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Management consultants increasingly recommend that internal R&D be outsourced; however,
little is known about the substitution or complementarity between internal and external R&D.
Through structural estimation of a flexible innovation production function we provide a deeper
understanding of firm-level drivers of complementarity between these two types of investments.
Our analysis is based on a unique panel data set on the R&D and in-licensing expenditures
of pharmaceutical firms. Our results suggest that internal R&D and in-licensing are neither
complements nor substitutes. We find that the degree of complementarity is enhanced for firms
with stronger absorptive capacity, economies of scope, and licensing experience.

1. Introduction

Markets for technology have been extensively studied; however, there still remains little
evidence about the determinants of technology demand in terms of the relationship
between internal and external R&D (Arora and Gambardella, 2010). Firms choose their
level of integration within the value chain, but the extent to which they adopt different
R&D strategies as substitutes or complements remains uncertain. Some firms, such as
Morgan Stanley, have advocated a radical shift for the management of R&D in certain
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industries (Morgan Stanley, 2010; Tollman, 2011). In particular, they argue that the phar-
maceutical industry should abandon its current R&D model and fully adopt a “search
and development” (S&D) model. Under an S&D framework, firms would abandon all
internal research and focus solely on development. Thus, 100% of a firm’s drug can-
didates would come from external licensing. Although full adoption of an S&D model
is an extreme position, some pharmaceutical companies have openly acknowledged a
move toward more frequent engagement in external licensing. For example, in 2009,
GlaxoSmithKline terminated its legendary neuroscience program in order to free up
capital to meet its stated goal of allocating 50% of its R&D budget to external projects
(Knowles and Higgins, 2011).

The S&D model implicitly suggests that internal and external R&D are substitute
activities in the sense that implementation of one activity reduces marginal return on
the other activity. Complementarity would arise if an increase in one of these activities
increased the marginal returns from the other activity (Milgrom and Roberts, 1990).
Substitution between these activities is consistent with the extreme case of backward
integration, whereby firms rely exclusively on internal R&D investments. Backward
integration dominated the organization of R&D in the past century. Substitution is also
consistent with the opposite case, whereby a nonintegrated firm relies exclusively on
external technology, perhaps yet to be developed, as in the case of the S&D model.
Ultimately, the decision to choose between these two types of R&D is influenced by
whether synergies exist between them. For example, internal R&D and licensing could
fulfill quite distinct yet complementary purposes. R&D can serve functions not directly
tied to the creation of new products, such as concept exploration, hypothesis testing, and
market credibility, which are all activities that can complement the investment made on
a technology licensed from other firms or institutions.

Our review of the literature suggests that empirical evidence does not conclusively
support substitution or complementarity across all industry settings. Moreover, there
is surprisingly little research on the contextual factors that determine whether these
two activities are complements or substitutes. Accordingly, the major objective of this
paper is to provide a deeper understanding of the firm-level drivers that determine the
degree of complementarity between internal and external R&D. To accomplish our goal,
we provide structural estimates of the degree of complementarity or substitutability
between these two types of R&D investments that vary across firms.

Our study is focused on the global pharmaceutical industry, which is an ideal
research setting for several reasons. In the pharmaceutical industry, internal productivity
failures and the lack of capabilities in emerging technology, coupled with an increase
in new external opportunities, have influenced the balance between internal R&D and
in-licensing strategies (Malerba and Orsenigo, 2000). Furthermore, internal and external
R&D are considered major drivers of firm performance (Scherer, 2007). Finally, the
detailed availability of longitudinal measures relating to both internal and external
research activities and their product innovation output allows us to directly analyze the
marginal productivity of these investments and drivers.

Our results suggest that, on average, internal R&D and in-licensing investments
are neither complements nor substitutes in the pharmaceutical industry. However, we
show that the degree of complementarity is enhanced for firms with stronger absorp-
tive capacity, economies of scope, and past licensing experience. Taken together, our
results highlight the complexity of this relation and suggest that a simple categorization
(complement or substitute) may be misleading. In such a context, the framework pre-
sented in this paper appears to be valuable, because it recognizes the importance of
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heterogeneity across firms in terms of affecting complementarity of internal and external
R&D capabilities within narrowly defined industries. Conditional on data availability,
such an approach could be readily applied by other researchers to examine similar issues
within various industry contexts.

