours per day.

We choose to consider the horizon of one day (T = 1
252) as a typically relevant time length in

trading, hedging, and other applications.

The infinite-activity jump model we consider for simulation is the Lévy α-stable process.

Jump sizes from this process follow an α-stable distribution, denoted as Sα(β, δ, γ), with a tail
6An estimate of the number of jumps detected in a fixed time interval (without the need to know their exact

location) can be obtained by adding up the values of the belief measure for returns over that interval. This approach

is used in calculating the estimate of the detected small jump intensity presented in Figs. 4 and 7.
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index α ∈ (0, 2] for the shape of the size distribution, a skew parameter β for the skewness of

distribution, a scale parameter δ ≥ 0, and a location parameter γ. In our analysis, we choose

to study the performance of our test on jumps from the finite moment log-stable process of

Carr and Wu (2003) and Li, Wells, and Yu (2008). According to both studies, we set β = −1 to

achieve negative skewness of empirical densities of equity index returns. We take the characteristic

function of the α-stable distribution given by

E[exp(iuL(t))] = exp(−δα|u|α[1− iβ(tan
πα

2
)(signu)] + iγu), α 6= 1

E[exp(iuL(t))] = exp(−δ|u|[1 + iβ
2
π

(sign u)(log |u|)] + iγu), α = 1.

For α < 1, the support for stable density is only a positive real line. In order to keep the

support of these stable densities on the whole real line, we should only allow α ∈ [1, 2]. The

α-stable process reduces to some well-known special cases. If α = 1, β = 0, δ = 1, and γ = 0, it

becomes a standard Cauchy process. If α = 2, β = 0, δ = 1, and γ = 0, it becomes a standard

Gaussian process. For our simulation study, we use α = 1.7629, following Li, Wells, and Yu

(2008). (According to our unreported results, the level of α might affect performance but the

difference is not significant and our conclusion is not altered, depending on α.) To simulate

general stable random variables, we use the algorithm by Chambers, Mallows, and Stuck (1976),

which involves a nonlinear transformation of two independent uniform random variables into one

stable random variable. Since it produces standard stable variables with mean zero and unit

variance, we transform again to obtain our desired series.

We consider both constant and stochastic volatility models. For constant volatility, we set

σ(t) = 30% per year, which is usual for U.S. equity markets. For stochastic volatility, we consider

a one-factor affine model. We assume the stochastic volatility model as in Heston (1993), specified
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as the following square root processes (see Cox, Ingersoll, and Ross, 1985):

dσ2(t) = κ
(
ς̄ − σ2(t)

)
dt + ωσ(t)dB(t), (14)

where B(t) denotes a Brownian motion. For κ, ς̄, and ω, we use the parameter estimates from

equity markets reported in the empirical study by Li, Wells, and Yu (2008, Table 4): κ =

0.0162, ς̄ = 0.8465, and ω = 0.1170, to mimic real market returns. For estimation of the truncated

power variation, we use parameter values of g = 1.2, which is four times the usual volatility

σ(t) = 30%, and ω̃ = 0.47, following Aı̈t-Sahalia and Jacod (2009b).

4.1. Constant volatility versus stochastic volatility without Lévy jumps

Before we present the performance of our test in detecting jumps, we first show the size of the test,

that is, how often our jump tests falsely detect jump arrivals when there is no jump in returns.

The employed model for simulation is

d log S(t) = σ(t)dW (t), (15)

where σ(t) is volatility and W (t) is a Brownian motion. We apply both big-jump and small-jump

tests. The results with the significance level α̃ = 5% are reported in Table 2. As can be seen in

the table, all the probabilities of spuriously detecting jumps when there is no jump are around 5%

at all frequencies under consideration. Big-jump tests tend to give lower rates than small-jump

tests, which is expected from the levels of the thresholds we suggest using.

4.2. Constant volatility versus stochastic volatility with Lévy jumps

We first study the performance of our big-jump test in the presence of both diffusion and small

jumps. In general, Poisson jumps, which we call big jumps in this paper, are a part of the Lévy
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Table 2: Probability of spuriously detecting jumps using the Lévy jump test†

Constant volatility Stochastic volatility

Frequency ∆t Big-jump test Small-jump test Big-jump test Small-jump test

1 minute 0.044 0.048 0.042 0.051

15 seconds 0.050 0.056 0.043 0.055

5 seconds 0.031 0.048 0.046 0.051
† This table presents the size of the test, that is, the rate of rejecting the diffusion model when there is no jump

using our big-jump and small-jump tests, as discussed in Section 3. The encompassing model is d log S(t) =

σ(t)dW (t), where W (t) is a Brownian motion. Constant volatility is set at σ(t) = σ = 30%. Stochastic

volatility assumes the affine model of Heston (1993), specified as dσ2(t) = κ
`
ς̄ − σ2(t)

´
dt + ωσ(t)dB(t),

where B(t) denotes a Brownian motion. The parameter values used for stochastic volatility simulation are

the estimates from equity markets reported in the empirical study by Li, Wells, and Yu (2008, Table 4):

κ = 0.0162, ς̄ = 0.8465, and ω = 0.1170. The significance level α̃ is 5%. A fixed time horizon of one trading

day (T = 1
252

) is considered. The parameter values used for the truncated power variation estimation are

g = 1.2 and eω = 0.47. The number of simulations used in this study is 1,000.

