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Abstract
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ity is attributable to positive jump and jump-robust variances. The negative
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1. Introduction

Cryptocurrencies have recently emerged as a nonnegligible asset class. The aggregate market

capitalization of cryptocurrencies exceeded two trillion U.S. dollars (USDs) in 2021.1 This

remarkable growth has been accompanied by unusually large price fluctuations with extreme

returns.2 Our analyses corroborate these findings, revealing that the annualized weekly

volatility of cryptocurrencies frequently exceeds 100%. High volatility with extreme returns

can arise because the equilibrium prices of cryptocurrencies reflect sunspots that drive high

extrinsic volatility even when fundamentals are constant (Biais et al., 2023). This high

volatility raises a fundamental question in finance: how do realized volatilities (or variances)

play a role in cryptocurrency return prediction in the cross-section? Addressing this critical

question is the primary objective of our study because it has substantial implications for risk

assessments, investment strategies, and portfolio management in cryptocurrencies.

In light of the exceptionally wide ranges and heavy tails of cryptocurrency return distri-

butions, we take a comprehensive approach by considering not only the traditional realized

variance measure but also decomposed partial variances that separately account for normal

and nonnormal returns, including signed jumps. This decomposition is motivated because

cryptocurrency market participants may perceive and evaluate uncertainty differently when

they face extreme positive or negative returns (Barberis and Xiong, 2009, 2012). This consid-

eration is particularly relevant for cryptocurrency markets because of the lack of observable

1Market capitalization data are from www.coinmarketcap.com. Participation in cryptocurrency markets
has become widespread. Surveys indicate that 22% of institutional investors already own cryptocurrencies
and that 11% of the American population holds Bitcoin (see https://cointelegraph.com/news/hbus-survey-
almost-12-of-us-cryptocurrency-holders-are-long-term-investors).

2Liu and Tsyvinski (2021) and Scaillet et al. (2020) document high kurtosis (e.g., 15 to 100 for daily
data) and frequent jumps. In fact, Bitcoin prices collapsed, with a nearly 50% drop on March 12, 2020. On
April 30, 2020, Bitcoin prices increased by 18% within 24 hours.
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fundamental information and the active participation of retail investors compared to estab-

lished financial markets. Furthermore, the directions of jumps have differential impacts on

risk and returns (Patton and Sheppard, 2015).3 By employing the decomposed variances,

our analysis elucidates how realized partial variances affect cryptocurrency return prediction.

Notably, in cryptocurrency markets, variances are dramatically time-varying. Figure 1

illustrates this feature by depicting the 10th, 50th, and 90th percentiles for the weekly real-

ized variances of individual cryptocurrencies and Bitcoin. For example, the weekly variances

of Bitcoin range from 0.01 to 0.08 in 2017, with three discernible peaks in 2018. This

evidence emphasizes the critical importance of frequently updating cryptocurrency return

variances when identifying the effect of variances on future returns. Therefore, we use intra-

day cryptocurrency data to estimate variances. Leveraging recent advances in the financial

econometrics literature, we sum the squared high-frequency returns from the different seg-

ments of individual cryptocurrencies’ return distributions. Our study extends the literature

by addressing such distinctive characteristics of individual cryptocurrency markets and un-

covering novel evidence regarding the return predictability of decomposed variances.4

We document that cryptocurrencies with high realized variances tend to provide substan-

tially lower excess returns in subsequent weeks than those with low variances. In Figure 2,

cryptocurrencies with the lowest (highest) variances have an average excess return of 0.1%

(-3.6%) in subsequent weeks. The weekly return differential amounts to 3.7% (193% per

3Using parts of the return distribution for measuring risks is similar to using the lower partial moment
measures of Price et al. (1982), although our decomposition is driven by extreme returns.

4Borri and Santucci de Magistris (2022) use high-frequency data on Bitcoin to find that jumps account for
a large portion of the daily variation in Bitcoin returns and adopt a parametric estimation method to show
that the conditional skewness and kurtosis of Bitcoin returns are priced using daily data. Our study differs
in that we rely on high-frequency data of 100 cryptocurrencies to decompose individual cryptocurrencies’
realized variances over time and discover the significant return predictability of decomposed variances.
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annum), which is significant at the 1% level.5 This figure provides equally weighted (EW)

average returns, but value-weighted (VW) averages yield consistent results.

To investigate the underlying drivers of this negative return predictability, we decompose

the total variance into variances associated with positive jumps, negative jumps, and non-

jump returns. By using detected jumps and separated variances, we discover that positive

jump and jump-robust variances are significantly and negatively related to excess returns in

subsequent weeks. The return prediction of (total) variances stems from return components

that are not associated with negative jumps. These variance effects are robust to model

specifications, the common risk factors of Liu et al. (2022), business cycles, and overall

market conditions and are not totally attributable to the skewness effect.

The negative relationship between variances and future returns contradicts the tradi-

tional risk and return tradeoffs, which typically imply a positive relation in classical asset

pricing theories with rational investors. Instead, our finding is in line with behavioral finance

studies on speculative retail trading because more individual and retail investors participate

in cryptocurrency markets than in other well-established financial markets (Kogan et al.,

2023).6 The substantial participation of retail investors allows asset prices to deviate from

fundamental values (De Long et al., 1990) and can increase volatility, as shown by Xiong and

Yu (2011), Foucault et al. (2011), and Pedersen (2022). Retail investors prefer holding and

5This significant spread remains intact after controlling for the cryptocurrency pricing factors of Liu
et al. (2022). Our variance estimation differs from that of Liu et al. (2022), who employ daily returns.
Estimation using lower-frequency return data requires an assumption that volatility is stable over a longer
estimation horizon. These authors indicate that return volatility is an insignificant pricing factor (we obtain
the consistent results). Generally, the empirical relation between equity returns and volatility has not been
strong. However, Bollerslev et al. (2020) use high-frequency data and identify significant relations.

6According to the financial statements of Coinbase, a cryptocurrency exchange platform company,
95% of the total transaction revenues come from retail investors’ trading in 2020. Many news articles
also support this idea. In addition, see, e.g., https://www.wsj.com/articles/bitcoin-prices-pass-50-000-for-
first-time-since-may-11629729934 and https://www.bloomberg.com/news/articles/2021-12-21/crypto-funds-
explode-in-2021-led-by-proshares-bitcoin-strategy-etf-bito.
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trading highly volatile securities and are willing to undertake risk that may yield low returns

(Han and Kumar, 2013). In fact, the key drivers of high volatility and extreme positive

returns are the important lottery features favored by investors.

Specifically, cryptocurrencies with high total and positive jump variances tend to have

smaller sizes, lower prices, and wider bid-ask spreads than those with low variances. Such

cryptocurrencies have significantly larger trading volumes than those with low variances,

which suggests a significant disagreement about future prices of high-variance cryptocurren-

cies. The retail trading proportion (RTP) and positive investor sentiment tend to be greater

for high-variance cryptocurrencies than for low-variance cryptocurrencies. Furthermore, our

realized variance measures effectively forecast the lottery properties of individual cryptocur-

rencies, which makes our findings consistent with the cumulative prospect theory elaborated

by Barberis and Huang (2008).7 Considering Xiong and Yu (2011), we test whether our re-

sults arise because of short-selling constraints. However, we do not find supporting evidence.

Our paper contributes to the literature on the relation between volatility and future

returns. The literature indicates that the negative relationship between volatility and future

returns can result from the preference for lottery features and that many investors are not

fully diversified (e.g., Fama and MacBeth, 1973; Hou and Moskowitz, 2005; Ang et al., 2006;

Fu, 2009; Huang et al., 2010; and Hou and Loh, 2016). Specifically, our paper demonstrates

that the negative return predictability is associated with both jump-robust and positive

jump variances but not with negative jump variances in cryptocurrency markets. Unlike our

study, Kilic and Shaliastovich (2019) examine the role of implied and realized semivariances

7Investors who prefer lottery-like returns are willing to pay higher prices for assets with lottery features.
Positive jumps represent lottery-like returns in that they are characterized by extremely large payoffs and a
low probability. High volatility allows investors to anticipate a high probability of large returns.
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in aggregate stock and bond returns. In addition, this paper supports that our inference

methods can identify the nonlinear effect of unusually high uncertainty on returns.

Our paper extends the growing literature that examines cryptocurrencies as an asset

class.8 Liu et al. (2022) show that only the standard deviation of price volume predicts future

returns. Borri et al. (2022) find that volatility risk is positively priced, while Bianchi and

Babiak (2021) show that their realized or idiosyncratic volatility generates a significantly

negative return. More broadly, our study is related to studies that characterize return

distributions and factor structures in cryptocurrency markets. Our findings of high volatility

and large jumps echo those of Yermack (2015) and Scaillet et al. (2020), who study Bitcoin

returns. Jia et al. (2021) and Borri and Santucci de Magistris (2022) investigate the effects

of higher moments on cryptocurrency returns. Cong et al. (2022) provide a five-factor model

to consider additional value and network adoption premiums.9 Sockin and Xiong (2023)

present a model that supports the empirical results in the literature.

Our study builds on the literature on realized return moments and jump risk measures.

Andersen et al. (2001a) support the approach of estimating realized variances with intraday

data. Amaya et al. (2015) investigate the relation between firm-level realized return moments

and subsequent returns. Bollerslev et al. (2020) examine the stock return predictability of

realized jump variance components. Lee and Wang (2019) demonstrate the pricing of nega-

tive jumps in sovereign currency markets.10 Our study is the first to utilize cryptocurrency

8Our paper is broadly related to the literature on cryptocurrency markets, the economics of cryptocurren-
cies and blockchain technology, or valuation models for digital currencies. However, we focus on discovering
novel empirical evidence on risk and returns and discussing relevant pricing models.

9As additional references, Liu and Tsyvinski (2021) analyze the time-series features of return distributions
by using daily data on three cryptocurrencies. Shams (2020) studies return correlations. Borri (2019) uses
CoV ar to measure the conditional tail risk of four cryptocurrencies by employing daily data. Another strand
of studies provides evidence of manipulation or dispersion in cryptocurrency prices across exchanges (e.g.,
Griffin and Shams, 2020; Makarov and Schoar, 2020; Li et al., 2021; Borri and Shakhnov, 2022).

10Many studies document the important role of jumps in pricing equities, bonds, options, or sovereign
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markets as a unique laboratory, documenting cryptocurrencies’ special characteristics.

Finally, our work contributes to the behavioral finance literature on speculative trading in

financial markets. For cryptocurrency markets, characterized by the active participation of

retail investors, we show that investor sentiment is important and that investors’ lottery (or

gambling) preference exists in these highly uncertain markets. For other financial markets,

Baker and Wurgler (2006) show that highly volatile stocks are prone to fluctuations in

sentiment. Han and Kumar (2013) show low returns for volatile assets with lottery features

such as low prices, high variances, and positive skewness. Boyer et al. (2010) and Bali

et al. (2011) use expected idiosyncratic skewness and maximum returns and find that these

features are associated with low expected returns.

The remainder of this paper is organized as follows: Section 2 explains the variance

decomposition with signed jumps and the estimation approaches. Section 3 introduces the

high-frequency data used for this study and the estimation results. Section 4 investigates

how the decomposed variances predict future cryptocurrency returns. Section 5 discusses

potential explanations for our findings. Section 6 concludes the paper.

2. Inference methods

In this section, we describe our model of cryptocurrency price processes and explain our

inference methods for the total and decomposed variances of individual cryptocurrencies.

As cryptocurrency markets operate 24 hours a day in real time, we assume that cryptocur-

rency prices follow a continuous-time model. We employ a general asset pricing framework

currencies (e.g., Merton, 1976; Piazzesi, 2005; and Chernov et al., 2018.
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with diffusion and jump components to accommodate various forms of nonnormality, such

as unusual volatility and heavy tails, often observed in cryptocurrency return data. Specif-

ically, the i-th cryptocurrency price is set to follow a generic jump diffusion model that

accommodates the potential intraday volatility and jump patterns:

dci,t = µi,tdt+ σi,tdBi,t + Yi,tdJi,t, (1)

where dci,t is the instantaneous change in the natural logarithmic price ci,t(j) of the i-th

cryptocurrency at time t. The drift µi,t and diffusion σi,t are bounded processes, and Bi,t is

a standard Brownian motion. Yi,t and dJi,t are the jump size and arrival indicator, respec-

tively.11 We denote the intraday logarithmic return between discrete times t(j − 1) and t(j)

by ri,t(j) = ci,t(j) − ci,t(j−1) for cryptocurrency i.

We relate realized total variances and decomposed variances to returns in subsequent

weeks. Similar analyses can be performed at different frequencies and return horizons. The

total variance is defined as the sum of squared intraday returns in week w,

Total variance: TVi,w =
∑

t(j)∈Ww

r2i,t(j). (2)

Andersen et al. (2001b) indicate that as the sampling frequency goes to infinity, this realized

total variance converges to the quadratic variation composed of the integrated diffusive

11Our statistical inference is based on discrete samples over a time horizon of [0, T ]. We assume that there
are n discrete observations for each cryptocurrency over the time horizon. In particular, we observe the i-th
cryptocurrency price ci,t only at discrete times 0 ≤ t(0) < t(1) < ... < t(n) ≤ T , and for simplicity, we
assume that t(j + 1) − t(j) = ∆t for all js. The total number of weeks within [0, T ] is set to be w̃, so that

[0, T ] =
⋃w̃

w=1Ww with the weekly time interval Ww for week w.
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variance and jump components as follows:

TVi,w =
∑

t(j)∈Ww

r2i,t(j) −→
∫
s∈Ww

σ2
i,sds+

∑
τ∈Ww

Y 2
i,τ . (3)

This total variance measure does not differentiate signed jump variances from diffusive

variances. In this paper, we recommend decomposing realized total variances into jump

robust and signed jump variances by using jump detection tests that identify the arrival

times of individual cryptocurrency jumps. In particular, we estimate the diffusive variance

term
∫
s∈Ww

σ2
i,sds by using the jump-robust variance estimator, while the jump variance term∑

τ∈Ww
Y 2
i,τ (which can be decomposed into

∑
τ∈Ww,Yi,τ>0 Y

2
i,τ and

∑
τ∈Ww,Yi,τ<0 Y

2
i,τ ) by using

our signed jump variance estimators JV
(+)
i,w and JV

(−)
i,w as follows:

Jump robust variance: JRVi,w =
∑

t(j)∈Ww

r2i,t(j)I(|Ti,t(j)| < ζ),

Positive jump variance: JV
(+)
i,w =

∑
t(j)∈Ww

r2i,t(j)I(|Ti,t(j)| > ζ)× I(ri,t(j) > 0),

Negative jump variance: JV
(−)
i,w =

∑
t(j)∈Ww

r2i,t(j)I(|Ti,t(j)| > ζ)× I(ri,t(j) < 0),

Jump variance: JVi,w = JV
(+)
i,w + JV

(−)
i,w =

∑
t(j)∈Ww

r2i,t(j)I(|Ti,t(j)| > ζ), (4)

where I(a) is an indicator function that equals one if a is true. ζ is the rejection criterion for

the Lee and Mykland (2008) jump test statistic Ti,t(j) for cryptocurrency i at time t(j).12 We

12We use the standard Gumbel distribution for the rejection criteria, following Lee and Mykland (2008).
As cryptocurrency markets may exhibit time-of-day patterns in volatility, following Lee and Wang (2020),
we control for the intraday volatility pattern to mitigate concerns regarding the misclassification of jumps.
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use all intraday return data within a time horizon to approximate the true latent diffusive

and jump variances in that period.13 Our jump variance measures are separated according

to the signs of jumps to identify signed jumps’ exclusive impact on future returns.14

We apply the Lee and Mykland (2008) method or its variant because it is important for us

to distinguish individual jumps with different signs within a testing interval. The basic intu-

ition behind this method is to discriminate between diffusive and jump returns by comparing

instantaneous returns with the local volatility estimated over the preestimation window of

size K. If absolute returns are significantly larger than the estimated local volatility, they

are identified as jumps.15 To support our application for the purpose of this study, we assess

the finite sample performance of our jump variance estimators with simulation studies.16 We

find that the estimation error of the proposed jump variance estimators decreases as we use

higher-frequency data. Moreover, jumps in volatility do not significantly affect the power to

detect extremely large jumps, which is our main interest for this study.

3. Data

We obtain intraday data from Kaiko, which has collected high-quality tick-by-tick quotes

and prices from liquid cryptocurrency exchanges since 2014.17 Many studies (e.g., Makarov

13Because our main analyses are performed at the weekly level, our notation is written with a weekly
interval. However, the notation can be generalized to other fixed time intervals.