The remainder of the paper is organized as follows: Section 2 discusses the rel-
evant literature and theoretical framework, Section 3 introduces our empirical model,
Sections 4 and 5 present data and empirical results, respectively, and Section 6 concludes.

2. Literature Review

2.1 Complements or Substitutes?

Firms must continuously invest in the development of new products in order to stay
competitive. Sources of innovative knowledge are no longer limited to internal invest-
ments, but they include more significant contributions from external sources, such as
licensing. The importance of technology licensing has long been recognized in the lit-
erature on industrial organization. However, past research on markets for technology
has mostly focused on the supply-side drivers of licensing decisions (Bresnahan and
Gambardella, 1998; Arora et al., 2001; Arora and Ceccagnoli, 2006). Less attention has
been paid to the incentive to buy technology in the market, particularly on the rela-
tionship between internal and external R&D (Arora and Gambardella, 2010). This is an
important gap in the literature, because technology buyers in most high-tech industries
conduct extensive internal R&D, which could alter their external investment strategy. If
it does, this creates a potential tension between developing technology internally and
obtaining it externally. This tension raises the question of whether internal and external
R&D investments are complements or substitutes. Although a few studies have recently
attempted to address this question, results to date are not conclusive.

Several empirical studies support the substitution viewpoint. Pisano’s (1990) find-
ings suggest that substitution is driven by transaction costs and their influence on the
decision to externally expand R&D. Laursen and Salter (2006) find that internal R&D in-
vestments negatively moderate the relationship between external knowledge (licensing)
and innovation performance. In a study on investments in advanced Internet technolo-
gies, Forman et al. (2008) find a substitute relationship between internal firm resources
(e.g., programmers) and external technologies. In a model of technology adoption, they
find that the marginal contribution of internal firm resources tends to diminish within
large urban areas. It is, therefore, possible that the external resources available in cities
are partial substitutes for both establishment-level and firm-level internal resources.

Complementarity between internal and external R&D, on the other hand, implies
that these two forms of R&D coexist and are interdependent. Unlike the substitute rela-
tionship, complementarity implies that firms acquiring external technologies must also
continue to engage in internal R&D. Several studies provide evidence in support of com-
plementarity (Lowe and Taylor, 1998; Glaeser et al., 2000; Cassiman and Veugelers, 2006;
Tsai and Wang, 2008). Cassiman and Veugelers (2006), for example, provide empirical
evidence in support of complementarity between internal R&D and external technology
acquisition strategies (these include licensing, alliances, and acquisitions). In a study
of Taiwanese electronics manufacturing, Tsai and Wang (2008) demonstrate that exter-
nal technology acquisition does not contribute to firm performance per se. They find,
however, that external acquisition of technology has a positive effect on performance
when interacted with internal R&D.
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Other empirical evidence, consistent with complementarity, suggests that exter-
nal know-how can quickly bring new resources to a firm during different stages of
production. New knowledge, such as externally generated patents or partially devel-
oped compounds, can boost the development process and potentially increase expected
revenues. Along these lines, Higgins and Rodriguez (2006) find that internal knowl-
edge is combined with technology acquisition to fill research pipeline gaps. Danzon et
al. (2007) argue that firms acquire technology in order to replenish pipeline gaps and
respond to excess capacity generated by patent expirations. Similarly, Chan et al. (2007)
find that firms engage in the external technology market as a result of downstream
cospecialized complementary assets.

In contrast, Vega-Jurado et al. (2009) find no evidence of complementarity nor
substitution in the Spanish manufacturing sector. These authors analyze the effect of
external knowledge sourcing strategies on the development of both product and process
innovation for a sample of innovative Spanish firms. Their results suggest that firms rely
on both internal R&D and external knowledge sources, but that the two activities do not
have synergistic effects.

In sum, previous research demonstrates the importance of effective internal R&D
and external technology acquisition strategies for superior economic performance. How-
ever, there is mixed evidence and limited understanding concerning the relationship
between these two types of activities, especially their conditioning drivers. Moreover,
the scope of prior work has often been limited by data availability, as cross-sectional
survey data allow—at best—only analysis of discrete choices of technology that a firm
could “make” or “buy” at a specific point in time.