jumps. For instance, if one selects Lévy jumps that are greater in size than a certain level, those

selected become Poisson jumps. However, in order to ensure the presence of big jumps in addition

to small jumps and to control their magnitudes, we separately add Poisson jumps and choose

their relative sizes in this simulation. Hence, we simulate returns from

d log S(t) = σ(t)dW (t) + θL,SdL(t) + θL,BdP (t), (16)

where dP (t) denotes a Poisson jump arrival indicator and the other notations such as σ(t), W (t),

and L(t) are the same as before. We denote θL,S as the small-jump size parameter and θL,B as

the big-jump size parameter. Table 3 shows the power of the test, which is the big-jump detection

rate. We set θL,S = 0.3 for small jumps and θL,B = 1 and 3 for big jumps. As can be seen in the

table, the test has a decent detection power for big jumps. The table also shows that the levels

of θL,B or stochastic volatility do not make much difference in detection power. We also find that

better performance can be achieved as we increase the frequency of observations.
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In addition to the parameter settings reported in Table 3, we perform the same analysis with

other values of jump size parameters such as θL,S = 1 for small jumps and θL,B = 3 and 10 for

big jumps. We find the power of our test to be 1.000 in all frequencies with both constant and

stochastic volatility.

Next we examine the performance of the small-jump test defined in Section 3. We again use

the detection rates as the performance measure. This time, assuming that the big-jump test has

been separately applied and we have already detected big jumps, we simulate returns from the

following Lévy jump-diffusion model:

d log S(t) = σ(t)dW (t) + θLdL(t), (17)

where all the notations σ(t), W (t), and L(t) are the same as before. θL denotes the jump size

parameter. We choose to consider small jumps whose θL are 0.15 and 0.3, which make jump sizes

relatively small compared to diffusion.

Overall results presented in Table 4 indicate that high-frequency observations help to improve

detection power for small jumps. We also find that our test works well under stochastic volatility.

Considering the relative sizes of jumps compared to volatility levels, it is important to note that

we achieve good detection power for such small Lévy jumps.

We perform the same analysis with the jump size parameter θL = 1 and 2. We find the power

of our test to be 1.000 in all frequencies with both constant and stochastic volatility.

4.3. Comparison with other Lévy jump test

A test comparable to ours (denoted as LH hereafter) is the test by Aı̈t-Sahalia and Jacod (2009b)

(denoted as AJ hereafter) in that both tests employ nonparametric approaches for the presence of

25



Table 3: Probability of detecting big Lévy jumps†

Constant volatility Stochastic volatility

Frequency Big jump size θL,B with θL,S = 0.3

∆t θL,B = 1 θL,B = 3 θL,B = 1 θL,B = 3

1 minute 0.820 0.910 0.846 0.883

15 seconds 0.972 0.986 0.991 0.996

5 seconds 1.000 1.000 1.000 1.000
† This table presents the performance of the big-jump detection rule

discussed in Section 3.2. The table contains the power of the test,

that is, the probability of detecting big Lévy jumps within a fixed

time interval of one trading day (T = 1
252

). The encompassing model

is d log S(t) = σ(t)dW (t) + θL,SdL(t) + θL,BdP (t), where L(t) is an

α-stable Lévy jump from Sα(−1, 1, 0) with α = 1.7629, P (t) is a Pois-

son jump, and W (t) is a Brownian motion. θL,S denotes the small

jump size parameter and θL,B denotes the big jump size parameter.

Although the Lévy jump dL(t) itself includes Poisson jumps, in order

to ensure the presence of big jumps in addition to small jumps and to

control their magnitudes, we add Poisson jumps and specify the size

with θL,B . Constant volatility is set at σ(t) = σ = 30%. Stochas-

tic volatility assumes the affine model of Heston (1993), specified as

dσ2(t) = κ
`
ς̄ − σ2(t)

´
dt+ωσ(t)dB(t), where B(t) denotes a Brownian

motion. The parameter values used for stochastic volatility simulation

are the estimates from equity markets reported in the empirical study

by Li, Wells, and Yu (2008, Table 4): κ = 0.0162, ς̄ = 0.8465, and

ω = 0.1170. The parameter values used for truncated power variation

estimation are g = 1.2 and eω = 0.47. The significance level α̃ is 5%.

The number of simulations used in this study is 1,000.
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Table 4: Probability of detecting small Lévy jumps†

Constant volatility Stochastic volatility

Small jump size θL

Frequency ∆t θL = 0.15 θL = 0.3 θL = 0.15 θL = 0.3

1 minute 0.460 0.886 0.510 0.890

15 seconds 0.886 1.000 0.943 1.000

5 seconds 1.000 1.000 1.000 1.000
† This table presents the performance of the small-jump test discussed in Sec-

tion 3.3. The table contains the power of the test, that is, the probability of

detecting α-stable Lévy jumps within a fixed time interval of one trading day

(T = 1
252

). The encompassing model is d log S(t) = σ(t)dW (t) + θLdL(t),

where L(t) is an α-stable Lévy jump from Sα(−1, 1, 0) with α = 1.7629

and W (t) is a Brownian motion. We choose θL at 0.15 and 0.3, to consider

small jumps compared to diffusion, assuming that big jumps have been de-

tected by our big-jump test. Constant volatility is set at σ(t) = σ = 30%.