14In this study, we do not separate systematic jumps from idiosyncratic jumps.
15Most other jump tests depend on the integrated quantities over an interval during which the jump

presence can be recognized but do not indicate the direction, arrival time, or size of each jump or the
number of jumps within the interval. The design of the tests proposed by Bollerslev et al. (2007) is similar to
ours except for the rejection criteria. Therefore, the results of the two tests are not expected to differ if the
rejection regions are chosen similarly. See Barndorff-Nielsen and Shephard (2006), Bollerslev et al. (2007),
Jiang and Oomen (2008), and Aı̈t-Sahalia and Jacod (2009) for alternative approaches.

16The details of the simulation studies are reported in Online Appendix A. A theoretical justification for
our variance decomposition based on asymptotic properties is available upon request.

17Trading volumes are also provided by Kaiko. See Makarov and Schoar (2020) for the details of Kaiko.
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and Schoar, 2020; Li et al., 2021) also use Kaiko for cryptocurrency prices.

To construct an unbiased sample with the largest cross-section, we examine all cryp-

tocurrencies that have intraday data longer than nine months and are traded on Coinbase,

which is ranked as the top exchange in Kaiko’s overall evaluation (e.g., data quality and

popularity).18 The minimum sample period of nine months is chosen because our inference

requires a sufficient estimation horizon for detecting jumps and computing decomposed real-

ized variances. Kaiko’s order book data provide intraday bid and ask quotes (and volumes)

for 198 cryptocurrencies. We exclude stable coins (e.g., Tether). Adopting simple coin se-

lection criteria, our sample comprises 100 cryptocurrencies with various characteristics and

includes a delisted coin.19 Accordingly, survivorship bias is not critical. We also confirm

the minimal effect of delisting on our results by following Liu et al. (2022). Our results are

confirmed with data from other cryptocurrency exchanges, such as Bitfinex and Bittrex.

The sample period is from October 2015 to June 2023 and includes the failure of large

financial institutions such as the FTX or Terra-Luna crash and the crypto winter.20 From

these data, the first return appears in October 2015 for BTC, which is the starting time

of our sample period.21 These cryptocurrencies account for approximately 80% of the total

market capitalization of all cryptocurrencies as of 2023.22

18As also indicated by Makarov and Schoar (2020), many nonintegrated cryptocurrency exchanges exist in
parallel across countries. The majority of these exchanges function like regulated equity markets, but they
lack provisions to ensure the best price for trading. Because this unusual feature increases price deviations
across cryptocurrency exchanges, the use of cryptocurrency price data from multiple exchanges can result in
contamination with frictions from different exchanges and thus is undesirable for our study.

19The list of cryptocurrencies is provided in Online Appendix B.
20The crypto winter refers to a bear market with significant declines in prices and market capitalization.

Our results continue to hold with data from shorter sample periods and different exchanges.
21The order book data start in April 2015, but observations in the early period are extremely sparse.
22We provide details about our sample construction and filtering procedure in Online Appendix C.
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3.1. Intraday cryptocurrency returns and jumps

We choose the 15-minute interval to compute intraday returns because of the tradeoff be-

tween the following considerations. First, the accuracy of the price data can suffer from

measurement errors that result from microstructure noise in data sampled too frequently.

Second, a lower sampling frequency can hinder the consistent estimation of realized mo-

ments.23 For each interval, we select the latest observation to construct evenly spaced data.

We remove quotes that do not change for three consecutive intervals because these quotes

might be inactive. We perform this filtering process for bid and ask quotes and construct

mid quotes (i.e., mid= 0.5× (bid+ask)).24 Using the mid quotes, we compute log returns.

Table 1 summarizes the 15-minute returns of the 25 selected sample cryptocurrencies.25

Bitcoin has the largest number of observations and the longest sample period. Notably,

cryptocurrency markets are extremely volatile. Standard deviations range from 0.27% to

1.25%, which implies annualized standard deviations greater than 100%. Interestingly, the

skewness ranges from -1.34 to 1.71. The dispersed skewness implies that some cryptocurren-

cies provide lottery-like returns, while others have crash-like returns. The kurtosis is higher

than nine, indicating that it is important to analyze the tails of the return distributions.

We implement the variance decomposition and estimate weekly realized measures using

detected jumps.26 Table 2 summarizes the jump detection results for the 25 selected sample

23Like sovereign currency markets, cryptocurrency markets allow 24-hour trading and have real-time trad-
ing features. Therefore, we follow Lee and Wang (2019, 2020) in terms of the sampling frequency.

24We follow the realized variance literature by using mid quotes as the measures of true prices. Mid quotes
are generally less noisy than transaction prices because they do not suffer from bid-ask bounce effects. See
Bandi and Russell (2006) for details. Following Andersen et al. (2001a) and Lee (2012), who suggest the
problems of bid-ask bounce effects, we filter out observations when large returns are canceled out. We confirm
the reliability of our data by comparing our mid-quotes with daily transaction data on coinmarketcap.com.

25The summary statistics for the 100 cryptocurrencies are provided in Online Appendix B.
26The Lee and Mykland jump test requires setting a window size K to estimate the instantaneous volatility

using the first K−1. The window size K must be large enough to ensure that the jump effect disappears for a
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cryptocurrencies.27 The average jump frequency is 0.55%, which intuitively implies that

approximately one jump occurs every two days. The jump frequency in cryptocurrency

markets is similar to that in typical sovereign currency markets. Interestingly, the sizes of

cryptocurrency jumps are relatively large. The average of the medians of positive (negative)

jump sizes is 3.2% (-2.9%), which is more than 10 times larger than that in sovereign currency

markets.28 This comparison highlights the importance of jumps in cryptocurrency returns.

This large jump size is consistent with the findings of Liu and Tsyvinski (2021), who show

that cryptocurrencies tend to have extreme returns in their distributions.

The frequencies and sizes of jumps are considerably dispersed across individual cryp-

tocurrencies. The jump frequencies range from 0.22% (SUSHI) to 2.06% (BTRST) of the

available return observations, and the median positive jump sizes range from 0.1% (RAI)

to 4.9% (RGT). The ranges of the jump sizes are wider than those of sovereign currency

markets. These findings indicate that cross-sectional differences in jump measures could

play a role in cryptocurrency pricing. Overall, the numbers of positive and negative jumps

are similar, and the distributions of positive and negative jump sizes are not discernibly

different. These symmetries are also observed in other financial markets.

3.2. Weekly realized variances

We use the intraday return and detected jump data summarized in the previous subsection to

compute the weekly decomposed variances and return measures. To construct weekly spans,

consistent volatility estimation. In this study, we use K = 156 for our 15-minute frequency, as recommended
by Lee and Mykland (2008). We identify jumps with a 5% significance level. Our results are robust when
we use a 1% significance level and filter out small jumps by using a 10% false discovery rate.

27The jump detection results for the 100 cryptocurrencies are provided in Online Appendix B.
28Lee and Wang (2019) report that the median positive (negative) jump size ranges from ±0.1% to ±0.3%,

with an average of ±0.24%.
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we follow the approach of Liu et al. (2022). Our choice of weekly analyses is also consistent

with that of Amaya et al. (2015) and Bollerslev et al. (2020), who aggregate intraday data

to construct realized risk measures over longer horizons and examine how these measures

are related to subsequent equity returns in the cross-section.

We describe our weekly realized variances, which are estimated as explained in Section 2.

Panel A of Table 3 shows the summary statistics of the weekly realized variances. The mean

weekly realized total variance is 0.146, which corresponds to an annualized standard deviation

of 138%. To put this into perspective, this annualized realized volatility can be compared

with that of other financial asset markets. For example, the annualized realized volatility

in sovereign currency markets ranges from 5.3% to 19.2%, with a mean of 12.25% (Lee and

Wang, 2019). In addition, regarding U.S. stock markets, Andersen et al. (2001a) indicate

that the mean of the annualized standard deviation is 28%, and Amaya et al. (2015) show

that the median of annualized realized volatility is approximately 45%. This comparison

suggests unusually high volatility in cryptocurrency markets.

Because cryptocurrency returns have substantial jump components, the mean of the

jump-robust variances drops to 0.127. The mean jump variances appear relatively small

because jumps are rare events; thus, jump variances often take a value of zero. However, when

jumps occur, the jump variances dominantly contribute to the total variances. Symmetric

jumps allow positive and negative jump variances to have similar distributions.

Panel B of Table 3 shows the correlations of these weekly realized variances. The jump-

robust variances are highly correlated with the total variances because jump returns are

rare. The correlation coefficient of these two variances is 0.98, which implies that they carry

similar information. The positive and negative jump variances are positively correlated, with
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a correlation coefficient of 0.64, indicating that positive jumps are occasionally accompanied

by negative jumps. Because jumps tend to be detected during volatile periods, total variances

are positively correlated with jump variances (i.e., the correlation coefficients are greater than

0.33). However, the relatively low correlation coefficients imply that signed jump variances

capture information that differs from that captured by total and jump robust variances.

To examine how our weekly realized variance measures change over time and to assess

whether there are cross-sectional differences in these measures, we plot the 10th, 50th, and

90th percentiles of the weekly realized variances. We provide the time-series plots for the

total, positive jump, negative jump, and jump-robust variances in Panels A, B, C, and D of

Figure 3, respectively. The percentiles for realized decomposed variances are clearly time-

varying within relatively short horizons compared to those observable in stock markets. The

total variances peak in 2018 because of turbulence in cryptocurrency markets.29 The positive

and negative jump variances are relatively high in 2018 and after 2021, and multiple peaks

with large cross-sectional variations occurred in 2016, as bullish cryptocurrency markets

attracted major market players, setting the stage for their growth.30 Bullish and bearish

markets consecutively occurred in the 2020s, which widened the cross-sectional variations

in jump variances. Because the total and jump-robust variances are estimated with almost

the same observations except for rare jumps, they yield similar patterns (Panels A and

D). Overall, all variance measures dynamically change over time with discernible cross-

sectional dispersion. Therefore, it is important to frequently update these risk measures for

cryptocurrency markets to capture the time-varying features and pricing effects.

29After substantial attention was given to cryptocurrency markets in 2017, there were hacking events
(Corbet et al., 2020), and many governments (e.g., Korea, Japan, and the U.S.) announced the strengthening
of regulations on cryptocurrency markets.

30For example, Standard Charted initiated investments in cryptocurrency markets.
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4. Return prediction with variances

In this section, we investigate cryptocurrency return predictability, showing significantly neg-

ative spreads in returns to variance-sorted portfolios. Sorting analyses enable us to assess

return predictability with selected variance measures and show the economic magnitudes

of predictable returns. Then, we further support our findings by using cross-sectional pre-

dictability regressions that simultaneously control for multiple variance measures.

4.1. Sorting analyses

In this subsection, we compare the returns of total variance-sorted portfolios. At the end of

every week (week w), we sort individual cryptocurrencies on total variances and construct

tercile portfolios. The total variance measures are estimated with intraday observations from

week w−3 to w. Then, we compute equal-weighted (EW) and value-weighted (VW) returns

in the subsequent week for each portfolio. We consider a long-short portfolio that purchases

cryptocurrencies in the top tercile and sells cryptocurrencies in the bottom tercile.31

In Panel A of Table 4, we report the weekly returns of the total variance-sorted portfolios.

The rows labeled “Excess return” show the clear negative relation between the realized total

variances and the average subsequent returns. The portfolios with the highest total variances

(High portfolios) provide significantly lower excess returns in subsequent weeks than those

with the lowest total variances (Low portfolios). Specifically, the differentials between the

weekly excess returns of High and Low portfolios are -3.7% and -3.0% for EW and VW

portfolios, respectively, which are statistically significant at the 1% level. Unlike excess

31Although we use long-short portfolios for comparison purposes, there is a potential concern that some
cryptocurrencies are difficult to short sell. Therefore, following Liu et al. (2022), we assume that Bitcoin is
shorted and confirm that our results are robust.
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returns, the standard deviations of High and Low portfolios are similar.

To investigate whether these return differences result from exposure to systematic risk

factors, we compute alphas by regressing weekly excess returns on the three factors of Liu

et al. (2022). The differentials between the alphas of High and Low portfolios remain negative

and significant for both the EW and VW portfolios. Therefore, the negative relation between

the total variances and subsequent returns cannot be explained solely by systematic factors.

Our results are partly inconsistent with those of Liu et al. (2022) in that these au-

thors show insignificantly negative return differentials in subsequent weeks for volatility-

sorted portfolios. These different results arise because these authors use daily data for

variance/volatility estimations, while we employ intraday data. In fact, using the daily data

of our sample coins, we obtain consistent results. By using higher-frequency observations for

variance estimations, we can measure variances more precisely and better capture variances’

time-varying features because the variance estimates are more frequently updated with recent

data over shorter horizons and are less vulnerable to the smoothing effect of older data. As

noted in Section 3, variances in cryptocurrency markets are clearly time-varying, and their

cross-sectional variations change dramatically over short horizons. We incorporate this fact

with high-frequency data and clearly demonstrate the significant role of realized variances

in cryptocurrency return prediction, which has not been studied in the literature.

To examine which types of variances contribute to the return prediction, we perform

additional sorting analyses by using positive jump, negative jump, and jump-robust vari-

ances. This variance decomposition with signed jump and non-jump returns differentiates

the impact of extreme variations from nonnormal return distributions.32 The sorting analysis

32A recent study by Bollerslev et al. (2021) and the references therein propose a similar variance decom-
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results using these decomposed variances are reported in Panels B, C, and D of Table 4.

In Panel B, High positive jump variance portfolios have 3.6% (2.3%) lower excess returns

for EW (VW) portfolios than do Low positive jump variance portfolios. The alphas for High

positive jump variance portfolios are also significantly lower than those for Low positive

jump variance portfolios. These results indicate that positive jump variances significantly

contribute to the negative return predictability of total variances.

Panel C shows the results for negative jump variance-sorted portfolios, which are similar

to those for positive jump variance-sorted portfolios in Panel B. The similarity results from

the positive correlation of positive and negative jump variances. Our regression analyses in

the next subsection clarify the exclusive effects of these variables with simultaneous controls.

Finally, Panel D presents the results for jump-robust variance-sorted portfolios. The overall

results in Panel D are similar to those presented in Panel A because the total and jump

robust variances are similar, except for occasional jump arrivals.

4.2. Cross-sectional regression analyses

The sorting analyses could ignore the potential confounding effects of various independent

variables. In this subsection, we address this concern by conducting a series of standard

Fama and MacBeth (FMB, 1973) cross-sectional regressions with individual cryptocurren-

cies. These analyses expand our findings and simultaneously control for multiple factors and

cryptocurrency characteristics. Our choice of regression models is motivated by Amaya et al.

(2015), who use FMB regressions to identify the relationship between weekly realized central

moments and stock returns in subsequent weeks. Our regression models are also consistent

position with partial (co)variance measures, which enables the multiple decompositions of realized variances.
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with those of Bali et al. (2011), who adopt FMB regressions to investigate the relationship

between maximum daily returns and subsequent monthly returns.33

We first test the effect of the total variance measure on subsequent returns. Specifically,

for each week in our sample, we run the following cross-sectional regression:

rxi,w+1 = γ0,w + γ1,wTV
(+)
i,w + c′wXi,w + ϵi,w+1, (5)

where rxi,w+1 is the excess return of cryptocurrency i over week w + 1. The first variable

of interest TV
(+)
i,w and the vector of control variables Xi,w are measured at the end of week

w. After estimating the slope coefficients for each week in the sample, we take the time-

series averages of the coefficient estimates to check whether the independent variables can

significantly predict excess returns in the subsequent week.

Table 5 shows the related estimates and corresponding t-statistics.34 As shown in col-

umn (I), the coefficients of realized total variances are significantly negative. To compare

our intraday data-based measure with the daily return-based volatility measure of Liu et al.

(2022), we use the standard deviations of daily returns as independent variables in col-

umn (II). Consistent with the result of Liu et al. (2022), the volatilities estimated with

daily data provide insignificantly negative coefficients. This comparison elucidates the im-

portance of using intraday data for capturing volatility effects in cryptocurrency markets.

Column (III) shows that the negative relationship between total variances and future returns

is robust to cryptocurrency-specific control variables such as lagged returns and cryptocur-

33Bali et al. (2011) employ daily data, while we use intraday data, similar to Amaya et al. (2015). The
regression frequency of Bali et al. (2011) is monthly, while ours is weekly, as is that of Amaya et al. (2015).