2.2 Drivers of Complementarity

Our reading of the literature suggests that firm-level drivers of the degree of comple-
mentarity or substitutability between internal R&D and in-licensing can be grouped
into factors determining a firm’s absorptive capacity, economies of scope, and licensing
experience.

2.2.1 Absorptive Capacity
Absorptive capacity reflects a firm’s ability to identify, assimilate, and exploit knowledge
from the environment (Cohen and Levinthal, 1989). Arora and Gambardella (1994)
formally link this concept to a firm’s external technology acquisition strategy. They
emphasize two components of absorptive capacity that are relevant to the acquisition of
external technology through alliances. One component is the ability to evaluate external
technology, which depends on a firm’s upstream research capability. Another component
is a firm’s ability to utilize external technologies, which depends on its technological and
development skills.

We build on Arora and Gambardella’s contribution by suggesting that both types of
firm capabilities tend to be associated with a stronger complementarity between internal
and external R&D activities. On one hand, an increase in the cumulated investment in
internal R&D, especially when the type of R&D is more basic in nature, tends to generate
scientific capabilities, which in turn makes in-licensing more efficient, as it enhances the
selection of external technology projects. On the other hand, higher levels of internal
R&D, especially when R&D is more geared toward design or development of new
products increases the returns from external technology investments by facilitating the
effective integration of external technology within the buyer’s value chain. We will
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exploit this distinction between the ability to evaluate and utilize external technology in
our empirical setting in order to guide our empirical measurement and analysis.

2.2.2 Economies of Scope
A second set of drivers of complementarity between internal R&D and in-licensing relate
to the concept of economies of scope, defined as the cost savings that are generated from
adopting different activities in multiple markets (Panzar and Willig, 1981; Henderson
and Cockburn, 1996). The advantage gained through exploitation of economies of scope
arises from sharing or jointly utilizing production inputs such as technological resources.
When technologies are licensed for use in one market, they can freely or at reduced
additional cost be readopted to other markets or products. Therefore, the opportunity to
share technologies across different projects facilitate the generation of synergies among
them by creating links between resources that would otherwise remain separate.

Although the logic of economies of scope typically refers to the benefits of related
diversification in terms of cost advantages, these benefits can also be formulated in terms
of products and services. The external knowledge developed for a given technological
area may potentially be beneficial to the development of products in other technological
areas. Given that knowledge can be articulated and codified within the firm (Zollo and
Winter, 2002), the external knowledge acquired for a specific project can be utilized to
improve the current development of products in other technological areas.

Following this logic, we expect that firms with broader experience across differ-
ent technological areas to be characterized by a stronger degree of complementarity
between internal R&D and in-licensing. This implies that such firms may be using
knowledge developed in different fields additively in the innovative process (Hender-
son and Cockburn, 1996). Complementarities may arise if technologies purchased from
external sources have different technical specifications, and thus are useful to fulfill in-
ternal capability gaps. In such cases, economies of scope should increase the synergetic
combination of internal and external inputs.

2.2.3 Licensing Experience
The logic underlying the effect of prior licensing experience on the complementarity be-
tween internal and external R&D is similar, in many respects, to the concept of absorptive
capacity examined earlier. Licensing experience refers to the cumulative experience in
leveraging external knowledge, whereas absorptive capacity is based on the cumulative
experience developed by investing in internal knowledge. Under this view, collabora-
tive agreements, such as licensing, joint ventures, and acquisitions, may enhance a firm’s
ability to more effectively combine internal and external technologies.

The literature suggests that firms with prior licensing experience are more likely
to have developed effective communication mechanisms, more flexible organizational
structures, and other successful organizational routines that can facilitate the integration
of external technologies within existing R&D structures (Zollo and Winter, 2002). Indeed,
firms vary in the extent to which their organizational structure supports the management
of technology acquisition. For example, Pfizer has recently invested in creating a new
division called “the Research Network Initiative,” tasked to make external technologies
from their various partnerships more accessible to internal scientists.1

Furthermore, similar to the effect of scientific capabilities highlighted in the pre-
vious section, firms with more extensive licensing experience are better able to identify

1. http://www.labnews.co.uk/comment/big-ask/dating-agency-scientists-andrew-mcelroy/. Accessed
June 6, 2012.
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valuable external technologies that best fit their internal R&D efforts, thus increasing
the synergies between the two activities.