Stochastic volatility assumes the affine model of Heston (1993), specified as

dσ2(t) = κ
`
ς̄ − σ2(t)

´
dt + ωσ(t)dB(t), where B(t) denotes a Brownian mo-

tion. The parameter values used for stochastic volatility simulation are the

estimates from equity markets reported in the empirical study by Li, Wells,

and Yu (2008, Table 4): κ = 0.0162, ς̄ = 0.8465, and ω = 0.1170. The pa-

rameter values used for estimating the truncated power variation are g = 1.2

and eω = 0.47. The significance level α̃ is 5%. The number of simulations

used in this study is 1,000.
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Lévy jumps. Unlike parametric inference methods, as discussed in the introduction, nonparamet-

ric tests are not sensitive to model specification; hence, robust conclusions can be reached by both

tests. Both tests (AJ and LH) are based on asymptotic theories and suggest using high-frequency

returns for their application. The main difference between the AJ test and ours (LH) is that the

AJ test depends on the intuition that the limits of integrated volatility estimators, calculated by

the sums of absolute p̃-th powers with p̃ greater than two, do not depend on observation frequen-

cies when there are jumps. It compares the estimators based on data sampled at two different

frequencies, say, one-minute and two-minute returns, over an interval. By contrast, our approach

computes a test statistic for each individual observation in the interval and detects whether the

empirical distribution of the test statistic is compatible with the theoretical distribution of the

test statistic under the no-jump model. This allows us to detect not only the presence of jumps

but also their location. Therefore, our test can distinguish the arrival times, directions (signs),

and sizes of Lévy jumps within the interval. Both tests rely on asymptotic results by letting the

distance between two successive observations approach zero. Neither test takes account of market

microstructure noise in its construction.

Here, we compare the finite-sample performance of two test statistics in detecting jumps and

provide simulation evidence that our test outperforms the AJ test. For a proper comparison, we

choose the AJ test developed under the null hypothesis of no jump because our test is developed

under the null hypothesis of no jump. This allows us to set the same significance level in both

tests. As a performance measure, we use the power of these two tests, that is, the rate of rejecting

the null hypothesis of no jump when there are jumps. Aı̈t-Sahalia and Jacod (2009b) report the

level (size) of their test but not the power of the test, which we present. For the AJ test, given a

significance level, we specifically apply the rejection rule suggested in Theorem 6 of their paper,
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which is based on the asymptotic null distribution of their test statistic. Using this theory-based

rejection rule, we first confirm the size of this test and then, apply it in our study on its power.

We choose the parameter values of p = 4 and k = 2 as in their simulation study. Since both tests

require truncating returns, we apply the same level of threshold (g = 1.2 and ω̃ = 0.47) by using

the same truncation parameters on both tests.

Aı̈t-Sahalia and Jacod (2009b) also have their other test developed under the null hypothesis

that jumps are present and report the level (size) of their other test. We cannot compare the

performance of our test to this other test because its null hypothesis is different from ours, and

setting the same significance levels for tests developed under different null hypotheses does not

make sense for comparison.

We apply the two tests on the same series generated by the following stochastic differential

equations,

d log S(t) = σdW (t) + θLdL(t).

For L(t), we consider both a Cauchy process and an α-stable Lévy jump process. Other

notations are as before. In particular, θL denotes the jump size parameter. We set θL at 1, 2, 3,

and 4 with a constant volatility of σ = 30% to show how their performance varies depending on

jump sizes. The number of simulations in this study is 1,000. We consider several frequencies of

observations such as one minute, 15 seconds, 5 seconds, and 1 second during 6.5 hours over one

trading day (T = 1
252). A significance level of 5% is used for both tests. The performance for both

tests improves as we increase the frequency of observations. Table 5 presents the two rejection

rates next to each other for direct comparison. The results of this comparison study show that

our test outperforms the AJ test developed under the null hypothesis of no jump in all frequencies

and jump sizes.
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Table 5: Comparison of the power of the proposed test

(LH) and the Aı̈t-Sahalia and Jacod (2009b) test (AJ)†

Detecting Cauchy jumps

Frequency Jump size θL

∆t 1 2 3 4

AJ LH AJ LH AJ LH AJ LH

1 minute 0.31 0.54 0.38 0.74 0.41 0.88 0.45 0.93

15 seconds 0.58 0.76 0.75 0.93 0.82 0.97 0.91 0.99

5 seconds 0.73 0.88 0.90 0.98 0.96 0.99 0.98 1.00

1 second 0.87 0.97 0.99 1.00 1.00 1.00 1.00 1.00

Detecting α-stable jumps

Frequency Jump size θL

∆t 1 2 3 4

AJ LH AJ LH AJ LH AJ LH

1 minute 0.77 0.99 0.78 1.00 0.79 1.00 0.79 1.00

15 seconds 0.96 1.00 0.97 1.00 0.97 1.00 0.98 1.00

5 seconds 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00

1 second 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
† This table reports the performance of our test and the AJ test, measured by the

power of tests, that is, the rate of rejecting the null hypothesis of no Lévy jumps

when there are jumps. Return series are simulated from the mixture of Lévy

jumps with Brownian motion as d log S(t) = σdW (t) + θLdL(t), where L(t) is

either a Cauchy process or an α-stable process from Sα(−1, 1, 0) with α = 1.7629,

and W (t) is a Brownian motion process. Constant volatility is set at σ = 30%.