34I.e., we report γ̂l = (1/w̃)
∑w̃

w=1 ˆγl,w with l = 0, 1 or l = 0, 1, 2, 3, where w̃ is the total number of
weeks. We use the Newey-West standard errors. Our results are robust to lag length selection.
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rency sizes. These controls are employed because of the momentum and size factors of Liu

et al. (2022).35

Then, we use multiple independent variables to test the effect of the decomposed variances

on subsequent returns. Specifically, we conduct the following cross-sectional regression:

rxi,w+1 = γ0,w + γ1,wJV
(+)
i,w + γ2,wJV

(−)
i,w + γ3,wJRVi,w + c′wXi,w + ϵi,w+1, (6)

where JV
(+)
i,w , JV

(−)
i,w , and JRVi,w are the positive jump, negative jump, and jump robust

variances, respectively, as defined in Section 2. These decomposed variances are estimated

with one month of observations. We conduct weekly cross-sectional regressions and then

report the time series means of the coefficient estimates and t-statistics.

From column (IV) of Table 5, we show the results using decomposed variances as indepen-

dent variables to identify which variance component significantly contributes to the negative

predictability of the realized total variance. To represent the role of jumps without consider-

ing signs, we decompose total variances into jump and jump-robust variances. Column (IV)

shows that the coefficient of jump variances is -0.669 and that of jump-robust variances is

-0.152. Both coefficients are significant at the 1% level. Column (V) indicates that the

negative relation of jump variances to subsequent returns mainly results from positive jump

variance effects. In particular, positive jump variances continue to have significantly negative

coefficients, while negative jump variances have positive coefficients. The negative return

prediction of positive jump and jump-robust variances is maintained after controlling for

35Our results indicate that the lagged return effects differ across return horizons or sample periods. For
example, columns (III) and (IV) of Table 6 show that one-month and one-quarter lagged returns are signif-
icant, while one-week lagged returns are insignificant in Table 7, which also shows that the lagged return
effects are sensitive to sample periods.
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lagged returns and market capitalization, as shown in column (VI). These results imply that

cryptocurrencies with higher variances tend to provide lower returns in subsequent periods

and that this predictive relationship is amplified if positive jump variances are high.

From these analyses, we propose two key takeaways. First, it is important to account for

the unique characteristics of cryptocurrency markets with unusually high volatility. Our re-

alized variance measures capture short-term volatility dynamics and accommodate frequent

updates with high-frequency data, which allows for the identification of unique variance ef-

fects. Another important and interesting point is that the negative return prediction results

from return distributions beyond the left tail. This relationship could contrast with the

classical risk and return trade-off, which is typically represented by the positive relation be-

tween risk measures (e.g., variances) and returns. In the next section, we explore the possible

connection of our findings with previous studies that present this negative relationship.

4.3. Robustness tests

In this subsection, we address the concern that the return predictability of positive jump

and jump-robust variances is attributable to our selection of dependent variables or omitted

variables in the regressions. We also investigate how our results are affected by aggregate

cryptocurrency uncertainty, average liquidity in cryptocurrency markets, and business cycles.

We prove that our results are robust to model specifications and market conditions.

First, we test whether our results are sensitive to the choice of subsequent return horizons

for dependent variables. We consider the two alternatives of two-week and one-month excess

returns as dependent variables by replacing rxi,w+1 with rxi,w+1:w+2 or rxi,w+1:w+4 in Equa-
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tion (6), where rxi,w+1:w+k represents the excess returns of cryptocurrency i from weeks w+1

to w + k. Columns (I) and (II) of Table 6 present the results of applying Equation (6) with

the replaced dependent variables. We continue to find that positive jump and jump-robust

variances yield negative coefficients, which are significant at the 1% level.36

In the second set of robustness checks, we consider additional control variables of lagged

returns with alternative horizons while keeping the same dependent variables of subsequent-

week returns as in our main regression specification. This set of robustness tests is motivated

by Jegadeesh (1990), Lehmann (1990), and Jegadeesh and Titman (1993), who document

short-term return reversals at weekly and monthly horizons and return momentum at 6-

month to 12-month horizons in stock markets. Given our relatively short sample period, we

use lagged one-month and one-quarter returns, instead of lagged one-week returns, as control

variables. We report the results in columns (III) and (IV) of Table 6. These alternative con-

trols are intended to capture momentum or reversal effects that may exist in cryptocurrency

markets. We conclude that our main findings remain consistent.

Because (jump) variances can be high when maximum returns are high, one might raise

the question of whether our findings are related to maximum return effects. To distinguish

our findings from the maximum return effects, we control for the maximum 15-minute returns

in week w and maximum daily returns in the previous month. As columns (V) and (VI) of

Table 6 indicate, neither the 15-minute nor one-day maximum return weakens our results.

This result suggests that our decomposed variance measures capture the aspects of historical

return variations that are different from one extreme realized return.37

36We perform additional tests with other horizons and find consistent results.
37Univariate regression with one-day maximum returns yields a significantly negative coefficient, which is

consistent with the results of Bali et al. (2011). By adding positive jump variances, we find that the effect
of the maximum returns becomes weaker than that of the univariate regression result.
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We also investigate whether our results are robust to changes in aggregate cryptocurrency

market uncertainty, average liquidity in cryptocurrency markets, and business cycles. We

compute weekly cryptocurrency market volatility by following the approach of Menkhoff

et al. (2012) that is used for foreign currency markets. For average illiquidity, we adopt an

approach similar to that of Chordia et al. (2001) by taking the average of the illiquidity

measures of Amihud (2002) across cryptocurrencies. Using the medians of these measures,

we construct high- and low-volatility or illiquidity subsamples. To consider business cycles,

we separate our sample into two subsamples, the latter of which starts in August 2021 (i.e.,

the subsample for the former period includes recession periods). We choose this separation

because the National Bureau of Economic Research (NBER) indicates that the peak during

our sample period occurs in February 2020 and because the two subsamples can be of similar

sizes. Then, we apply the FMB regressions of Equation (6) to each subsample.

Table 7 shows the results. In the columns denoted Market volatility, the variance effects

of this paper are significant for both the high- and low-volatility subsamples. As the columns

under Market illiquidity indicate, the return predictability of positive variances is robust,

while that of jump-robust variances is significant only for the period with high levels of market

illiquidity. This result implies that the effect of variances from extreme price movements (i.e.,

positive jumps) can be dominant in less liquid markets. The last two columns for business

cycles indicate that our findings are robust regardless of the business cycle or subsample

period. Overall, we confirm that our results are robust to sample selection and market

conditions such as market volatility and illiquidity.
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4.4. Comparison with the realized skewness effect

The variance effects in this paper might be linked to the skewness effect, which also implies a

negative relationship between skewness and subsequent returns (Amaya et al., 2015). Borri

and Santucci de Magistris (2022) and Jia et al. (2021) document the effects of coskewenss

and realized skewness on the cross-section of cryptocurrency returns, respectively. To clarify

how the variance effect in this paper is related to the skewness effect, we compare these

two effects. We first check with our data that the skewness effect exists in cryptocurrency

markets. Then, we compare our decomposed variance effects with the skewness effect.38

Following Amaya et al. (2015), we use lagged skewness as the main explanatory variable

and volatility and kurtosis as control variables. We run the following FMB regression:

rxi,w+1 = λ0,w + λ1,wLSkewi,w + λ2,wV oli,w + λ3,wKurti,w + c′wXi,w + εi,w+1, (7)

where LSkewi,w, V oli,w, andKurti,w are the weekly realized skewness, volatility, and kurtosis

of returns, respectively.39

We report the results in Table 8. In column (I), we run a univariate regression that uses

only realized skewness and show that cryptocurrencies with high realized skewness tend to

have low excess returns in subsequent weeks, which is consistent with the findings of Amaya

et al. (2015). We include volatility and kurtosis in column (II) and add lagged returns

and market capitalization in column (III). We continue to find that high realized skewness

significantly predicts low future returns. As column (IV) shows, this negative relationship

38In Online Appendix D, we also use alternative jump variance measures instead of skewness.
39We use jump-robust volatilities instead of jump-robust variances to be consistent with the FMB re-

gression specification of Amaya et al. (2015). When we use variances or jump-robust variances instead of
volatilities or jump-robust volatilities, we find essentially the same results.
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is robust to the additional controls of jump-robust volatility and kurtosis. Therefore, the

skewness effect appears to exist in cryptocurrency markets, as it does in U.S. equity markets.

We compare the return predictability of skewness with that of positive jump variances

by conducting horse-race regressions. As columns (V) and (VI) of Table 8 show, the coeffi-

cients of realized skewness become insignificant after controlling for the decomposed partial

variances. Jump-robust and positive jump variances continue to exhibit negative and statis-

tically significant coefficients, which indicates that the realized variances, including positive

jump variances, are more important return predictors in cryptocurrency markets than is

realized skewness. Interestingly, in highly uncertain cryptocurrency markets, high realized

variances are more important and preferred characteristics than high realized skewness as

long as they are not associated with extreme negative returns.

5. Exploration of mechanism for return predictability

The negative relation between variances and future cryptocurrency returns contrasts with the

positive risk-return tradeoffs that traditional finance theories suggest (e.g., Merton, 1987).

However, considering other asset markets that share similar characteristics and investors

with cryptocurrency markets, our findings can be explained by behavioral finance studies on

speculative retail trading with lottery preferences, among others. In this section, we explore

several economic mechanisms and discuss related studies in the literature to enhance our

understanding of the potential drivers of our findings.
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5.1. Retail investor trading

We consider speculative retail trading as one explanation because Kogan et al. (2023) show

that retail investors actively participate in cryptocurrency markets. According to Han and

Kumar (2013), retail investors are drawn toward stocks with speculative features (high

volatility and skewness) and are willing to undertake risk that may yield lower returns.

Barberis and Huang (2008) demonstrate investors’ preference for lottery-type returns. Bar-

beris and Xiong (2012) present a model in which investors’ risk-seeking behavior allows them

to prefer holding and trading highly volatile securities because of a greater chance of realizing

large gains. Our finding for cryptocurrency markets is closely related to these studies.

For formal tests, we gauge retail investors’ trading activities by modifying the RTP of

Han and Kumar (2013) to accommodate our weekly studies using cryptocurrency market

data. Specifically, we acknowledge a notably wide dispersion in the right-skewed distribution

of trading volumes. Given the unique nature of cryptocurrency markets, we establish the

90th percentile of volumes, which is 22 million dollars, across all sample cryptocurrencies as

the threshold for characterizing retail investors’ trading activities.40 We also use character-

istic variables such as market capitalization, prices, and percentage bid-ask spreads (BASs)

because Han and Kumar (2013) document that retail investors tend to favor stocks with

low market capitalization and low prices, which tend to be less liquid. Daily dollar trading

volumes are employed to check for trading activities associated with high variances.

We examine the cross-sectional differences in these characteristics of variance-sorted port-

folios. This approach is similar to that used in asset pricing studies that explain the negative

40We utilize dollar volumes at 5-minute intervals. Considering that approximately 90-95% of Coinbase’s
revenues originate from retail investors, we use the 90th percentile of 5-minute trading volumes. We perform
additional tests using the 50th and 95th percentiles as alternative thresholds and confirm the robustness.
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risk and return relationship in stock markets by considering firm or portfolio characteristics

(Fu, 2009; Brandt et al., 2010) and price pressures resulting from illiquidity (Avramov et al.,

2006). To be consistent with our sorting analyses in Section 4, at the end of week w, we sort

cryptocurrencies on one of decomposed variances and construct tercile portfolios. For each

portfolio, we compute the equally weighted averages of the characteristics in week w.41

Table 9 shows the time-series averages of the characteristic variables for the sorted portfo-

lios. Using the total variance-sorted portfolios, Panel A indicates that retail trading activities

are significantly greater for cryptocurrencies with high total variances than for those with

low total variances. Cryptocurrencies with high total variances tend to have smaller market

sizes, lower prices, and wider BASs than those with low total variances. These results are

consistent with those of Han and Kumar (2013). Interestingly, the largest trading volumes

of High total variance portfolios result mainly from High positive jump variance portfolios,

which show the most discernible differences in trading volumes (Panel B). High positive

jump variance portfolios also have higher RTPs than other portfolios, which implies that

cryptocurrencies with high positive jump variances attract retail transactions.

The literature documents similar return predictability of extreme volatility in other as-

set markets in which retail investors actively participate. Xiong and Yu (2011) study asset

price bubbles in China’s warrant markets with the limited presence of institutional investors,

finding that warrant bubbles are accompanied by trading frenzy and large volatility and high-

lighting the role of short-selling constraints and heterogeneous beliefs in explaining the price

bubbles (i.e., resale option theory). Our evidence of large trading volumes for High (positive

jump) variance portfolios indicates that cryptocurrency investors indeed tend to disagree

41We report the contemporaneous characteristics for simplicity; the predictive analyses are consistent.
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about the future prices of cryptocurrencies with high variances. However, our variance ef-

fects are unlikely to result from overpricing because of short-selling constraints. For our tests,

we measure short-selling availability by using the trading volumes of associated futures con-

tracts to initiate short-selling positions.42 As Table 9 shows, High variance portfolios tend

to exhibit larger futures trading volumes than Low variance portfolios, which implies that

cryptocurrencies with high variances tend to have fewer short-selling constraints.

5.2. Investor sentiment

Baker and Wurgler (2006) show that investor sentiment affects the cross-section of stock

returns. These authors find that when sentiment is high, “riskier” stocks with high volatility

tend to earn lower returns and confirm their prediction that highly volatile stocks are difficult

to value and to arbitrage, making these stocks especially prone to fluctuations in sentiment.

This effect is stronger for small, young, unprofitable, non-dividend-paying, extreme growth,

and distressed stocks. As Sockin and Xiong (2023) discuss the importance of sentiment, in

this subsection, we check whether our variance effects are related to sentiment.

Considering Vosoughi et al. (2018) and Duz Tan and Tas (2021), we use daily coin-level

sentiment measures from Twitter. We supplement our analyses with Telegram sentiment

measures.43 We employ the numbers and percentages of buy opinions and examine the re-

lationship between these sentiment and our realized variance measures in the cross-section.

As Table 9 shows, more positive sentiment is shared among investors for cryptocurrencies

with higher variances, particularly with positive jump variances. This finding implies greater

42We collected daily futures trading volume and the volume of futures buyers (those taking the counterparty
positions for sellers at prevailing market prices). These futures trading volume data are from binance.com.

43We collect daily investor sentiment data from intotheblock.com via cryptocompare.com, which provides
the number of buy, sell, and neutral opinions. We appreciate that the referee informs us of the data source.
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enthusiasm for cryptocurrencies with high positive jump variances and is consistent with the

active participation of retail investors in the previous subsection. In addition, our cryptocur-

rency market results support the model of Pedersen (2022), in which speculative investors

learn about market sentiment through social network platforms, further increasing prices.

5.3. Cryptocurrencies as lotteries

In this subsection, we support that the variance effect is consistent with cumulative prospect

theory based on investors’ preferences for lottery-like returns (e.g., Barberis and Huang,

2008). The key insight of this theory is that investors may favor assets with ex ante return

distributions with rare but extremely high returns and thus would be willing to pay higher

prices for such assets, which results in low subsequent returns. Accordingly, investors with

lottery preferences are attracted by and seek out cryptocurrencies with observable measures

that can help them predict lottery-type returns in the future. We hypothesize that positive

jump and jump-robust variances can predict future lottery returns because positive jumps

share common features with lottery-type returns (i.e., unusually large payoffs with low prob-

ability) and because high variances increase the likelihood of realizing lottery-type returns

as long as they are not associated with extremely negative jumps.

A widely accepted measure for lottery-like returns in the literature is skewness (e.g., Boyer

et al., 2010; Barberis et al., 2016). Therefore, to support our explanation, we test whether

our key variance measures (i.e., positive jump and jump-robust variances) can predict future

skewness. If this condition holds, these variance measures can be negatively related to

subsequent returns, as documented in this paper. We perform an empirical test similar to
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that of Boyer et al. (2010). Specifically, we estimate the following regression model:

Skewi,w+1 = ψ0 + ψ1LSkewi,w + ψ2JV
(+)
i,w + ψ3JV

(−)
i,w + ψ4JRVi,w + c′Xi,w + ei,w+1, (8)

where Skewi,w is the weekly realized skewness of cryptocurrency i in week w. LSkewi,w is

the realized skewness estimated from the previous month of observations (i.e., observations

from week w− 3 to week w). Xi,w is the vector of control variables, such as weekly kurtosis,

lagged excess returns, natural logarithmic market capitalization, and fixed effects.