3. Model Description and Estimation Procedure

3.1 Translog Innovation Production Function

We assume that at time t each firm j is characterized by an innovation production
function (n), which depends on investments for the acquisition of external technology
(Re), internal R&D expenditure (Ri), and a constant term that represents firm-specific
effects as well as other exogenous components affecting the productivity of resources
invested in innovation (S):

njt = f
(
Ri jt, Re jt , Sjt

)
. (1)

Hereafter, the firm and time subscripts are omitted for simplicity.
We adopt a Translog specification, which is the most widely used flexible functional

form (Greene, 2012).2 The Translog specification is defined as follows:

n = Rαi
i Rαe

e e S+βi (LnRi )2+βe (LnRe )2+γie LnRi LnRe+u, (2)

where Ri and Re represent internal and external research, respectively; S is the exoge-
nous component of the production function; αi, αe, βi , βe , and γie are parameters to be
estimated, and u is the econometric disturbance. We estimate the Translog by taking
logarithms of both sides of equation (2), which allow us to employ linear estimation
techniques. Equation (2) shows that it is possible to innovate even if a firm does not
invest in these two types of R&D, due to the effect of an exogenous component, S,
which might include factors such as knowledge flows from other sources (e.g., firms or
universities).

The marginal productivity of internal and external R&D using the Translog speci-
fication can be written as follows:
dn
d Ri

= n
Ri

(αi + 2βi LnRi + γieLnRe ) = n
Ri

Zi , (3)

dn
d Re

= n
Re

(αe + 2βeLnRe + γieLnRi ) = n
Re

Ze , (4)

where Zi and Ze in (3) and (4) represent the elasticity of the number of innovations
with respect to internal and external R&D, respectively. We then compute the degree of
complementarity or substitutability by estimating the following cross-partial derivative:

d2n
d Ri d Re

=
[

n
Re

(αe + 2βeLnRe + γieLnRi )
Zi

Ri
+ nγie

Ri Re

]
= n

Ri Re
(Zi Ze + γie ) = n

Ri Re
Z̃,

(5)

2. We empirically tested the adoption of the Translog functional form by estimating another flexible
functional form, the constant elasticity of substitution (CES)-Translog specification (Pollak et al., 1984). This
is a functional form that is compatible with a wider range of substitution possibilities than the Translog and
which nests Cobb-Douglas, CES, and Translog production functions. By testing its estimated coefficients, we
found that both the Cobb-Douglas and the CES specifications were rejected, whereas the Translog was not.
Empirical estimations and the coefficient tests are available in the online Appendix. We opted to use the
Translog rather than CES-Translog due to the nonlinearities involved in its estimation, which did not allow us
to achieve convergence in several of the specifications that we present in this paper.
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where Z̃ = (Zi Ze + γie ) and all other variables are as defined above. In contrast to the
signs for CES and Cobb-Douglas, the sign of d2n

d Ri d Re
for the Translog functional form is less

intuitive. Although the values of Ri, Re, and n are positive, the sign of Z̃ is ambiguous
and we cannot predict ex ante whether internal and external R&D investments are
complements or substitutes. However, we can estimate the predicted value of n and Z̃
for each firm-year by estimating the log-log specification of the innovation production
function expressed by equation (2). We then evaluate d2n

d Ri d Re
for representative (mean or

median) values of Ri, Re, and the exogenous predictors of n, with particular attention to
the firm-level drivers of complementarity summarized in Section 2.2.

There are several advantages of using a Translog specification to analyze input sub-
stitutability (Berndt and Christensen, 1973). First, it is a flexible functional form that is
considered a second-order Taylor series approximation to a general, but unknown “true”
production function. Second, its flexible functional form allows us to test for comple-
mentarity versus substitution using the second-order derivative of innovative output
with respect to internal and external R&D. With the Cobb-Douglas, specification inputs
are necessarily complements, in the sense that the marginal productivity of any one in-
put increases as the other inputs increase. Moreover, with the Translog functional form
we can analyze firm-level drivers of complementarity because input substitutability is
allowed to vary with the quantity of inputs as well as other firm characteristics. Third,
it represents a specification that is linear in the parameters, which allows estimation
through least square methods. Finally, the Translog specification imposes fewer restric-
tions on the production function and substitution elasticities relative to Cobb-Douglas,
thus reducing potential biases in estimated coefficients.