We assume 6.5 trading hours per day and the time horizon is set at one trading

day (T = 1
252

). The jump size parameter θL is selected at 1, 2, 3, and 4. The

parameter values used for estimating truncated power variations are g = 1.2 and

eω = 0.47. The significance level to detect jump arrivals is 5%. The rates reported

in AJ columns are based on their standardized test according to the asymptotic

theory described in Aı̈t-Sahalia and Jacod (2009b,Theorem 6). The number of

simulations used in this study is 1,000.
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5. Empirical analysis for U.S. equity markets

In this section, we apply our new Lévy jump tests to investigate the presence and dynamics of

Lévy jumps in the U.S. overall market and individual equity markets. In particular, we study

how our new tests detect big and small jump arrivals.

5.1. Data

We collect transaction data for U.S. market indices and individual stocks from the Trade and

Quote (TAQ) database. We choose two main indices, the S&P 500 and the Dow Jones Industrial

Average, as well as individual equities included in the Dow Jones Industrial Average. We choose

transactions on the New York Stock Exchange (NYSE). Our sample period is five years from

January 1, 2002 to December 31, 2006. Over this five year time horizon, we calculate five minute

returns by taking the first differences of log transaction prices. We select five minutes as our

frequency of observations because given the time horizon of five years, it is frequent enough for

our jump tests to achieve sufficient power and, as noted in Andersen, Bollerslev, Diebold, and

Ebens (2001), market microstructure effects such as bid-ask bounce can be mitigated with data

of five-minute frequency or less.

We also pre-process the raw data to avoid unnecessary data-recording errors. We exclude all

recording errors such as zero prices. As noted in Aı̈t-Sahalia, Mykland, and Zhang (2006), bounce-

back data errors are caused by extreme round trips of recorded prices to unreasonably different

price levels. If returns are immediately followed by a return with opposite signs and similar

magnitudes and if their magnitudes are significantly different from those without the bounce-

back effect, they are removed. For transactions that happen at the same time, we take the first

transaction price recorded in the database. Because trading on the New York Stock Exchange is
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interrupted overnight (after 4:00 p.m. and before 9:30 a.m. on next days), one might see that

instantaneous volatility is not observable for the overnight return and we should omit those data

that are affected by the interruption. However, our initial analysis shows that overnight returns

do not necessarily include jumps. In other words, there are many days with overnight returns

that do not include any unusual jumps in high-frequency data, although if they appear, it is more

likely to be in the morning. Hence, in this paper, we take a different view of overnight returns. We

consider that those overnight returns with jumps should also be regarded as part of our evidence.

Instead of removing all of them, we keep them and include them in our tests. If jumps in those

returns are detected by our tests, we count them as jumps in this study.

5.2. Empirical results

For all the return series, we apply both our big-jump test and our small-jump test, forming

a combination of the QQ test with the belief measure as discussed in Section 3. We set the

threshold level for the truncated power variation as in our simulation in Section 4. Once we apply

these two methods, we mark those individual returns detected in graphs. Finally, we calculate

the daily time-varying intensities of big and small jumps. All the tests are based on a significance

level of 5%. We explain in this subsection the detailed graphical results for the S&P 500 index

return series and Citigroup stock return series. Complete graphical results for all other indices

and stocks over the entire sample period are available upon request. Overall numerical results for

all series are reported in Table 6.

Before we show the test results, we first show what can be realized if there is no Lévy jump in

the market. Fig. 1 illustrates the results of our QQ test and big-jump test on simulated returns

under the no-jump model. The solid line shows the QQ-plot of test statistics applied to simulated

five minute returns. The 95% confidence bands for the QQ test is plotted with dot-dashed lines.
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We add in the same panel the thresholds for the big-jump test with dotted lines. As can be seen,

if there is no jump, the solid line never leaves the envelope with dot-dashed lines.

Next we present the results for the S&P 500 index. Fig. 2 illustrates the results of our QQ

test and our big-jump test. As in Fig. 1, we show the 95% confidence bands for the QQ test in

dot-dashed lines and the thresholds for the big-jump test in dotted lines, along with the QQ-plot

(in the solid line) of realized test statistics. As long as our test statistic is outside of the dot-

dashed envelope, we can conclude that there is significant evidence of Lévy jumps. Notice that

the solid QQ-plot not only leaves the dot-dashed envelope but also goes beyond the dotted line.

This evidence of Lévy jumps is consistent with Li, Wells, and Yu (2008), who investigate their

presence using a Baysian Markov Chain Monte Carlo method for the U.S. market index.

If evidence of Lévy jumps is found by our QQ test, we find small-jump arrivals with a reason-

ably high belief. To do this, we calculate the belief measure and present them in Fig. 3 (upper

panel). We can flag small jumps based on this belief measure. We use 95% as a cutoff for the

belief measure and detect small-jump arrivals. We also study the timing and intensities of small

and big jumps for a better understanding of their dynamics. In the graph of the S&P 500 return

series in Fig. 3 (lower panel), we put dots in circles for the returns flagged by our big-jump test.