Table 10 shows that lagged skewness does not provide significant coefficients in a robust

manner. This evidence is consistent with that of Boyer et al. (2010), who also show that

lagged realized skewness is not a strong predictor of future skewness for stocks. However, we

find that both positive jump and jump-robust variances significantly predict skewness in the

subsequent week. Column (III) shows that both positive jump and jump-robust variances

have significantly positive coefficients, which indicates that one can expect to observe greater

skewness for cryptocurrencies with higher positive jump and jump-robust variances realized

in the current period. In the remaining columns, we continue to find robust results. This

finding has important implications in practice because investors can expect future skewness

by using our decomposed realized variances, which can be estimated with available data.

5.4. Nondiversifiable factors

Our variance measures are computed without a specific assumption of a factor model and

thus include systematic and idiosyncratic components. In this subsection, we discuss whether

our finding of the negative return prediction of variances is related to nondiversifiable com-
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ponents. This discussion is related to that of Ang et al. (2009), who document that stocks

with recent past high idiosyncratic volatility have low future average returns and that not

easily diversifiable factors underlie their idiosyncratic volatility effects.

In Section 4, for our cryptocurrency return prediction, we examine the excess returns and

alphas of variance-sorted portfolios, accounting for the three factors of Liu et al. (2022). In

Table 4, both the returns and alphas of High total and positive jump variance portfolios are

significantly lower than those of Low portfolios. This implies that the negative relation be-

tween realized variances and subsequent returns cannot be fully explained by these existing

systematic factors. Given this context, we further investigate whether idiosyncratic compo-

nents mainly contribute to the return predictability of total and positive jump variances.

To this end, we compute the correlations among the three-factor alphas of cryptocurren-

cies constituting each variance-sorted portfolio.44 We find that High total and positive jump

variance portfolios exhibit average correlations of -0.3% and 0.1%, respectively. Moreover,

the correlations observed in High total and positive jump variance portfolios are significantly

lower than those in Low and Mid portfolios.45 The significantly low correlations of High total

and positive jump variance cryptocurrencies suggest that the returns of cryptocurrencies in

High portfolios tend to be more idiosyncratic than those in Low portfolios. Combined with

the significant alpha differentials reported in our sorting analyses, these findings reveal that

idiosyncratic components play important roles in our main finding of the total and positive

jump variance effects in cryptocurrency markets. These additional findings distinguish the

dynamics of cryptocurrency markets from those of equity markets

44We report the results obtained using the three-factor model alphas and confirm the consistency of our
conclusions using market model alphas.

45The differentials are statistically significant at the 1% level. For total (positive jump) variance-sorted
portfolios, the correlations of Low and Mid portfolios are 2% and 1% (2% and 0.4%), respectively.
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6. Conclusion

The remarkable growth in cryptocurrency markets has been accompanied by unusually large

price fluctuations, generating return distributions with exceptionally wide ranges and heavy

tails. We study how realized variances associated with different parts of return distributions

affect future cryptocurrency returns. Using high-frequency returns, we decompose total

variances into jump-robust, positive jump, and negative jump variances.

Our cross-sectional analyses reveal that cryptocurrencies with high total variances tend

to exhibit low excess returns in subsequent weeks. The weekly return spread between cryp-

tocurrencies in the lowest and highest tercile portfolios is 3.7% (193% per annum). This

negative return prediction is attributable to jump-robust and positive jump variances. In-

terestingly, this result is more pronounced for cryptocurrencies with smaller sizes, lower

prices, less liquidity, and more retail trading activities and is affected by investor sentiment.

Our results can be explained by the overpricing of such cryptocurrencies that results from

the risk-taking behavior of retail investors seeking highly volatile assets with the poten-

tial for large gains. In addition, our findings support the impact of retail investors’ active

participation on cryptocurrency markets.

Our paper contributes to the literature by adopting comprehensive intraday cryptocur-

rency data to precisely measure variances and identifying how decomposed partial variances

can be used to distinguish their differential impact on future returns. We show that it is

important to frequently capture the dynamic nature of cryptocurrency market volatility by

using high-frequency data. Our study provides important implications for assessing risks in

highly volatile asset markets.
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Table 1
Summary statistics.
This table shows the summary statistics of cryptocurrency data. Column Cryptocurrency lists the

abbreviated names of the cryptocurrencies in the sample. Column # of obs shows the number of 15-minute
return observations after data filtering. Column Start indicates the months in which the earliest observations
appear in the sample. Columns under 15-min return provide the mean, standard deviation, skewness, and
kurtosis of the 15-minute returns for the 25 selected cryptocurrencies. Columns Market cap., Volume, Price,
and BAS show the unconditional averages of market capitalization, daily trading volumes in billion U.S.
dollars (USD), prices per coin in USD, and percentage bid-ask spreads (BASs), respectively. Row Avg.100
shows the averages across the 100 sample cryptocurrencies.

Crypto 15-min return Market Volume Price BAS
currency # obs Start Mean (%) Std (%) Skew Kurt cap ($B) ($B) ($) (%)

BTC 263,892 Oct. 2015 0.0023 0.3983 -0.188 19.076 270.99 17.82 15,517.00 0.011
ETH 229,770 Jul. 2016 0.0022 0.5168 -0.068 15.162 100.31 8.96 1,003.27 0.030
LTC 216,697 Oct. 2016 0.0012 0.5936 0.016 15.027 4.67 1.55 91.74 0.067
BCH 190,108 Dec. 2017 -0.0003 0.5673 0.053 15.242 8.00 1.92 416.19 0.043
ETC 161,484 Aug. 2018 -0.0001 0.6249 0.069 16.790 2.10 0.80 19.88 0.092
ZRX 160,121 Oct. 2018 -0.0010 0.6995 0.071 24.108 0.39 0.06 0.50 0.136
XRP 64,229 Feb. 2019 0.0005 0.5197 -0.109 20.925 15.87 1.79 0.28 0.064
XLM 149,494 Mar. 2019 -0.0002 0.5553 -0.001 16.177 2.75 0.28 0.16 0.072
EOS 135,076 Apr. 2019 0.0014 0.5601 -0.095 14.771 3.33 1.43 3.09 0.138
REP 119,864 Apr. 2019 -0.0064 0.7078 0.188 20.966 0.20 0.02 16.54 0.292
LINK 139,040 Jun. 2019 0.0010 0.6488 0.015 11.856 3.74 0.68 12.20 0.079
XTZ 129,846 Aug. 2019 0.0003 0.6640 0.023 11.500 1.80 0.14 2.60 0.146
ALGO 132,270 Aug. 2019 -0.0007 0.7436 0.002 23.743 2.54 0.20 0.60 0.090
DASH 131,336 Sep. 2019 -0.0010 0.5870 -0.016 13.990 1.14 0.26 102.48 0.120
OXT 111,485 Dec. 2019 -0.0065 0.8280 0.489 17.496 0.12 0.03 0.26 0.146
ATOM 119,789 Jan. 2020 0.0004 0.6997 0.022 11.126 2.97 0.40 13.87 0.083
KNC 116,027 Feb. 2020 -0.0003 0.7623 0.103 13.128 0.17 0.03 1.46 0.115
OMG 94,855 May. 2020 0.0002 0.7718 0.182 11.982 0.56 0.19 4.30 0.142
MKR 106,360 Jun. 2020 -0.0007 0.6037 0.048 12.437 1.06 0.08 1,528.35 0.071
COMP 104,874 Jun. 2020 -0.0012 0.6993 -0.107 11.129 0.98 0.13 187.46 0.076
LRC 96,365 Sep. 2020 -0.0024 0.8149 0.276 14.184 0.40 0.08 0.56 0.087
ZEC 88,913 Dec. 2020 0.0000 0.6522 0.002 12.724 0.84 0.26 102.28 0.076
ADA 78,975 Mar. 2021 -0.0014 0.5473 0.036 12.444 15.03 1.05 0.95 0.031
DOGE 71,844 Jun. 2021 -0.0041 0.5537 0.071 15.383 5.67 0.67 0.13 0.048
ZEN 59,632 Sep. 2021 -0.0049 0.5999 -0.160 12.542 0.23 0.02 30.28 0.147

Avg.100 81,626 -0.0052 0.7370 0.187 16.443 5.44 0.49 773.57 0.192
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Table 2
Summary statistics of cryptocurrency jumps.

This table summarizes the results of jump detection tests in cryptocurrency markets. To identify jumps,
we apply the approach of Lee and Mykland (2008) and adjust the intraday volatility patterns of individual
cryptocurrencies, following Lee and Wang (2020). Column Cryptocurrency lists the currency codes of the
25 sample cryptocurrencies. For each cryptocurrency, we provide the number of filtered jumps and the
jump frequencies relative to the available observations (% jp). For signed jumps, we report the 25th, 50th,
and 75th percentiles of positive and negative jump sizes in the last six columns. The numbers in columns
% jp, positive jump size, and negative jump size are in percentage terms. Row Avg.100 shows the averages
across the 100 sample cryptocurrencies.

Crypto Jump frequency Positive jump size (%) Negative jump size (%)
currency Total Positive Negative % jp 25p 50p 75p 25p 50p 75p

BTC 2,180 1,037 1,143 0.826 0.0083 0.0129 0.0192 -0.0212 -0.0141 -0.0094
ETH 1,318 639 679 0.574 0.0125 0.0185 0.0262 -0.0263 -0.0197 -0.0138
LTC 1,091 526 565 0.503 0.0171 0.0235 0.0325 -0.0327 -0.0235 -0.0176
BCH 1,025 517 508 0.539 0.0170 0.0229 0.0320 -0.0306 -0.0221 -0.0164
ETC 968 466 502 0.599 0.0175 0.0252 0.0342 -0.0341 -0.0244 -0.0165
ZRX 840 364 476 0.525 0.0188 0.0278 0.0431 -0.0392 -0.0255 -0.0183
XRP 380 203 177 0.592 0.0133 0.0186 0.0261 -0.0295 -0.0208 -0.0130
XLM 594 248 346 0.397 0.0156 0.0207 0.0276 -0.0286 -0.0191 -0.0144
EOS 675 307 368 0.500 0.0175 0.0228 0.0312 -0.0314 -0.0231 -0.0162
REP 1,048 532 516 0.874 0.0224 0.0320 0.0441 -0.0399 -0.0283 -0.0204
LINK 366 151 215 0.263 0.0191 0.0258 0.0351 -0.0366 -0.0259 -0.0176
XTZ 444 197 247 0.342 0.0205 0.0283 0.0399 -0.0333 -0.0260 -0.0180
ALGO 451 183 268 0.341 0.0232 0.0362 0.0535 -0.0431 -0.0295 -0.0211
DASH 462 205 257 0.352 0.0180 0.0264 0.0365 -0.0338 -0.0249 -0.0177
OXT 843 493 350 0.756 0.0220 0.0331 0.0476 -0.0426 -0.0281 -0.0198
ATOM 311 128 183 0.260 0.0217 0.0285 0.0409 -0.0373 -0.0263 -0.0193
KNC 416 190 226 0.359 0.0228 0.0335 0.0444 -0.0384 -0.0266 -0.0188
OMG 314 154 160 0.331 0.0235 0.0322 0.0460 -0.0393 -0.0275 -0.0175
MKR 387 180 207 0.364 0.0169 0.0247 0.0332 -0.0311 -0.0239 -0.0172
COMP 273 95 178 0.260 0.0253 0.0362 0.0438 -0.0407 -0.0305 -0.0235
LRC 365 178 187 0.379 0.0254 0.0383 0.0545 -0.0422 -0.0333 -0.0228
ZEC 261 92 169 0.294 0.0195 0.0270 0.0412 -0.0344 -0.0251 -0.0180
ADA 291 131 160 0.368 0.0171 0.0228 0.0310 -0.0280 -0.0204 -0.0139
DOGE 425 193 232 0.592 0.0184 0.0241 0.0338 -0.0288 -0.0218 -0.0164
ZEN 221 85 136 0.371 0.0197 0.0264 0.0367 -0.0365 -0.0264 -0.0202

Avg.100 420 206 214 0.550 0.0228 0.0320 0.0446 -0.0395 -0.0285 -0.0205

Table 2:

38



Table 3
Summary statistics of weekly realized variances.

This table reports the summary statistics of the decomposed variances estimated with intraday data.
The variance is defined as the sum of squared 15-minute returns and is estimated from the previous month
of observations. The positive (negative) jump variance is defined as the sum of squared positive (negative)
jump sizes and is estimated from the previous month of observations. The total jump variance is the sum of
the positive and negative jump variances. The jump-robust variance is estimated from observations without
a jump. Panel A reports the first four central moments (Mean, Stdev, Skew, and Kurt), 25th percentile
(25p), median (Median), and 75th percentile (75p). Panel B shows the pairwise correlations between these
measures.

Panel A. Distributional characteristics

Variance Jump variance Jump-robust
Total Positive Negative Total variance

Mean 0.146 0.010 0.008 0.018 0.127
Stdev 0.161 0.015 0.010 0.024 0.154
Skew 6.031 3.671 5.073 3.736 6.752
Kurt 91.738 25.338 67.674 24.953 110.573
25p 0.058 0.002 0.003 0.006 0.047
Median 0.103 0.005 0.005 0.010 0.087
75p 0.179 0.012 0.010 0.021 0.155

Panel B. Correlation matrix

Variance Jump variance
Total Positive Negative Total

Positive jump variance 0.420
Negative jump variance 0.339 0.640
Total jump variance 0.425 0.934 0.873
Jump-robust variance 0.981 0.248 0.175 0.239
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Table 4
Excess returns of cryptocurrencies sorted by decomposed variances.

This table shows the relationship between the decomposed variances and subsequent excess returns. At
the end of every week, we sort the 100 sample cryptocurrencies on the estimated (total) variance, positive
and negative jump variances, or jump-robust variance and then construct tercile portfolios. We estimate
the total and decomposed variance measures by using the previous month of observations. For each sorted
portfolio, we compute excess returns in the subsequent week. The portfolios are constructed with equal
weights (EW) and value (market capitalization) weights (VW). In Panels A, B, C, and D, we report the
results for the portfolios sorted by the total, positive jump, negative jump, and jump-robust variances.
In each panel, we report the average excess returns, standard deviation, and Sharpe ratio for the excess
returns. In addition, we provide the alphas of the time-series regressions of the portfolio returns on the
three-factor model of Liu, Tsyvinski and Wu (2022). Column Low (High) concerns portfolios with the
lowest (highest) sorting measures. Column H - L shows the differences between the values of High and Low
portfolios (the standard deviations and Sharpe ratios in this column are for longing High portfolios and short-
ing Low portfolios). ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A. Total variance

Low Mid High H - L

Total variance 0.021 0.034 0.052 0.031***
Excess return (EW) 0.001 -0.007 -0.036 -0.037***
Standard deviation 0.108 0.130 0.128 0.063
Sharpe ratio 0.009 -0.052 -0.285 -0.589
Alpha 0.013 0.010 -0.012 -0.024***

Excess return (VW) 0.008 0.000 -0.022 -0.030***
Standard deviation 0.098 0.132 0.146 0.093
Sharpe ratio 0.084 -0.001 -0.147 -0.321
Alpha 0.021 0.003 -0.006 -0.027***

Panel B. Positive jump variance

Low Mid High H - L

Positive jump variance 0.001 0.002 0.004 0.003***
Excess return (EW) -0.001 -0.004 -0.037 -0.036***
Standard deviation 0.119 0.117 0.127 0.054
Sharpe ratio -0.007 -0.036 -0.291 -0.672
Alpha 0.010 0.011 -0.011 -0.021***

Excess return (VW) 0.007 0.007 -0.016 -0.023***
Standard deviation 0.103 0.107 0.137 0.078
Sharpe ratio 0.066 0.061 -0.117 -0.291
Alpha 0.017 0.016 -0.009 -0.026***
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Table 4
Excess returns of cryptocurrencies sorted on decomposed variances (continued).