All the jumps detected by our belief measure are shown in the same panel with circles.

We count the number of jumps detected by our tests over the entire sample period and report

them in both numbers and percentages in Table 6. We find evidence of both small and big jumps.

Table 6 also presents 95% confidence bands used for both the big-jump and small-jump tests. To

understand their dynamics, we also plot the time-varying daily intensities of jumps over time and

show the graphs in the upper and lower panels, respectively, of Fig. 4. The graph of big jumps is

the smoothed daily count of big jumps detected by the big-jump test. The graph of small jumps is
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the smoothed daily expected number of jumps, where the expected number of jumps is obtained

by adding up the values of our belief measure b(ti) for all returns within a day. Understanding

the different dynamics of big and small Lévy jumps can be useful to incorporate in developing

models for different types of risks in the index. We also find similar evidence for the Dow Jones

Industrial Average.

We apply the same analysis on Citigroup stock returns and present the graphical results in

Figs. 5, 6, and 7. Fig. 5 shows that the solid line for the QQ-plot of the test statistic applied

to Citigroup stock returns leaves the 95% confidence bands from the envelope (dot-dashed lines)

as well as the thresholds of our big-jump test (dotted lines). Hence, we conclude that there is

evidence of Lévy jumps in these stock returns, too. We also calculate the belief measure. We

plot the measure in the upper panel of Fig. 6 and present in the lower panel the detected jumps

marked with dots and circles as we did for the S&P 500 index. This can become auxiliary data for

setting up new dynamic models for small and big jumps in Citigroup equity prices. As mentioned

earlier, we apply the same analysis and find qualitatively identical results for other individual

stocks listed in Table 6. Their numerical results can be found therein.

There is an interesting systematic departure from the null distribution as evidenced by bumps

in the belief measures at zero in Figs. 3 and 6 (upper panels). In both figures, there is an

overabundance of test statistics around zero. We theorize that this is due to the tick size or to

other microstructure noise remaining in five-minute returns. We stress that this departure from

the diffusion model would not be detectable by competing tests, showing the versatility of our

test. This also presents the possibility that our newly developed belief measure could be used in

distinguishing jumps in equilibrium prices and market microstructure noise.
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5.3. Comparison of evidence in S&P index and individual stock prices

We can compare the results for the S&P 500 index and Citigroup equity by looking at Figs 2

and 5. We see more deviation of the solid line from the dot-dashed lines signifying more Lévy

jumps in Citigroup stock prices than in the S&P 500 index. This evidence also shows up in the

comparison of return series figures with dots and circles in the lower panels of Figs 3 and 6. We

have many more dots and circles for Citigroup equity prices than for the S&P 500 index. We can

also compare Figs 4 and 7 and again see that the individual stock has more big and small jumps

than the index.

We report in Table 6 the numbers of jumps detected in all series under consideration and

the 95% confidence bands for both the small-jump and big-jump tests. From this table, we can

explicitly compare the numbers of jumps for the indices and stocks. On average, we find that

0.50% and 0.32% of returns from the overall market indices during the sample period are detected

by our small-jump and big-jump tests, respectively. Among individual stock returns, on average,

we find that 0.78% and 0.41% are detected by our small-jump and big-jump tests, respectively.

All the evidence for small jumps are based on a belief measure greater than 95%, which means

that 5% of rejected returns could be due to random fluctuations of diffusion. We also repeat the

same analysis using the significance level α̃ = 1%, and the outcomes are similar to our earlier

results with the level α̃ = 5%. This significant evidence of small jumps suggests that stochastic

volatility and Poisson-type jump models are not sufficient to capture the return dynamics in either

U.S. market indices or individual equity prices. We expect the impact of small jumps to be a bit

stronger in individual equities because more Lévy jumps are detected.
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6. Concluding remarks

Given the extensive use of Lévy jump processes for continuous-time asset-pricing models, we

introduce empirical methods to detect the presence and dynamics of small jumps as well as big

jumps in financial markets, using discrete observations. In particular, we propose an indirect

way to detect arrivals of small jumps using a combination of the QQ test and a belief measure,

allowing us to control for false detection. We also suggest how to detect big jumps and the

decomposition of jump risks. We apply our new tests on U.S. stock indices and individual stocks

and find evidence that both types of return series would require incorporating Lévy-type jumps

in pricing models in order to better capture their return dynamics. Indices and individual stocks

tend to have different dynamics of Lévy jumps, leading us to conclude that incorporating separate

models for the two different types of jump risk would improve financial management.

We suggest using high-frequency observations for our tests. With tick-by-tick transaction

prices, the presence of microstructure noise could influence econometric inference on the under-

lying equilibrium prices. Depending on the structure and magnitude of noise, our test will be

affected differently. However, if we choose the frequency of observations appropriately with the

help of our belief measure, we do not expect the impact of noise to be serious in detecting jumps

under our consideration. Though detailed analysis on the presence of noise is an interesting

question, it is beyond the scope of the current article. We are currently investigating this issue.

Finally, we consider only U.S. large individual firms and overall market indices in our empir-

ical study. It would be interesting to discover evidence of different types of risks embedded in

stocks with different characteristics or other types of securities and investigate their implications

for relevant financial applications.
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Table 6: Lévy jump intensity and 95% confidence bands for both tests†

Name # of tests # of big jumps # of small jumps big jump band small jump band

U.S. market indices

Dow Jones 89,446 285 (0.32%) 460 (0.51%) (-5.0139, 5.0139) (-4.1973, 4.0963)

S&P 500 90,047 286 (0.32%) 442 (0.49%) (-5.0238, 5.0238) (-4.2088, 4.1666)

Average 89,747 285 (0.32%) 451 (0.50%) (-5.0188, 5.0188) (-4.2030, 4.1315)

U.S. individual equities

Alcoa 96,145 433 (0.45%) 842 (0.88%) (-5.0362, 5.0362) (-3.9772, 3.9575)

American International Group 96,361 387 (0.40%) 713 (0.74%) (-5.0366, 5.0366) (-4.0368, 4.0386)

American Express 96,423 366 (0.38%) 733 (0.76%) (-5.0367, 5.0367) (-4.0142, 3.9745)

Boeing 96,399 351 (0.36%) 763 (0.79%) (-5.0367, 5.0367) (-3.9932, 3.9173)

Citigroup 96,554 392 (0.40%) 719 (0.75%) (-5.0370, 5.0370) (-4.0188, 3.9782)

Caterpillar 96,099 354 (0.37%) 581 (0.60%) (-5.0361, 5.0361) (-4.2929, 4.2198)

DuPont 96,341 346 (0.36%) 692 (0.72%) (-5.0366, 5.0366) (-3.8974, 4.0340)

Walt Disney 96,546 399 (0.41%) 768 (0.80%) (-5.0369, 5.0369) (-3.9752, 3.9974)

General Electric 96,510 366 (0.38%) 610 (0.63%) (-5.0369, 5.0369) (-4.0773, 4.1338)

General Motors 96,321 535 (0.56%) 1039 (1.08%) (-5.0365, 5.0365) (-3.9175, 3.9173)

Home Depot 96,397 403 (0.42%) 823 (0.85%) (-5.0367, 5.0367) (-3.9329, 3.9910)

Honeywell 96,138 442 (0.46%) 858 (0.89%) (-5.0362, 5.0362) (-3.9541, 4.0135)

International Business Machine 96,707 387 (0.40%) 677 (0.70%) (-5.0373, 5.0373) (-4.0955, 4.0565)

Johnson & Johnson 96,420 394 (0.41%) 693 (0.71%) (-5.0367, 5.0367) (-4.0982, 4.0794)

J.P.Morgan Chase 96,463 409 (0.42%) 827 (0.86%) (-5.0368, 5.0368) (-3.9179, 3.9937)

Coca Cola 96,219 291 (0.30%) 614 (0.63%) (-5.0363, 5.0363) (-3.9937, 4.0345)

McDonald’s 96,327 436 (0.45%) 859 (0.89%) (-5.0366, 5.0366) (-3.9666, 3.9585)

3M 96,139 318 (0.33%) 610 (0.63%) (-5.0362, 5.0362) (-4.0714, 4.0385)

Altria Group 96,326 462 (0.48%) 819 (0.85%) (-5.0365, 5.0365) (-4.0391, 4.0157)

Merck 96,283 476 (0.49%) 887 (0.92%) (-5.0365, 5.0365) (-3.9303, 3.9581)

Pfizer 96,452 446 (0.46%) 785 (0.81%) (-5.0368, 5.0368) (-4.0116, 3.9958)

Procter & Gamble 96,437 302 (0.31%) 578 (0.60%) (-5.0367, 5.0367) (-4.0174, 4.0922)

AT&T 94,862 490 (0.52%) 906 (0.96%) (-5.0336, 5.0336) (-3.9126, 3.9944)

United Technologies 96,153 347 (0.36%) 656 (0.68%) (-5.0362, 5.0362) (-4.0850, 4.0379)

Verizon 96,313 429 (0.45%) 853 (0.89%) (-5.0365, 5.0365) (-3.9167, 3.9780)

Walmart 96,380 320 (0.33%) 614 (0.64%) (-5.0367, 5.0367) (-4.0705, 4.0152)

Exxon Mobil 94,561 323 (0.34%) 579 (0.61%) (-5.0330, 5.0330) (-4.0640, 4.0559)

Average 96,232 398 (0.41%) 756 (0.78%) (-5.0364, 5.0364) (-4.0057, 4.0162)

† This table reports detailed results of our big-jump and small-jump tests, using five-minute log returns of U.S. market indices

and individual equities over a five-year horizon from January 1, 2002 to December 31, 2006. Individual equities presented

are component stocks of the Dow Jones Industrial Average, traded on the New York Stock Exchange. The component

stocks traded on Nasdaq are excluded to maintain consistent trading mechanisms across different securities for comparison

purposes. Hewlett-Packard is also excluded because of a significant missing data problem in the TAQ database. # of tests

denotes the total number of observed test statistics during our sample period. # of big and small jumps denotes the numbers

of jumps detected by our big-jump and small-jump tests, respectively. The big-jump and small-jump intensities (the rates

of occurrence) are calculated based on the numbers of jumps detected by our big-jump and small-jump tests relative to the

total numbers of tests and presented in parentheses next to the actual counts. Big-jump and small-jump bands are observed

detection regions according to our big-jump detection rule and small-jump test using the belief measure as discussed in