Panel C. Negative jump variance

Low Mid High H - L

Negative jump variance 0.001 0.002 0.003 0.002***
Excess return (EW) -0.005 -0.004 -0.032 -0.027***
Standard deviation 0.118 0.124 0.121 0.051
Sharpe ratio -0.044 -0.035 -0.267 -0.531
Alpha 0.006 0.013 -0.008 -0.014***

Excess return (VW) 0.011 0.000 -0.012 -0.023***
Standard deviation 0.103 0.116 0.130 0.079
Sharpe ratio 0.106 0.002 -0.093 -0.292
Alpha 0.017 0.016 -0.003 -0.020***

Panel D. Jump-robust variance

Low Mid High H - L

Jump-robust variance 0.019 0.030 0.046 0.027***
Excess return (EW) -0.001 -0.008 -0.033 -0.032***
Standard deviation 0.110 0.127 0.129 0.063
Sharpe ratio -0.010 -0.062 -0.258 -0.512
Alpha 0.011 0.007 -0.008 -0.020***

Excess return (VW) 0.008 -0.001 -0.017 -0.026***
Standard deviation 0.098 0.129 0.143 0.090
Sharpe ratio 0.086 -0.006 -0.121 -0.286
Alpha 0.021 0.004 0.001 -0.020***
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Table 5
Return prediction with decomposed variances.

This table shows how decomposed variances are related to excess returns in the subsequent week. We
estimate the coefficients of the following FMB regression:

rxi,w+1 = γ0,w + γ1,wTV
(+)
i,w + c′wXi,w + ϵi,w+1 or

rxi,w+1 = γ0,w + γ1,wJV
(+)
i,w + γ2,wJV

(−)
i,w + γ3,wJRVi,w + c′wXi,w + ϵi,w+1,

where rxi,w is the excess return of cryptocurrency i in week w. TV
(+)
i,w , JV

(+)
i,w , JV

(−)
i,w , and JRVi,w are

the total, positive jump, negative jump, and jump-robust variances, respectively. These decomposed
variances are estimated with the previous month of observations (i.e., observations from week w − 3 to

week w). For comparison, we replace TV
(+)
i,w with the volatility estimated from one-month daily return data

(column (II)). Xi,w is the vector of control variables such as lagged excess returns and natural logarithmic
market capitalization. Then, we report the time-series averages of the estimated coefficients and the corre-
sponding t-statistics. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

(I) (II) (III) (IV) (V) (VI)

Constant 0.012 -0.005 -0.054** 0.014* 0.120 -0.033
t-stat 1.57 -0.47 -2.10 1.81 1.53 -1.29

Total variance -0.221*** -0.171***
t-stat -7.77 -5.62

Jump variance -0.669***
t-stat -4.71

Positive jump variance -1.470*** -1.492***
t-stat -5.24 -4.69

Negative jump variance 0.626 0.791
t-stat 1.07 1.31

Jump-robust variance -0.152*** -0.151*** -0.091**
t-stat -4.83 -4.41 -2.00

Volatility (daily data) -0.134
t-stat -0.86

Lagged return 0.006 0.003
t-stat 0.44 0.16

Market capitalization 0.003*** 0.002**
t-stat 3.13 2.11

Adj. R2 0.115 0.092 0.186 0.163 0.200 0.266
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Table 6
Robustness test.

This table shows the robustness of the decomposed variance effect. We use the following FMB regression:

rxi,w+1 = γ0,w + γ1,wJV
(+)
i,w + γ2,wJV

(−)
i,w + γ3,wJRVi,w + c′wXi,w + ϵi,w+1,

where rxi,w is the excess return of cryptocurrency i in week w. JV
(+)
i,w , JV

(−)
i,w , and JRVi,w are the positive

jump, negative jump, and jump-robust variances, respectively. These decomposed variances are estimated
from the previous month of observations (i.e., observations from week w−3 to week w). Xi,w is the vector of
control variables such as lagged excess returns and natural logarithmic market capitalization. For the part
denoted “Dependent variable”, we replace the dependent variable with two-week excess returns (column
(I)) and one-month excess returns (column (II)). For the part denoted “Control: Long-term”, we control for
the potential return momentum/reversal effect and maximum return effect, employing the lagged excess
returns over periods from week w − 3 to week w (i.e., one-month returns) for column (III) and those from
week w− 11 to w (i.e., one-quarter returns) for column (IV). For the part denoted “Control: Maximum”, we
use the maximum 15-minute excess returns in week w for column (V) and the maximum one-day returns
during the period from week w − 3 to week w for column (VI). In this table, we report the time-series
averages of the estimated coefficients and the corresponding t-statistics. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable Control: Long-term Control: Maximum
(I) (II) (III) (IV) (V) (VI)

Constant -0.090* -0.192** -0.023 -0.001 -0.021 -0.024
t-stat -1.88 -2.24 -0.96 -0.04 -0.87 -0.98

Positive jump variance -2.693*** -4.562*** -1.588*** -1.343*** -1.268*** -1.266***
t-stat -5.05 -6.32 -5.20 -4.01 -4.02 -3.15

Negative jump variance 1.139 -0.333 0.960 0.889 0.740 0.908
t-stat 1.02 -0.25 1.53 1.44 1.22 1.49

Jump-robust variance -0.169** -0.234** -0.104*** -0.126*** -0.117*** -0.159***
t-stat -2.19 -2.13 -2.57 -3.17 -2.89 -3.91

Lagged return (or Max) 0.036 0.082** 0.059** 0.156*** -0.200*** 0.051
t-stat 1.32 2.32 2.00 3.43 -3.27 1.13

Market capitalization 0.005*** 0.011*** 0.002* 0.001 0.002* 0.002*
t-stat 2.80 3.50 1.80 0.73 1.82 1.79

Adj. R2 0.281 0.288 0.271 0.267 0.250 0.260

Table 6:

43



Table 7
Time series subsample analyses.

This table shows how the effects of decomposed variances on subsequent excess returns depend on mar-
ket conditions. We construct time series subsamples depending on the overall volatility and illiquidity of
cryptocurrency markets and business cycles. Cryptocurrency market volatility is defined as the means of the
average absolute values of 15-minute log cryptocurrency returns across individual cryptocurrencies during
the corresponding week, following Menkhoff et al. (2012). Cryptocurrency market illiquidity is captured by
the averages of individual weekly Amihud (2002) illiquidity measures. The High (Low) period subsample is
obtained by excluding the 20% of weeks with the lowest (highest) volatility or illiquidity measures. Business
cycles are separated considering NBER business cycles (i.e., in our sample, the former (latter) period is
before (after) August 2021, and the former period includes recession periods). We apply the following FMB
regression to these time series subsamples:

rxi,w+1 = γ0,w + γ1,wJV
(+)
i,w + γ2,wJV

(−)
i,w + γ3,wJRVi,w + c′wXi,w + ϵi,w+1,

where rxi,w is the excess return of cryptocurrency i in week w. JV
(+)
i,w , JV

(−)
i,w , and JRVi,w are the positive

jump, negative jump, and jump-robust variances, respectively. These decomposed variances are estimated
from the previous month of observations (i.e., observations from week w − 3 to week w). Xi,w is the vector
of control variables such as lagged excess returns and natural logarithmic market capitalization. Then, we
report the time-series averages of the estimated coefficients and the corresponding t-statistics. ***, **, and
* denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Market volatility Market illiquidity Sample period
Low High Low High Former Latter

Constant -0.032** -0.034** -0.035** -0.036*** 0.034* -0.100***
t-stat -2.37 -2.36 -2.26 -3.86 1.92 -11.61

Positive jump variance -1.032*** -1.890*** -1.477*** -1.504*** -2.098*** -0.877***
t-stat -8.38 -7.36 -7.96 -8.15 -7.52 -8.91

Negative jump variance -0.443** 1.860*** 0.457* 1.009*** 2.199*** -0.638***
t-stat -2.14 5.10 1.74 3.73 5.39 -4.67

Jump-robust variance -0.076*** -0.105*** -0.028 -0.099*** -0.148*** -0.032*
t-stat -4.77 -3.25 -1.49 -3.92 -4.50 -1.83

Lagged return -0.003 0.007 -0.008 0.008 0.020 -0.015*
t-stat -0.30 0.51 -0.76 0.80 1.38 -1.94

Market capitalization 0.002*** 0.002*** 0.002*** 0.002*** -0.000 0.004***
t-stat 3.96 3.70 2.97 6.78 -0.25 13.34

Adj. R2 0.228 0.301 0.238 0.281 0.361 0.170

Table 7:
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Table 8
Comparison of positive jump variance effects with skewness effects.

This table shows the return predictability with skewness, which is compared with that with positive jump
variances. We employ the following FMB regression:

rxi,w+1 = λ0,w + λ1,wLSkewi,w + λ2,wV oli,w + λ3,wKurti,w + c′wXi,w + εi,w+1,

where rxi,w is the excess return of cryptocurrency i in week w. LSkewi,w, V oli,w, and Kurti,w are
the realized weekly skewness, volatility (i.e., square root of the variance), and kurtosis of the returns,
respectively. These realized moments are estimated from the previous month of observations. To compare
the positive jump variance effects with the skewness effects, we replace V oli,w with the jump-robust volatility
(i.e., the square root of the jump-robust variance) and the positive and negative jump variances. Xi,w is
the vector of control variables such as lagged excess returns and natural logarithmic market capitalization.
Then, we report the time-series averages of the estimated coefficients and the corresponding t-statistics.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

(I) (II) (III) (IV) (V) (VI)

Constant -0.016 0.063*** 0.025 0.065*** 0.043*** -0.002
t-stat -1.73 6.16 0.80 6.08 3.69 -0.08

Skewness -0.286*** -0.007 -0.009* -0.009* 0.005 0.002
t-stat -7.52 -1.46 -1.86 -1.84 0.82 0.23

Volatility -0.049*** -0.039***
t-stat -8.76 -5.88

Jump-robust volatility -0.052*** -0.035*** -0.018**
t-stat -8.08 -4.80 -2.24

Kurtosis -0.002** -0.001** -0.002*** -0.001 -0.000
t-stat -2.21 -2.17 -2.85 -1.00 -0.20

Lagged return 0.005 0.001
t-stat 0.34 0.06

Market capitalization 0.001 0.001
t-stat 1.12 1.19

Positive jump variance -1.632*** -1.672***
t-stat -3.75 -3.57

Negative jump variance 1.019 0.715
t-stat 1.31 0.94

Adj. R2 0.041 0.173 0.244 0.173 0.253 0.319

Table 8:
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Table 9
Characteristics of decomposed variance-sorted portfolios.

This table shows the characteristics of decomposed variance-sorted portfolios. At the beginning of
every week, we sort the 100 sample cryptocurrencies based on the estimated (total) variance, positive and
negative jump variances, or jump-robust variance and construct tercile portfolios. We estimate the total
and decomposed variance measures by using the previous month of observations. For each sorted portfolio,
we provide the average market capitalization (in billions of USD), daily trading volume (in billions of USD),
prices (in USD), bid-ask spread (BAS), and retail trading proportion (RTP) of Han and Kumar (2013) in
the corresponding week. In addition, we report sentiments for individual cryptocurrencies. We use the
number of buy opinions (relative to market capitalization) and the percentage of buy opinions relative to
total opinions on Twitter and Telegram. To examine the possibility of short selling, we also consider the
futures trading volume (in millions of USD) and volumes that buyers take the sellers’ futures prices (in
millions of USD). In each panel, column Low (High) presents portfolios with the lowest (highest) sorting
measures. Column H - L shows the differences between the values of High and Low portfolios. ***, **, and
* denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A. Total variance

Low Mid High H - L

Size/trade variable
Market capitalization ($B) 39.2 2.2 0.9 -38.3***
Daily trading volume ($B) 11,704 21,263 23,957 12,253***
Price ($) 3,124 227 261 -2,863***
Bid-ask spread 0.001 0.001 0.002 0.001***
RTP 0.913 0.958 0.952 0.039***

Sentiment
# of Twitter buy /market cap 181.147 311.487 598.336 417.188***
% of Twitter buy 25.389 24.965 25.923 0.534
# of Telegram buy /market cap 36.410 109.980 280.846 244.437***
% of Telegram buy 23.347 18.089 16.142 -7.205

Short selling availability
Futures volumes ($M) 660 772 1,358 698***
Futures buyers’ volume ($M) 320 375 666 346***

Panel B. Positive jump variance

Low Mid High H - L

Size/trade variable
Market capitalization ($B) 26.9 15.2 1.5 -25.4***
Daily trading volume ($B) 1,552 16,045 39,133 37,581***
Price ($) 2,308 1,121 294 -2,014***
Bid-ask spread 0.001 0.001 0.002 0.001***
RTP 0.933 0.938 0.956 0.023***

Sentiment
# of Twitter buy /market cap 169.808 278.230 639.958 470.151***
% of Twitter buy 25.484 25.524 25.416 -0.068
# of Telegram buy /market cap 52.182 78.820 278.874 226.692***
% of Telegram buy 21.929 19.907 15.941 -5.988

Short selling availability
Futures volumes ($M) 587 1,302 935 348***
Futures buyers’ volume ($M) 286 633 458 172***

Table 9:
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Table 9
Characteristics of decomposed variance-sorted portfolios (continued).

Panel C. Negative jump variance

Low Mid High H - L

Size/trade variable
Market capitalization ($B) 28.2 12.0 2.7 -25.5***
Daily trading volume ($B) 8,594 22,304 25,823 17,229***
Price ($) 2,368 954 381 -1,986***
Bid-ask spread 0.001 0.001 0.002 0.001***
RTP 0.935 0.927 0.960 0.025***

Sentiment
# of Twitter buy /market cap 239.442 278.201 568.234 328.792***
% of Twitter buy 25.182 25.586 25.556 0.374
# of Telegram buy /market cap 51.585 51.797 296.433 244.848***
% of Telegram buy 21.361 19.777 16.545 -4.816

Short selling availability
Futures volumes ($M) 736 1,114 960 225***
Futures buyers’ volume ($M) 358 543 469 112***

Panel D. Jump-robust variance

Low Mid High H - L

Size/trade variable
Market capitalization ($B) 38.9 2.4 1.0 -37.9***
Daily trading volume ($B) 19,248 26,639 11,064 -8,184***
Price ($) 3,114 195 299 -2,816***
Bid-ask spread 0.001 0.001 0.002 0.001***
RTP 0.920 0.951 0.951 0.031***

Sentiment
# of Twitter buy /market cap 239.160 293.993 552.437 313.278***
% of Twitter buy 25.556 25.097 25.678 0.123
# of Telegram buy /market cap 47.538 100.089 277.792 230.255***
% of Telegram buy 22.797 18.068 16.582 -6.215

Short selling availability
Futures volumes ($M) 675 724 1,389 714***
Futures buyers’ volume ($M) 327 351 681 354***
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Table 10
Prediction of weekly skewness.

This table shows whether weekly skewness can be predicted by lagged weekly skewness or decomposed
variances. To investigate this possibility, we use the following panel regression:

Skewi,w+1 = ψ0 + ψ1LSkewi,w + ψ2JV
(+)
i,w + ψ3JV

(−)
i,w + ψ4JRVi,w + c′Xi,w + ei,w+1,

where Skewi,w is the realized weekly skewness of cryptocurrency i in week w and is estimated from
the observations in week w. LSkewi,w is the realized skewness estimated from the previous month of

observations (i.e., observations from week w − 3 to week w). JV
(+)
i,w , JV

(−)
i,w , and JRVi,w are the positive

jump, negative jump, and jump-robust variances, respectively. These decomposed variances are estimated
from the previous month of observations (i.e., observations from week w−3 to week w). Xi,w is the vector of
control variables such as weekly kurtosis, lagged excess returns, natural logarithmic market capitalization,
and fixed effects. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

(I) (II) (III) (IV) (V) (VI) (VII)

Constant -0.048*** -0.170*** -0.239*** -0.343*** -0.270*** -0.376*** -0.083***
t-stat -4.96 -13.47 -15.02 -2.99 -10.21 -3.07 -0.25

Skewness 0.224*** 0.136*** 0.132*** -0.039
t-stat 11.18 5.25 4.96 -1.35

Positive jump variance 11.127*** 9.043*** 10.391*** 4.322*** 5.517*** 2.842**
t-stat 11.80 9.32 10.15 3.46 4.20 1.99

Negative jump variance -0.966 -0.196 -1.585 3.887** 2.466 1.089
t-stat -0.67 -0.14 -1.03 2.42 1.44 0.61

Jump-robust variance 0.649*** 0.647*** 0.684*** 0.692*** 0.414***
t-stat 10.50 9.75 10.01 9.30 5.61

Kurtosis 0.004* 0.004** 0.004
t-stat 1.93 1.97 1.67

Lagged return -0.196*** -0.213*** -0.116**
t-stat -4.19 -4.57 -2.42

Market capitalization 0.005 0.005 0.002
t-stat 0.87 0.85 0.13

Fixed effects No No No No No No Yes

Adj. R2 0.014 0.024 0.031 0.032 0.034 0.035 0.069

Table 10:
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Figure 1. Weekly variance over time
This figure illustrates how weekly variances change during the sample period from October 2015 to June

2023. Panel A shows the 10th, 50th, and 90th percentiles of individual cryptocurrency variances in the
cross-section. Panel B provides weekly variances for bitcoin.
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Figure 2. Variances and future excess returns
This figure shows the effect of variances on excess returns in the subsequent week. At the end of every

week, the cryptocurrencies are sorted on their variances, and tercile portfolios are constructed. For each
sorted portfolio, we compute the equally weighted average of excess returns in the subsequent weeks. We
compare the average excess returns of low-variance portfolios with those of high-variance portfolios.
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Figure 3. Time series of weekly realized variances
This figure illustrates how the weekly decomposed variances change during the sample period from Oc-

tober 2015 to June 2023. Panels A, B, C, and D are for the total, positive jump, negative jump, and
jump-robust variances, respectively. These decomposed variance measures are estimated from the previous
month of observations. In each panel, we provide the 10th, 50th, and 90th percentiles of decomposed vari-
ances in the cross-section.
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Figure 3. Time series of weekly realized variances (continued)
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Online Appendix for

“Variance Decomposition and
Cryptocurrency Return Prediction”

Suzanne Lee Minho Wang

January 2024

To keep the main text brief, we provide this online appendix to further support our empirical

results and to expand on the details of the summarized points in the main text.

This online appendix includes multiple appendixes, which are located in the order of

the main text. Online Appendix A supports our empirical application of jump variance

estimators by checking their finite sample performance. Online Appendix B provides the

summary statistics and jump detection results for all 100 sample cryptocurrencies and the

full names. Online Appendix C elaborates upon the approaches for constructing samples and

filtering intraday data. Online Appendix D compares the results of using the measures that

we introduce in this paper with those of employing alternative measures. Online Appendix E

supplements the contemporaneous sorting analyses with characteristics by regressing price

increases and partial variances on characteristic variables. Online Appendix F defines the

variables used in this paper. Each appendix contains the corresponding figure and table.
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O. Appendix A. Monte Carlo simulation

As indicated in the main text, taking the total realized variance as the estimator of in-

tegrated variance (volatility) is a common approach in the literature (see Andersen et al.

(2003) and the references therein). In this paper, we suggest further decomposing total re-

alized variances into jump-robust and (signed) jump variances by applying jump detection

tests that identify the arrivals of individual cryptocurrency jumps (with different signs).

To support the empirical application of our jump variance estimators for our study, in this

appendix, we examine our measures’ finite sample performance by using Monte Carlo sim-

ulation. The purpose of this simulation study is to prove that the proposed estimators

converge to the true jump variances that we aim to identify in the model. By definition, the

performance of our jump variance estimators depends on the performance of the jump tests

because the estimators use cryptocurrency returns in the time intervals during which jump

tests detect jump arrivals. Therefore, we design this simulation to study the effectiveness

of our jump detection tests and the estimation errors that can be made by using our jump

variance estimator(s). In sum, the overall results show that our jump variances perform well

in estimating return variations associated with jumps under general market conditions.

For return generation, we use the Euler-Maruyama scheme, which is widely used to

simulate data from continuous-time models. To avoid starting value effects, we discard the

first five hundred observations from the burn-in period every time we generate a time series.

We generate intraday data over one trading day from the general model in Section 2 as

dci,t = µi,tdt+ σi,tdBi,t + Yi,tdJi,t, (9)
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where the stochastic volatility model is specified as the following square root processes:

dσ2
i,t = κ(θ − σ2

i,t)dt+ ωσi,tdWi,t. (10)

The terms dBi,t and dWi,t are standard Brownian motion processes. Yi,t and dJi,t denote

the jump size and jump arrival indicator for the i-th cryptocurrency price at time t, respec-

tively, as indicated in Subsection 2.1. The jump sizes are selected relative to the volatility

level σi,t− immediately before jump time t. Because we assume that volatility is stochastic,

the jump sizes are also time varying and are set at 5σi,t−, 3σi,t−, 1σi,t−, 0.5σi,t− and 0.25σi,t−.

We ignore the drift term in this simulation by setting µi,t = 0 because the magnitudes of

the drift terms, compared to those of the diffusion and jump terms, are negligible at intra-

day levels. We use the parameters for the volatility process from Li, Wells and Yu (2008):

κ = 0.0162, θ = 0.8465, and ω = 0.47. We consider the full 24 trading hours per day and

simulate 10,000 paths of the log price process ci,t. We consider various sampling frequencies

of 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 6 hours, and 12 hours.

The results from this simulation study are reported in Table OA. Panel A shows that

as we increase the sampling frequency, the likelihood of detecting true jump arrivals by our

jump tests approaches 100%. As long as the goal of the application is to detect rare and

extremely large jumps, our jump variance estimators are expected to perform well when

we use high-frequency intraday data. Panel B confirms this expectation, indicating that

the mean squared error (MSE) of the jump variance estimator significantly decreases as

we increase the sampling frequency within a day. Because of this result, we use 15-minute

cryptocurrency returns and confirm our results with different intraday return data.
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Table OA
Finite sample performance of the jump variance estimator.

This table shows the results of simulation analyses to present the performance of the jump vari-
ance estimators used in our study. Considering that the performance of jump variance estimators
depends on the performance of jump tests in detecting jump arrivals, we first examine how likely
it is that our jump tests detect true jump arrivals and report the results in Panel A. Then, we
investigate the estimator error that can be made by applying our jump variance estimators and
report the results in Panel B. The number of simulations is set to 10,000. The jump sizes are set
relative to the stochastic volatility level σi,t− immediately before jump time t. We consider various
intraday sampling frequencies. The estimation error is measured by the mean squared error (MSE).

Panel A. Likelihood of detecting true jump arrival

Jump sizes relative to volatility level
Sampling Frequency 5× σi,t− 3× σi,t− 1× σi,t− 0.5× σi,t− 0.25× σi,t−

12 hours 0.9656 0.9628 0.9566 0.9389 0.6846
6 hours 0.9878 0.9885 0.9867 0.9815 0.9440
3 hours 0.9961 0.9955 0.9943 0.9930 0.9862
2 hours 0.9969 0.9971 0.9955 0.9965 0.9911
1 hour 0.9989 0.9983 0.9980 0.9977 0.9972
30 minutes 0.9990 0.9993 0.9992 0.9990 0.9988
15 minutes 0.9996 1.0000 1.0000 0.9996 0.9994
5 minutes 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B. Performance of the jump variance estimator measured by the MSE

Jump sizes relative to volatility level
Sampling Frequency 5× σi,t− 3× σi,t− 1× σi,t− 0.5× σi,t− 0.25× σi,t−

12 hours 0.000398 0.000405 0.000388 0.000377 0.000234
6 hours 0.000192 0.000191 0.000197 0.000185 0.000169
3 hours 0.000092 0.000094 0.000093 0.000093 0.000091
2 hours 0.000059 0.000061 0.000061 0.000061 0.000060
1 hour 0.000030 0.000030 0.000031 0.000031 0.000030
30 minutes 0.000015 0.000015 0.000015 0.000015 0.000015
15 minutes 0.000007 0.000007 0.000007 0.000008 0.000008
5 minutes 0.000003 0.000003 0.000002 0.000003 0.000003
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O. Appendix B. Summary statistics for all sample cryptocurrencies

In this appendix, we provide the summary statistics for all 100 sample cryptocurrencies.

Table OB1 shows the four central moments of 15-minute returns and the unconditional av-

erages of market capitalization, daily trading volumes in billion U.S. dollars (USD), prices

per coin in USD, and percentage bid-ask spreads (BASs). Table OB2 presents the number

of filtered jumps, the jump frequencies relative to the available observations, and the dis-

tributions of jump sizes. In these tables, we provide the abbreviated and full names of the

sample cryptocurrencies.
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Table OB1
Summary statistics (all sample coins).
This table shows the summary statistics of the cryptocurrency data. Column Cryptocurrency lists the

abbreviated and full names of the cryptocurrencies in the sample. Column # of obs shows the number of
15-minute return observations after data filtering. Column Start indicates the months in which the earliest
observations appear in the sample. Columns under 15-min return provide the mean, standard deviation,
skewness, and kurtosis of the 15-minute returns for each sample cryptocurrency. Columns Market cap.,
Volume, Price, and BAS show the unconditional averages of market capitalization, daily trading volumes
in billion U.S. dollars (USD), prices per coin in USD, and percentage bid-ask spreads (BASs), respectively.
Row Avg.100 shows the averages across the 100 sample cryptocurrencies.

Crypto 15-min return Market Volume Price BAS
currency # obs Start Mean (%) Stdev (%) Skew Kurt cap ($B) ($B) ($) (%)

1inch (1INCH) 68,474 Apr. 2021 -0.0043 0.6519 -0.214 12.320 0.52 0.13 1.75 0.19
aave (AAVE) 88,379 Dec. 2020 0.0000 0.6842 0.008 11.520 2.32 0.29 187.47 0.06
ach (Alchemy Pay) 66,572 Aug. 2021 -0.0059 0.9386 0.577 16.242 0.10 0.03 0.04 0.11
ada (Cardano) 78,975 Mar. 2021 -0.0014 0.5473 0.036 12.444 15.03 1.05 0.95 0.03
agld (Adventure Gold) 55,573 Sep. 2021 -0.0060 0.8321 0.314 13.859 0.07 0.03 0.90 0.34
algo (Algorand) 132,270 Aug. 2019 -0.0007 0.7436 0.002 23.743 2.54 0.20 0.60 0.09
amp (Amp) 58,889 Jun. 2021 -0.0115 0.7391 0.231 15.512 0.81 0.02 0.03 0.17
ankr (Ankr Network) 78,597 Mar. 2021 -0.0044 0.7041 0.121 14.203 0.30 0.06 0.06 0.08
arpa (ArpaCoin) 49,385 Oct. 2021 -0.0053 0.7322 0.283 15.443 0.05 0.03 0.06 0.28
asm (Assemble Protocol) 54,380 Oct. 2021 -0.0086 0.9920 0.439 21.955 0.03 0.01 0.04 0.56
atom (Cosmos) 119,789 Jan. 2020 0.0004 0.6997 0.022 11.126 2.97 0.40 13.87 0.08
avax (Avalanche) 60,069 Sep. 2021 -0.0023 0.5888 0.004 10.570 7.75 0.51 40.84 0.06
axs (Axie Infinity) 63,161 Aug. 2021 -0.0048 0.6271 0.250 13.614 1.93 0.30 39.41 0.12
badger (Badger DAO) 43,220 Oct. 2021 -0.0067 0.6605 0.283 11.017 0.12 0.02 8.30 0.32
bal (Balancer) 88,571 Oct. 2020 -0.0010 0.6357 -0.253 9.974 0.20 0.05 17.27 0.16
band (Band Protocol) 99,088 Aug. 2020 -0.0029 0.7843 0.017 11.578 0.14 0.05 5.57 0.12
bat (Basic Attention Token) 73,999 Apr. 2021 -0.0021 0.6091 -0.017 12.079 0.52 0.11 0.56 0.15
bch (Bitcoin Cash) 190,108 Dec. 2017 -0.0003 0.5673 0.053 15.242 8.00 1.92 416.19 0.04
bnt (Bancor) 77,769 Dec. 2020 -0.0013 0.5485 -0.173 12.038 0.25 0.03 2.38 0.21
bond (BarnBridge) 58,181 Jun. 2021 -0.0134 0.8376 0.658 19.046 0.06 0.02 11.82 0.27
btc (Bitcoin) 263,892 Oct. 2015 0.0023 0.3983 -0.188 19.076 270.99 17.82 15,517.00 0.01
btrst (Braintrust) 46,563 Sep. 2021 -0.0131 0.7803 0.235 31.846 0.23 0.00 2.98 0.31
chz (Chiliz) 69,606 Jun. 2021 -0.0023 0.6381 0.133 12.121 0.84 0.22 0.21 0.11
clv (Clover) 27,408 Jul. 2021 -0.0083 1.0971 0.723 18.628 0.07 0.02 0.60 0.55
comp (Compound Coin) 104,874 Jun. 2020 -0.0012 0.6993 -0.107 11.129 0.98 0.13 187.46 0.08
coti (COTI) 61,137 Aug. 2021 -0.0038 0.6872 -0.013 12.846 0.12 0.03 0.19 0.14
crv (Curve DAO Token) 78,420 Mar. 2021 -0.0003 0.7369 0.114 10.490 0.74 0.19 1.91 0.10
ctsi (Cartesi) 73,959 May. 2021 -0.0063 0.7874 0.282 14.966 0.13 0.03 0.37 0.14
dash (Digital Cash) 131,336 Sep. 2019 -0.0010 0.5870 -0.016 13.990 1.14 0.26 102.48 0.12
ddx (DerivaDAO) 37,028 Sep. 2021 -0.0225 1.0613 0.447 23.295 0.07 0.00 2.18 0.80
doge (Dogecoin) 71,844 Jun. 2021 -0.0041 0.5537 0.071 15.383 5.67 0.67 0.13 0.05
dot (Polkadot) 70,964 Jun. 2021 -0.0016 0.5304 -0.077 11.275 15.69 1.20 14.87 0.05
enj (Enjin Coin) 67,704 Apr. 2021 -0.0039 0.7402 -0.007 11.162 0.49 0.09 1.20 0.21
eos (Eos) 135,076 Apr. 2019 0.0014 0.5601 -0.095 14.771 3.33 1.43 3.09 0.14
etc (Ethereum Classic) 161,484 Aug. 2018 -0.0001 0.6249 0.069 16.790 2.10 0.80 19.88 0.09
eth (Ethereum) 229,770 Jul. 2016 0.0022 0.5168 -0.068 15.162 100.31 8.96 1,003.27 0.03
farm (Harvest Finance) 64,821 Jul. 2021 -0.0096 0.7227 0.632 21.175 0.06 0.01 81.15 0.17
fet (Fetch AI) 65,552 Jul. 2021 -0.0019 0.8350 0.406 12.278 0.16 0.03 0.33 0.14
fil (Filecoin) 88,894 Dec. 2020 -0.0010 0.6099 0.146 14.300 3.49 0.60 33.18 0.06
forth (Ampleforth Governance Token) 58,318 Apr. 2021 -0.0161 0.9642 0.719 20.215 0.08 0.02 9.60 0.32
grt (The Graph) 86,741 Dec. 2020 -0.0008 0.8287 0.076 12.083 1.70 0.17 0.52 0.09
gtc (Gitcoin) 55,492 Jun. 2020 -0.0042 0.8714 0.125 12.066 0.09 0.02 5.49 0.41
icp (Internet Computer) 74,552 May. 2021 -0.0053 0.7339 0.111 12.122 4.23 0.20 25.00 0.07
iotx (IoTeX) 64,761 Aug. 2021 -0.0056 0.7859 0.251 22.902 0.23 0.03 0.07 0.24

Table 11:
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Table OB1
Summary statistics (all sample coins, continued).