Section 3. We detect small (big) jumps if the observed test statistic at testing time ti is outside of the small (big) jump

band shown in this table.
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Figure 1: Graphical results of our jump tests in the absence of jumps
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This graph illustrates the results of our QQ test and big-jump test on simulated returns under the no-jump model to compare

empirical results using real data. The solid line shows the QQ-plot of realized test statistics, applied to simulated five-minute

returns. The 95% confidence band for our QQ test is plotted with dot-dashed lines. The thresholds for our big-jump test are

drawn with dotted lines. The time series of five-minute log returns are calculated by taking the first differences of log prices

simulated from the diffusion process. The significance levels are 5%.
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Figure 2: Detecting Lévy jumps in the S&P 500 index
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This graph illustrates the results of our QQ test and big-jump test on S&P 500 index returns during January 1, 2002 to

December 31, 2006. The solid line shows the QQ-plot of realized test statistics applied to the time series of five-minute

returns. Returns are calculated by the first differences of log S&P 500 index prices transacted on the New York Stock

Exchange (NYSE). The 95% confidence band for our QQ test is plotted with dot-dashed lines. The thresholds of our big-

jump test are drawn with dotted lines. The significance levels are 5%. Similar graphs applied to the Dow Jones Industrial

Average are available upon request.
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Figure 3: Likelihood of Lévy jumps and detected jumps in the S&P 500 index
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The graph in the upper panel shows the same dot-dashed lines for our QQ test and dotted lines for the thresholds of our

big-jump test as shown in Fig. 2, and the likelihood of small jumps in solid lines. The graph in the lower panel shows

the return series with dots in circles for jumps detected by our big-jump test and with circles for jumps detected by our

small-jump test. Small jumps are after taking into account false jump detection by the likelihood of small jumps shown in

the upper panel. Both significance levels and the false detection rate are 5%. Both panels are generated using the time series

of five-minute log returns, calculated by taking the first differences of log S&P 500 index prices transacted on the New York

Stock Exchange (NYSE) during January 1, 2002 to December 31, 2006. Similar graphs applied to the Dow Jones Industrial

Average are available upon request.
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Figure 4: Realized time-varying intensities of Lévy jumps in the S&P 500
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The graphs in the upper and lower panel show the jump intensities based on the number of jumps detected by our big-jump

and small-jump tests. Small jumps are after discounting the jump counts by the value of their likelihood. The significance

levels are 5%. Both figures are generated using the time series of five-minute log returns, calculated by taking the first

differences of log S&P 500 index prices transacted on the New York Stock Exchange (NYSE) during January 1, 2002 to

December 31, 2006. Similar graphs applied to the Dow Jones Industrial Average are available upon request.
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Figure 5: Detecting Lévy jumps in Citigroup
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This graph illustrates the results of our QQ test and big-jump test on Citigroup returns during January 1, 2002 to December

31, 2006. The solid line shows the QQ-plot of realized test statistics applied to a time series of five-minute returns. Returns

are calculated by the first differences of log Citigroup stock prices transacted on the New York Stock Exchange (NYSE). The

95% confidence band for our QQ test is plotted with dot-dashed lines. The thresholds of our big-jump test are drawn with

dotted lines. The significance levels are 5%. Similar graphs applied to all the other individual stocks listed in Table 6 are

available upon request.
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Figure 6: Likelihood of Lévy jumps and detected jumps in Citigroup
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The graph in the upper panel shows the same dot-dashed lines for our QQ test and dotted lines for the thresholds of our

big-jump test as shown in Fig. 5 and the likelihood of small jumps in solid lines. The graph in the lower panel shows the return

series with dots in circles for jumps detected by our big-jump test and with circles for jumps detected by our small-jump test.

Small jumps are after taking into account false jump detection by the likelihood of small jumps shown in the upper panel.

Both significance levels and false detection rate are 5%. Both figures are generated using the time series of five-minute log

returns, calculated by taking the first differences of log Citigroup stock prices transacted on the New York Stock Exchange

(NYSE) during January 1, 2002 to December 31, 2006. Similar graphs applied to all the other individual stocks listed in

Table 6 are available upon request.
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Figure 7: Realized time-varying intensities of Lévy jumps in Citigroup

0 200 400 600 800 1000 1200 1400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Estimated big−jump intensity for Citigroup

Number of days from Jan 1, 2002 to Dec 31, 2006

Nu
mb

er 
of 

jum
ps

 pe
r tr

ad
ing

 da
y

0 200 400 600 800 1000 1200 1400
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Estimated small−jump intensity for Citigroup

Number of days from Jan 1, 2002 to Dec 31, 2006

Nu
mb

er 
of 

jum
ps

 pe
r tr

ad
ing

 da
y

The graphs in the upper and lower panel show the jump intensities based on the number of jumps detected by our big-jump

and small-jump tests, respectively. Small jumps are after discounting the jump counts by the value of their likelihood. The

significance levels are 5%. Both figures are generated using the time series of five-minute log returns, calculated by taking the

first differences of log Citigroup stock prices transacted on the New York Stock Exchange (NYSE) during January 1, 2002 to

December 31, 2006. Similar graphs applied to all the other stocks listed in Table 6 are available upon request.
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Appendix

A.1. Assumption 1

Mathematically, Assumption 1 can be written as follows. For any ε > 0,

A1.1 sup
i

sup
ti≤u≤ti+1

|µ(u)− µ(ti)| = Op(∆t
1
2
−ε) (18)

A1.2 sup
i

sup
ti≤u≤ti+1

| log σ(u)− log σ(ti)| = Op(∆t
1
2
−ε). (19)

We use Op notation in this study to mean that, for random vectors {Xn} and a nonnegative

random variable {dn}, Xn = Op(dn), if there exists a finite constant Mδ such that P (|Xn| >

Mδdn) < δ for each δ > 0, eventually.