Crypto 15-min return Market Volume Price BAS
currency # obs Start Mean (%) Stdev (%) Skew Kurt cap ($B) ($B) ($) (%)

jasmy (Jasmy) 56,425 Oct. 2021 -0.0067 0.9691 0.475 15.532 0.20 0.13 0.03 0.17
keep (Keep Token) 53,060 Jun. 2021 -0.0117 0.8218 0.242 19.801 0.20 0.02 0.37 0.26
knc (Kyber Network) 116,027 Feb. 2020 -0.0003 0.7623 0.103 13.128 0.17 0.03 1.46 0.12
link (ChainLink) 139,040 Jun. 2019 0.0010 0.6488 0.015 11.856 3.74 0.68 12.20 0.08
lpt (Livepeer) 65,917 Jun. 2021 -0.0078 0.7126 0.038 14.997 0.32 0.02 16.80 0.20
lrc (Loopring) 96,365 Sep. 2020 -0.0024 0.8149 0.276 14.184 0.40 0.08 0.56 0.09
ltc (Litecoin) 216,697 Oct. 2016 0.0012 0.5936 0.016 15.027 4.67 1.55 91.74 0.07
mana (Decentraland) 75,960 Apr. 2021 -0.0024 0.6967 0.192 13.467 0.93 0.19 1.23 0.08
mask (Mask Network) 57,353 Jul. 2021 -0.0038 0.9049 0.405 12.468 0.18 0.09 5.45 0.35
matic (Matic Network) 80,399 Mar. 2021 -0.0007 0.7557 -0.073 26.172 4.85 0.54 1.14 0.04
mir (Mirror Protocl) 64,287 May. 2021 -0.0144 0.8324 0.571 20.950 0.13 0.03 1.67 0.17
mkr (Maker) 106,360 Jun. 2020 -0.0007 0.6037 0.048 12.437 1.06 0.08 1,528.35 0.07
mln (Enzyme) 67,428 Jun. 2021 -0.0109 0.6735 0.468 25.940 0.05 0.00 52.34 0.17
nkn (NKN) 75,198 Apr. 2021 -0.0053 0.7894 0.089 13.601 0.08 0.01 0.23 0.14
nmr (Numeraire) 96,091 Aug. 2020 -0.0102 0.7907 0.631 19.595 0.09 0.01 28.69 0.16
nu (NuCypher) 73,003 Dec. 2020 -0.0060 0.9749 0.436 18.910 0.20 0.05 0.36 0.20
ogn (Origin Protocol) 73,659 Apr. 2021 -0.0058 0.7926 0.060 12.058 0.13 0.05 0.48 0.21
omg (OmiseGO) 94,855 May. 2020 0.0002 0.7718 0.182 11.982 0.56 0.19 4.30 0.14
orn (Orion Protocol) 59,227 Aug. 2021 -0.0085 0.6585 0.317 15.959 0.12 0.01 3.02 0.26
oxt (Orchid) 111,485 Dec. 2019 -0.0065 0.8280 0.489 17.496 0.12 0.03 0.26 0.15
perp (Perpetual Protocol) 54,088 Oct. 2021 -0.0094 0.7222 0.313 13.930 0.26 0.02 3.17 0.27
pla (PlayDapp Token) 63,188 Aug. 2021 -0.0080 0.7346 0.177 22.585 0.20 0.06 0.63 0.26
poly (Polymath) 62,822 Jul. 2021 -0.0073 0.7336 0.447 26.572 0.14 0.02 0.33 0.30
qnt (Quant) 70,421 Jun. 2021 -0.0013 0.7279 0.223 12.981 0.80 0.02 139.68 0.11
quick (QuickSwap) 64,169 Aug. 2021 -0.0113 0.7066 0.290 24.280 0.09 0.02 166.42 0.30
rad (Radicle) 40,183 Sep. 2021 -0.0197 0.9760 0.583 16.641 0.13 0.02 5.04 0.44
rai (Rai Reflex Index) 3,754 Aug. 2021 -0.0049 0.2697 -1.338 25.152 0.04 0.00 2.92 0.64
rari (Rarible) 33,261 Oct. 2021 -0.0195 1.1606 0.199 17.226 0.04 0.00 7.25 0.57
ren (Ren) 93,807 Oct. 2020 -0.0025 0.7998 -0.024 10.924 0.23 0.04 0.40 0.11
rep (Augur) 119,864 Apr. 2019 -0.0064 0.7078 0.188 20.966 0.20 0.02 16.54 0.29
req (Request Network) 59,605 Aug. 2021 -0.0113 0.8079 0.728 19.626 0.09 0.01 0.17 0.18
rgt (Rari Governance Token) 34,609 Sep. 2021 -0.0128 1.1810 0.611 21.721 0.11 0.00 16.17 0.57
rlc (iExec RLC) 69,368 May. 2021 -0.0042 0.7968 0.074 13.966 0.10 0.01 2.31 0.23
rly (Rally) 44,522 Jul. 2021 -0.0098 0.8733 1.706 50.526 0.22 0.01 0.25 0.32
shib (Shiba Inu) 59,288 Sep. 2021 0.0010 0.7420 0.628 32.800 8.44 1.10 0.00 0.12
skl (SKALE Network) 72,439 Mar. 2021 -0.0052 0.8148 0.022 11.673 0.31 0.04 0.19 0.18
snx (Synthetix Network Token) 87,599 Dec. 2020 -0.0003 0.7602 0.039 10.257 0.50 0.06 7.06 0.09
sol (Solana) 70,755 Jun. 2021 -0.0017 0.6460 0.084 12.256 15.20 1.08 68.14 0.04
storj (Storj) 69,457 Mar. 2021 -0.0053 0.7762 0.096 13.376 0.16 0.04 0.90 0.26
sushi (Sushi) 75,380 Mar. 2021 -0.0028 0.7009 -0.010 10.524 0.68 0.25 5.27 0.17
trb (Tellor Tributes) 73,914 May. 2021 -0.0030 0.7505 -0.023 13.102 0.05 0.03 27.77 0.16
tribe (Tribe) 40,963 Aug. 2021 -0.0079 0.4960 0.389 26.994 0.21 0.01 0.55 0.24
tru (TrueFi) 58,764 Aug. 2021 -0.0118 0.8603 0.376 15.483 0.07 0.01 0.19 0.26
uma (UMA) 95,853 Sep. 2020 -0.0089 0.7807 0.524 16.737 0.51 0.04 8.26 0.13
uni (Uniswap) 96,279 Sep. 2020 0.0001 0.6784 0.025 11.746 7.36 0.47 12.73 0.07
wbtc (Wrapped Bitcoin) 93,708 Oct. 2020 0.0008 0.3755 -0.059 13.031 4.82 0.15 34,096.31 0.10
wcfg (Wrapped Centrifuge) 23,013 Oct. 2021 -0.0385 1.2544 0.479 16.385 0.47 0.65
xlm (Stellar) 149,494 Mar. 2019 -0.0002 0.5553 -0.001 16.177 2.75 0.28 0.16 0.07
xrp (Ripple) 64,229 Feb. 2019 0.0005 0.5197 -0.109 20.925 15.87 1.79 0.28 0.06
xtz (Tezos) 129,846 Aug. 2019 0.0003 0.6640 0.023 11.500 1.80 0.14 2.60 0.15
xyo (XYO Network) 52,624 Sep. 2021 -0.0077 0.9156 0.566 16.526 0.08 0.00 0.02 0.25
yfii (DFI.money) 54,960 Sep. 2021 -0.0066 0.7134 -0.030 27.228 0.16 0.08 1,963.18 0.19
yfi (yearn.finance) 97,232 Sep. 2020 -0.0020 0.6745 0.014 11.974 0.66 0.24 21,157.01 0.07
zec (Zcash) 88,913 Dec. 2020 0.0000 0.6522 0.002 12.724 0.84 0.26 102.28 0.08
zen (Horizen) 59,632 Sep. 2021 -0.0049 0.5999 -0.160 12.542 0.23 0.02 30.28 0.15
zrx (0x) 160,121 Oct. 2018 -0.0010 0.6995 0.071 24.108 0.39 0.06 0.50 0.14
Avg.100 81,626 -0.0052 0.7370 0.187 16.443 5.44 0.49 773.57 0.19
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Table OB2
Summary statistics of cryptocurrency jumps (all sample coins).

This table summarizes the results of jump detection tests in cryptocurrency markets. To identify jumps,
we apply the approach of Lee and Mykland (2008) and adjust the intraday volatility patterns of individual
cryptocurrencies, following Lee and Wang (2020). Column Cryptocurrency lists the currency codes of the
100 sample cryptocurrencies. For each cryptocurrency, we provide the number of filtered jumps and the
jump frequencies relative to the available observations (% jp). For signed jumps, we report the 25th, 50th,
and 75th percentiles of positive and negative jump sizes in the last six columns. The numbers in columns
% jp, positive jump size, and negative jump size are in percentage terms. Row Avg.100 shows the averages
across the 100 sample cryptocurrencies.

Crypto Jump frequency Positive jump size (%) Negative jump size (%)
currency Total Positive Negative % jp 25p 50p 75p 25p 50p 75p

1inch (1INCH) 213 85 128 0.311 0.0243 0.0342 0.0438 -0.0421 -0.0299 -0.0234
aave (AAVE) 235 98 137 0.266 0.0209 0.0319 0.0414 -0.0367 -0.0270 -0.0189
ach (Alchemy Pay) 407 242 165 0.611 0.0245 0.0344 0.0539 -0.0433 -0.0305 -0.0221
ada (Cardano) 291 131 160 0.368 0.0171 0.0228 0.0310 -0.0280 -0.0204 -0.0139
agld (Adventure Gold) 338 181 157 0.608 0.0243 0.0340 0.0494 -0.0441 -0.0307 -0.0232
algo (Algorand) 451 183 268 0.341 0.0232 0.0362 0.0535 -0.0431 -0.0295 -0.0211
amp (Amp) 335 193 142 0.569 0.0227 0.0300 0.0421 -0.0402 -0.0291 -0.0205
ankr (Ankr Network) 364 160 204 0.463 0.0229 0.0337 0.0439 -0.0365 -0.0261 -0.0204
arpa (ArpaCoin) 186 93 93 0.377 0.0311 0.0407 0.0576 -0.0439 -0.0364 -0.0277
asm (Assemble Protocol) 647 328 319 1.190 0.0283 0.0391 0.0588 -0.0514 -0.0349 -0.0245
atom (Cosmos) 311 128 183 0.260 0.0217 0.0285 0.0409 -0.0373 -0.0263 -0.0193
avax (Avalanche) 171 65 106 0.285 0.0173 0.0280 0.0366 -0.0318 -0.0227 -0.0178
axs (Axie Infinity) 276 132 144 0.437 0.0240 0.0324 0.0434 -0.0367 -0.0265 -0.0213
badger (Badger DAO) 150 87 63 0.347 0.0263 0.0346 0.0479 -0.0359 -0.0283 -0.0224
bal (Balancer) 224 73 151 0.253 0.0211 0.0267 0.0342 -0.0370 -0.0281 -0.0222
band (Band Protocol) 293 122 171 0.296 0.0294 0.0369 0.0476 -0.0451 -0.0330 -0.0245
bat (Basic Attention Token) 225 72 153 0.304 0.0209 0.0264 0.0363 -0.0316 -0.0235 -0.0159
bch (Bitcoin Cash) 1,025 517 508 0.539 0.0170 0.0229 0.0320 -0.0306 -0.0221 -0.0164
bnt (Bancor) 284 104 180 0.365 0.0166 0.0224 0.0306 -0.0286 -0.0212 -0.0147
bond (BarnBridge) 490 285 205 0.842 0.0280 0.0368 0.0560 -0.0443 -0.0328 -0.0247
btc (Bitcoin) 2180 1037 1143 0.826 0.0083 0.0129 0.0192 -0.0212 -0.0141 -0.0094
btrst (Braintrust) 960 483 477 2.062 0.0149 0.0226 0.0377 -0.0322 -0.0201 -0.0137
chz (Chiliz) 253 121 132 0.363 0.0223 0.0310 0.0411 -0.0362 -0.0274 -0.0197
clv (Clover) 120 81 39 0.438 0.0334 0.0458 0.0643 -0.0493 -0.0339 -0.0237
comp (Compound Coin) 273 95 178 0.260 0.0253 0.0362 0.0438 -0.0407 -0.0305 -0.0235
coti (COTI) 182 74 108 0.298 0.0245 0.0311 0.0416 -0.0430 -0.0326 -0.0210
crv (Curve DAO Token) 207 89 118 0.264 0.0236 0.0313 0.0428 -0.0392 -0.0297 -0.0222
ctsi (Cartesi) 293 167 126 0.396 0.0278 0.0350 0.0476 -0.0442 -0.0323 -0.0245
dash (Digital Cash) 462 205 257 0.352 0.0180 0.0264 0.0365 -0.0338 -0.0249 -0.0177
ddx (DerivaDAO) 544 288 256 1.469 0.0196 0.0338 0.0512 -0.0452 -0.0311 -0.0183
doge (Dogecoin) 425 193 232 0.592 0.0184 0.0241 0.0338 -0.0288 -0.0218 -0.0164
dot (Polkadot) 180 58 122 0.254 0.0178 0.0258 0.0311 -0.0326 -0.0212 -0.0141
enj (Enjin Coin) 171 57 114 0.253 0.0306 0.0389 0.0513 -0.0418 -0.0310 -0.0209
eos (Eos) 675 307 368 0.500 0.0175 0.0228 0.0312 -0.0314 -0.0231 -0.0162
etc (Ethereum Classic) 968 466 502 0.599 0.0175 0.0252 0.0342 -0.0341 -0.0244 -0.0165
eth (Ethereum) 1318 639 679 0.574 0.0125 0.0185 0.0262 -0.0263 -0.0197 -0.0138
farm (Harvest Finance) 595 334 261 0.918 0.0203 0.0296 0.0435 -0.0375 -0.0246 -0.0180
fet (Fetch AI) 262 159 103 0.400 0.0303 0.0381 0.0521 -0.0468 -0.0343 -0.0251
fil (Filecoin) 423 217 206 0.476 0.0219 0.0290 0.0374 -0.0365 -0.0268 -0.0184
forth (Ampleforth Governance Token) 491 302 189 0.842 0.0295 0.0416 0.0623 -0.0465 -0.0350 -0.0271
grt (The Graph) 227 93 134 0.262 0.0281 0.0334 0.0456 -0.0449 -0.0344 -0.0231
gtc (Gitcoin) 180 83 97 0.324 0.0333 0.0429 0.0590 -0.0520 -0.0406 -0.0317
icp (Internet Computer) 222 90 132 0.298 0.0242 0.0326 0.0440 -0.0363 -0.0287 -0.0201
iotx (IoTeX) 395 201 194 0.610 0.0210 0.0315 0.0456 -0.0423 -0.0295 -0.0202
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Table OB2
Summary statistics of cryptocurrency jumps (all sample coins, continued).

Crypto Jump frequency Positive jump size (%) Negative jump size (%)
currency Total Positive Negative % jp 25p 50p 75p 25p 50p 75p

jasmy (Jasmy) 228 136 92 0.404 0.0311 0.0445 0.0613 -0.0464 -0.0336 -0.0270
keep (Keep Token) 574 291 283 1.082 0.0238 0.0348 0.0499 -0.0454 -0.0335 -0.0222
knc (Kyber Network) 416 190 226 0.359 0.0228 0.0335 0.0444 -0.0384 -0.0266 -0.0188
link (ChainLink) 366 151 215 0.263 0.0191 0.0258 0.0351 -0.0366 -0.0259 -0.0176
lpt (Livepeer) 283 127 156 0.429 0.0274 0.0382 0.0487 -0.0419 -0.0314 -0.0226
lrc (Loopring) 365 178 187 0.379 0.0254 0.0383 0.0545 -0.0422 -0.0333 -0.0228
ltc (Litecoin) 1091 526 565 0.503 0.0171 0.0235 0.0325 -0.0327 -0.0235 -0.0176
mana (Decentraland) 235 92 143 0.309 0.0200 0.0302 0.0425 -0.0349 -0.0242 -0.0169
mask (Mask Network) 174 82 92 0.303 0.0360 0.0479 0.0631 -0.0531 -0.0432 -0.0334
matic (Matic Network) 215 88 127 0.267 0.0181 0.0268 0.0374 -0.0371 -0.0254 -0.0171
mir (Mirror Protocl) 483 292 191 0.751 0.0244 0.0342 0.0503 -0.0426 -0.0308 -0.0229
mkr (Maker) 387 180 207 0.364 0.0169 0.0247 0.0332 -0.0311 -0.0239 -0.0172
mln (Enzyme) 807 396 411 1.197 0.0176 0.0291 0.0417 -0.0361 -0.0233 -0.0158
nkn (NKN) 309 124 185 0.411 0.0306 0.0376 0.0495 -0.0451 -0.0340 -0.0254
nmr (Numeraire) 965 536 429 1.004 0.0204 0.0326 0.0472 -0.0366 -0.0256 -0.0174
nu (NuCypher) 588 320 268 0.805 0.0291 0.0436 0.0621 -0.0543 -0.0376 -0.0239
ogn (Origin Protocol) 243 101 142 0.330 0.0230 0.0365 0.0506 -0.0427 -0.0310 -0.0216
omg (OmiseGO) 314 154 160 0.331 0.0235 0.0322 0.0460 -0.0393 -0.0275 -0.0175
orn (Orion Protocol) 397 236 161 0.670 0.0229 0.0321 0.0432 -0.0392 -0.0317 -0.0227
oxt (Orchid) 843 493 350 0.756 0.0220 0.0331 0.0476 -0.0426 -0.0281 -0.0198
perp (Perpetual Protocol) 316 173 143 0.584 0.0224 0.0297 0.0399 -0.0359 -0.0263 -0.0190
pla (PlayDapp Token) 474 214 260 0.750 0.0170 0.0294 0.0446 -0.0424 -0.0267 -0.0177
poly (Polymath) 690 343 347 1.098 0.0212 0.0304 0.0465 -0.0418 -0.0301 -0.0202
qnt (Quant) 225 116 109 0.320 0.0239 0.0313 0.0428 -0.0382 -0.0284 -0.0209
quick (QuickSwap) 664 336 328 1.035 0.0218 0.0315 0.0439 -0.0389 -0.0253 -0.0189
rad (Radicle) 380 223 157 0.946 0.0278 0.0402 0.0520 -0.0506 -0.0325 -0.0237
rai (Rai Reflex Index) 28 17 11 0.746 0.0005 0.0007 0.0018 -0.0024 -0.0013 -0.0005
rari (Rarible) 271 145 126 0.815 0.0328 0.0455 0.0664 -0.0598 -0.0442 -0.0309
ren (Ren) 281 120 161 0.300 0.0270 0.0386 0.0530 -0.0486 -0.0348 -0.0267
rep (Augur) 1048 532 516 0.874 0.0224 0.0320 0.0441 -0.0399 -0.0283 -0.0204
req (Request Network) 509 312 197 0.854 0.0227 0.0333 0.0514 -0.0408 -0.0271 -0.0198
rgt (Rari Governance Token) 399 208 191 1.153 0.0357 0.0493 0.0684 -0.0561 -0.0397 -0.0300
rlc (iExec RLC) 289 142 147 0.417 0.0258 0.0331 0.0441 -0.0419 -0.0313 -0.0208
rly (Rally) 337 185 152 0.757 0.0243 0.0410 0.0627 -0.0453 -0.0310 -0.0224
shib (Shiba Inu) 354 189 165 0.597 0.0200 0.0305 0.0456 -0.0354 -0.0252 -0.0182
skl (SKALE Network) 206 82 124 0.284 0.0277 0.0382 0.0498 -0.0451 -0.0350 -0.0262
snx (Synthetix Network Token) 212 97 115 0.242 0.0244 0.0338 0.0463 -0.0414 -0.0324 -0.0241
sol (Solana) 205 102 103 0.290 0.0200 0.0268 0.0338 -0.0390 -0.0288 -0.0203
storj (Storj) 257 106 151 0.370 0.0225 0.0349 0.0486 -0.0410 -0.0282 -0.0199
sushi (Sushi) 164 67 97 0.218 0.0242 0.0339 0.0481 -0.0417 -0.0303 -0.0246
trb (Tellor Tributes) 241 102 139 0.326 0.0287 0.0404 0.0505 -0.0455 -0.0351 -0.0237
tribe (Tribe) 455 235 220 1.111 0.0140 0.0204 0.0320 -0.0286 -0.0206 -0.0132
tru (TrueFi) 360 202 158 0.613 0.0304 0.0425 0.0551 -0.0515 -0.0380 -0.0275
uma (UMA) 694 400 294 0.724 0.0236 0.0348 0.0490 -0.0398 -0.0281 -0.0201
uni (Uniswap) 244 99 145 0.253 0.0217 0.0316 0.0424 -0.0383 -0.0290 -0.0214
wbtc (Wrapped Bitcoin) 509 237 272 0.543 0.0101 0.0141 0.0192 -0.0199 -0.0147 -0.0101
wcfg (Wrapped Centrifuge) 249 144 105 1.082 0.0348 0.0478 0.0680 -0.0656 -0.0446 -0.0336
xlm (Stellar) 594 248 346 0.397 0.0156 0.0207 0.0276 -0.0286 -0.0191 -0.0144
xrp (Ripple) 380 203 177 0.592 0.0133 0.0186 0.0261 -0.0295 -0.0208 -0.0130
xtz (Tezos) 444 197 247 0.342 0.0205 0.0283 0.0399 -0.0333 -0.0260 -0.0180
xyo (XYO Network) 330 184 146 0.627 0.0273 0.0387 0.0523 -0.0416 -0.0307 -0.0219
yfii (DFI.money) 377 170 207 0.686 0.0220 0.0322 0.0492 -0.0448 -0.0312 -0.0211
yfi (yearn.finance) 253 95 158 0.260 0.0241 0.0331 0.0451 -0.0391 -0.0261 -0.0205
zec (Zcash) 261 92 169 0.294 0.0195 0.0270 0.0412 -0.0344 -0.0251 -0.0180
zen (Horizen) 221 85 136 0.371 0.0197 0.0264 0.0367 -0.0365 -0.0264 -0.0202
zrx (0x) 840 364 476 0.525 0.0188 0.0278 0.0431 -0.0392 -0.0255 -0.0183
Avg.100 420 206 214 0.550 0.0228 0.0320 0.0446 -0.0395 -0.0285 -0.0205
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O. Appendix C. Sample construction and data filtering procedure

As noted in the introduction, cryptocurrency markets are relatively new and rapidly

growing. We rely on intraday data that are long enough across multiple cryptocurrencies to

meet our goal of analyzing return predictability. Because Kaiko provides reliable intraday

data and because existing studies such as Makarov and Schoar (2020) employ intraday data

from Kaiko, we collect data from Kaiko.

To construct an unbiased sample with the largest cross-section, we examine all cryptocur-

rencies that have available data longer than nine months and are traded on Coinbase, which

is ranked as the top exchange in Kaiko’s overall evaluation (e.g., quality and popularity).46

The minimum sample period is chosen because our variance measures require estimation

horizons. Kaiko’s order book data provide intraday bid and ask quotes (and volumes) for

198 cryptocurrencies (as of 2022). We exclude stable coins (e.g., Tether) and cryptocurren-

cies with only a short sample period. Adopting simple coin selection criteria, our sample

comprises 100 cryptocurrencies with various characteristics and includes a delisted coin.

To filter out 15-minute interval data, we follow two papers that study sovereign currency

markets (i.e., Lee and Wang, 2019, 2020) because sovereign currency markets share many

similar characteristics with cryptocurrency markets. For example, both cryptocurrency and

sovereign currency markets trade continuously throughout the day. Specifically, we remove

quotes that do not change for three consecutive time intervals because these quotes might

be inactive. We perform this filtering process for bid and ask quotes and then construct mid

46An early version of this paper used the data of cryptocurrencies on Bitfinex and Bittrex and shows results
consistent with those in this paper. To avoid concerns resulting from the different operating mechanisms of
various exchanges, this paper employs data only from Coinbase because this exchange provides a wider cross
section than the other two exchanges.
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quotes (i.e., mid= 0.5× (bid+ask)).

Using the mid quotes, we compute 15-minute log returns (i.e., ri,t(j) = ci,t(j) − ci,t(j−1),

where ci,t(j) is the logarithm of the mid quote of the i-th cryptocurrency at time t(j)).

Following Andersen et al. (2001a) and Lee (2012), who suggest potential problems resulting

from bid-ask bounce effects, we filter out observations when large returns are canceled out by

subsequent large returns with the opposite sign (i.e., the sum of two consecutive returns is

close to zero, and the magnitude of each return is large). To mitigate the concern that small

numbers of extreme observations drive the results, we remove extreme intraday returns if the

absolute z-statistics are greater than seven. In addition, we exclude observations belonging

to days that have fewer than 30 observations.
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O. Appendix D. Comparison with alternative measures

Our positive jump variance measure is comparable to the relative signed jump (RSJ)

variation measure of Bollerslev, Li and Zhao (2020), which is defined as the difference be-

tween the up and down semivariances divided by the total return variation. These authors

find a clear negative relation between the RSJ measure and the average future returns in

stock markets. Therefore, the return predictability of positive jump variances may appear

consistent with that of the RSJ measure. However, using the RSJ measure, we have difficulty

distinguishing whether the significant negative relation results from positive jump or nega-

tive jump variation (because the RSJ measure combines these two jump variations). Using

our separated positive and negative jump variance measures, we can make the distinction,

which can provide the additional benefit of identifying what drives the effects.

Instead of considering the relative differences in semivariances, one can still consider

signed jump variations based on signed semivariances by subtracting half of the bipower

variation. In this appendix, we confirm the role of positive jump variances in predicting

cryptocurrency returns using this alternative measure and compare our findings. To this

end, in Equation (6), we replace positive and negative jump variances with positive and

negative semivariances minus half of the bipower variation.

We report the results in Table OD. As column (I) shows, the alternative positive jump

variances also provide significantly negative coefficients with the control of jump-robust and

alternative negative jump variances. In column (II), the return predictability of the alterna-

tive positive jump variance measures is robust to controlling for lagged returns and market

capitalization. To compare our positive jump variance measure with the alternative mea-
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sures, we perform a horse race regression in columns (III) and (IV). Interestingly, our positive

jump variances have significantly negative coefficients, while the alternative measures lose

significance. This finding can occur because our measures are estimated with only positive

jumps and capture large price changes more effectively than do the alternative measures.
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Table OD
Comparison of positive jump variances with alternative jump variances.

This table shows the return predictability with alternative jump variance measures, which is compared
with that with positive jump variances. We employ the following FMB regression:

rxi,w+1 = γ0,w + γ1,wJV
(+)
i,w + γ2,wJV

(−)
i,w + γ3,wJRVi,w + c′wXi,w + ϵi,w+1,

where rxi,w is the excess return of cryptocurrency i in week w. JV
(+)
i,w , JV

(−)
i,w , and JRVi,w are the positive

jump, negative jump, and jump-robust variances, respectively. These decomposed variances are estimated
from the previous month of observations (i.e., observations from week w − 3 to week w). The alternative
positive (negative) jump variance is defined as the positive (negative) semivariance minus half of the bipower
variation (Bollerslev, Li and Zhao, 2020). We first use the alternative jump variances in the regressions and
then employ our jump variance measures as defined in Section 2. Xi,w is the vector of control variables,
such as lagged excess returns and natural logarithmic market capitalization. In this table, we report the
time-series averages of the estimated coefficients and the corresponding t-statistics. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

(I) (II) (III) (IV)

Constant 0.013 -0.045* 0.009 -0.039
t-stat 1.60 -1.77 1.07 -1.57

Positive variance - 0.5BV -1.271** -1.526** 0.690 0.660
t-stat -4.15 -4.15 0.95 0.92

Negative variance - 0.5BV -0.322 0.118 0.502 1.402**
t-stat -0.74 0.26 0.82 2.28

Jump-robust variance 0.131 0.209* -0.372* -0.463**
t-stat 1.15 1.71 -1.85 -2.10

Positive jump variance -1.741*** -1.744***
t-stat -2.83 -2.98

Negative jump variance 0.612 0.002
t-stat 0.87 0.00

Lagged return 0.018 0.010
t-stat 1.04 0.60

Market capitalization 0.002*** 0.002**
t-stat 2.69 2.32

Adj. R2 0.197 0.262 0.289 0.337
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O. Appendix E. Relationship between characteristics and prices

Cryptocurrencies with higher total and positive jump variances have lower returns in the

subsequent week. The characteristics that drive this result can be associated with contempo-

raneous price increases. To investigate this possibility, we contemporaneously regress excess

returns or our variance measures on characteristic variables. To be consistent with Section 5,

we use (log) market capitalization, (log) daily trading volumes, (log) futures volumes, bid-ask

spreads (BASs), numbers of buy opinions on Twitter, and retail trading proportions (RTPs).

These characteristic variables are estimated with the previous month of observations at the

end of every week.

As Table OE shows, the prices of cryptocurrencies with low market capitalization and

trading volumes tend to increase before they decrease in subsequent weeks. Because positive

jumps capture large price increases, regressions that use positive jump variances as dependent

variables provide results similar to those using excess returns. In addition, total and positive

jump variances provide similar relationships. Interestingly, total and positive jump variances

are positively related to futures volumes, which confirms that such cryptocurrencies do not

relatively suffer from short-selling constraints.
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Table OE
Contemporaneous relationship between characteristics and price increases.

This table shows the results of regressing excess returns, total variances, or positive jump vari-
ances on contemporaneous market capitalization, daily trading volumes, futures volumes, bid-ask
spreads (BASs), numbers of buy opinions on Twitter, and retail trading proportions (RTPs).
Characteristic variables are estimated with the previous month of observations at the end of
every week. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Excess returns Total variances Pos. jump variances
(I) (II) (III) (IV) (V) (VI)

Constant -0.143*** 0.092 -0.092*** -0.795*** 0.003 -0.014**
t-stat -5.51 1.20 -3.59 -11.23 1.11 -2.48

Log market capitalization -0.011*** -0.037*** -0.048*** -0.035*** -0.002*** -0.003***
t-stat -6.37 -10.79 -20.00 -9.25 -14.19 -8.89

Log trading volumes 0.016*** 0.021*** 0.049*** 0.076*** 0.002*** 0.003***
t-stat 9.09 6.85 19.38 17.83 13.14 12.90

Log futures volumes -0.001 0.009*** 0.007*** 0.001*** 0.0005*** 0.0003*
t-stat -1.15 5.03 11.79 0.66 9.99 1.92

BAS -8.969*** -9.201*** 17.907*** 22.421*** -0.231** -0.254***
t-stat -6.17 -5.18 15.15 21.15 -2.40 -2.88

Log Twitter buy 0.005*** 0.000 -0.007*** -0.001 0.000 0.001***
t-stat 2.87 0.17 -4.30 -0.59 0.01 4.59

RTP 0.006 0.016* 0.004 -0.010 0.000 0.000
t-stat 1.00 1.86 0.44 -1.00 0.42 0.32

Year/coin fixed effects No Yes No Yes No Yes

Adj. R2 0.082 0.191 0.289 0.592 0.129 0.347
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O. Appendix F. Variable definition

In this appendix, we provide the definitions of the variables considered in our analyses.

Given the notation established in Section 2, we follow Amaya et al. (2015) for the defini-

tions of realized moments that can be estimated with intraday return data. We obtain the

realized variance as Equation (5), which defines the total variance. The realized volatility is

computed as the square root of the realized variance as follows:

V oli,w =
√
V ari,w. (11)

We also consider ex post realized higher moments. The realized skewness is again based on

cubed intraday returns standardized by the realized variance as follows:

Skewi,w =

√
N

∑
t(j)∈Ww

r3i,t(j)

V ar
3/2
i,w

, (12)

where N is the total number of observations over the estimation window for week w. When

this realized skewness measure is negative (positive), we can interpret the asset return dis-

tribution as having a left (right) tail that is fatter than the right (left) tail. Similarly, we

consider the realized kurtosis defined as follows:

Kurti,w =
N

∑
t(j)∈Ww

r4i,t(j)
V ar2i,w

. (13)

This measure is expected to capture the extremes of the return distributions.

For individual cryptocurrencies, using the notation in Sections 2 and 3, we compute
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(percentage) BASs defined as follows:

BASi,w =
1

N

∑
t(j)∈Ww

bidi,t(j) − aski,t(j)
midi,t(j)

, (14)

where bidi,t(j) (aski,t(j)) represents the bid (ask) quote of cryptocurrency i at time t(j).

midi,t(j) is the mid quote (i.e., 0.5× (bidi,t(j) + aski,t(j)) and N is the total number of obser-

vations over the estimation window for week w.

To consider market conditions for robustness checks, we employ the overall volatility

and illiquidity measures in cryptocurrency markets. We compute the cryptocurrency mar-

ket volatility (CV ol) by following the approach of calculating the global foreign exchange

volatility of Menkhoff et al. (2012). Specifically, the cryptocurrency market volatility in week

w is defined as

CV olw =
1

N

∑
t(j)∈Ww

κj∑
i

|ri,t(j)|
κj

, (15)

where κj is the number of available cryptocurrencies at time t(j). For the illiquidity measure,

we modify the approach of Amihud (2002) because we use intraday data for weekly analyses,

while the author uses daily data for monthly analyses. We first estimate the weekly illiquidity

for individual cryptocurrencies as follows:

ILLIQi,w =
1

N

∑
t(j)∈Ww

|ri,t(j)|
Vi,t(j)

, (16)

where Vi,t(j) is the dollar volume of cryptocurrency i from time t(j − 1) to t(j). Then, we

take the average of individual illiquidity measures across available cryptocurrencies.

To examine retail investors’ transactions, we use the retail trading proportion (RTP) of

18



Han and Kumar (2013). Using 5-minute trading volumes, we define the threshold of dollar

transaction volumes for retail trading activities. Specifically, we use the 90th percentile of

all cryptocurrencies’ 5-minute trading volumes, which is 22 million dollars. If transaction

volumes are lower than the bar, the transaction is classified as retail trading. Our threshold

allows approximately 90% of total trading volume to be retail trading volume because 90-

95% of Coinbase revenues originate from retail investors. We employ the previous month of

trading volume data to compute weekly RTP measures.
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