A.2. Proof of Proposition 1

Conditional on τ > r, we define the process S̄(t) = S(t + τ − r). Since τ is independent of S,

this process still satisfies (2), assumptions A1.1 and A1.2, and S̄(r) = S(τ). Thus, without loss

of generality, we can assume that τ is a non-random time.

Since there are only a finite number of jumps of absolute size greater than one on finite

intervals, such jumps will not eventually be included in the computation of σ̂(t) almost surely.

Thus, we can assume without loss of generality that the Lévy measure of the process L(t) is

concentrated on [−1, 1]. Denote the log return process of the standard model (1) by dX(t) =

µ(t)dt + σ(t)dW (t) and denote the increments of this process as bi = X(ti) − X(ti−1), and the

increments of the Lévy process as ci = L(ti) − L(ti−1). The sequence a = b + c then forms the

increments of the logarithm of the full Lévy model (2) used in the calculation of σ̂(τ) in (4).

In the case of truncated power variation, we note that for d = g∆teω with 0 < ω̃ < 1/2,

K∑

i=1

(bi + ci)2I{|bi|≤d/2}I{|ci|≤d/2} ≤
K∑

i=1

a2
i I{|ai|≤d} ≤

K∑

i=1

(
bi + ciI{|ci|≤2d}

)2
. (20)
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It is well known that for a model without jump, both

∆t−1

K

K∑

i=1

b2
i

P−→ σ2(τ) and
∆t−1

K

K∑

i=1

b2
i I{|bi|≤d/2}

P−→ σ2(τ)

estimate the instantaneous volatility consistently as ∆t → 0. To prove our theorem, we will need

to show that the remaining terms go to zero in probability. First note that by a simple direct

calculation (see also Jacod, 2005),

∆t−1

K

K∑

i=1

c2
i I{|ci|≤2d}

P−→ 0.

Then, by the Cauchy-Schwartz inequality, we have

K∑

i=1

biciI{|ci|≤2d} ≤
(

K∑

i=1

b2
i

K∑

i=1

c2
i I{|ci|≤2d}

)1/2

and hence, the upper bound in (20) converges to σ2(τ) in probability.

We now turn our attention to the lower bound in (20). Note that

|
K∑

i=1

b2
i I{|bi|≤d/2}I{|ci|≤d/2} −

K∑

i=1

b2
i I{|bi|≤d/2}| ≤

(
K∑

i=1

b4
i I{|bi|≤d/2}

K∑

i=1

(1− I{|ci|≤d/2})2
)1/2

.

However,

E
1
K

K∑

i=1

(1− I{|ci|≤d/2})2 = P (|ci| > d/2) → 0,

as ∆t → 0 (see, e.g., Barndorff-Nielsen, Shephard, and Winkel, 2006). Thus, since the truncated

power variation of the model without jumps is known to be bounded in probability, we have

∆t−1

K

K∑

i=1

b2
i I{|bi|≤d/2}I{|ci|≤d/2}

P−→ σ2(τ).

All the remaining terms in the lower bound of (20) are bounded by their corresponding counter-

parts in the upper bound and therefore, they all go to zero. This concludes the proof.
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A.3. Proof of Theorem 1

For simplicity of notation, let t+(t) = min{ti ≥ t} and t−(t) = max{ti < t}. Note that t+(t) −

t−(t) = ∆t, t+(t) → t, and t−(t) → t as ∆t → 0. Since L(t) does not contain any Gaussian

component and ∆L(τ) = 0 almost surely, a simple calculation using characteristic functions

shows L(τ+(t))−L(τ−(t)) P−→ 0 as ∆t → 0 (see, e.g., Bertoin, 1998, Proposition I.2). Therefore,

log S(t+(t))/S(t−(t))
∆t1/2

D−→ N(0, σ2(t)).

The first statement of the theorem now follows by Slutsky’s lemma and Proposition 1.

For a fixed h > 0, there is a decomposition L(t) = L1(t) + L2(t) such that ∆L1 ≤ h, L2 is a

compound Poisson process with jumps of size greater than h and with L1 and L2 independent.

The jump times of L2 coincide with τk,h by definition. Since L1 and L2 are independent, we have

L1(t+(τk,h)) − L1(t−(τk,h)) P−→ 0 and P (log S(t+(τk,h))/S(t−(τk,h)) ≥ h) → 1 for all k. Since

L2 has only a finite number of jumps on (0, T ) almost surely, we see that the definition of the

estimator of volatility implies σ̂(τh,k) → σ(τh,k) and (8) follows by Slutsky’s lemma and simple

algebra.
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