Estimates using the Translog production function should be used with caution,
however. Indeed, a common disadvantage of the Translog is the interpretation of the
coefficients given the nonlinearity of the relationship between inputs. Because of this, our
main focus in the interpretation of the results is the sign of the cross-partial derivatives
described later. In addition, the Translog production function with large number of
inputs may suffer from collinearity because of the large number of parameters to be
estimated.3 In our model, we limit the number of innovation inputs to two: internal
R&D and licensing investments, thus reducing the level of complexity of the model and
the potential collinearity between variables. Finally, the Translog production function
may not be a satisfactory approximation to the true production function over the full
range of input levels considered. The error of approximation to the unknown production
function is assumed to be embodied in the econometric disturbance.

3.2 Empirical Strategy

Our estimation procedure involves two steps. First, we estimate the Translog specifi-
cation modeled by equation (2). Second, we can compute the sign and magnitude of
the cross-partial derivative defined in equation (5). An evaluation of this cross-partial
derivative suggests that the cross-partial (5) does not necessarily have the same sign
of γie , for example, the coefficient associated with the interaction between the logs of
internal and external R&D.

The production function presented in the previous sections can be used in the
context of a profit maximization model with endogenous internal and external R&D

3. If the number of production inputs equals n, the number of estimated parameters is equal to n(n+3)
2 .
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investment levels (available in the online Appendix).4 Such a model generates exclusion
restrictions that imply that variables affecting the optimal level of internal and external
R&D do not affect the innovation production function other than through Ri and Re. This
provides information about instrumental variables that can be utilized in order to deal
with the endogeneity of internal and external R&D. The source of endogeneity comes
from unobserved factors that may drive both the production of innovations as well as
the efficiency of internal and external R&D investments. As discussed more fully below,
we use exogenous drivers of the expected value of an innovation and organizational
factors driving the acquisition of external technology as instruments for internal and
external R&D investments in the innovation production function. We also experiment
using controls for unobserved firm-specific heterogeneity to test the sensitivity of the
results to our identification strategy.

4. Data

Our sample is based on a unique longitudinal data set built from a variety of sources. We
began by creating a comprehensive list of global pharmaceutical firms from Pharmapro-
jects that were active in drug development at any point during 1997–2005. Data include
both the timeline of drug development (e.g., the various stages of clinical trials, FDA
approval, and project discontinuations) and detailed information on the potential size
of the market.

Next, we matched our list of firms with Compustat, collecting data on firm sales,
total R&D expenditures, and the number of firm employees. Licensing information was
obtained from Deloitte ReCap and includes data on royalties, upfront payments, and
milestones. Finally, from IMS MIDASTM we obtained product-level promotion expen-
ditures as well as number of competitors in each therapeutic category. All financial
variables are in year 2000 constant US dollars. Descriptive statistics are provided in
Table I and correlations are presented in Table II.

Our final sample consists of 94 pharmaceutical firms active in drug development
between 1997 and 2005. Of those, 85% of the firms were located in North America
and 12% were located in Europe and the United Kingdom. The average firm has ap-
proximately 11 compounds in its pipeline. Our firms, like most major pharmaceutical
companies, operate in a number of therapeutic areas. In the sample, the average num-
ber of therapeutic categories per firm is six. Almost one-third of the compounds under
development are focused in three therapeutic areas: central nervous system, alimentary
tract and metabolism, and cardiovascular.

4.1 Dependent Variables

4.1.1 Product Pipeline
Our dependent variable is the firm-year product pipeline, which represents a firm’s in-
novative output. The importance of studying a firm’s pipeline is based on the idea that
compounds are developed in stages, all of which require different resources and capa-
bilities in order to reach commercialization. These resources can be developed internally
or acquired through the markets for technology. Using data from Pharmaprojects, we
generate a yearly pipeline stock by cumulating the number of FDA-approved drugs and

4. The model has a structure and assumptions similar to the optimization model of Arora et al. (2008).
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Table I.
Descriptive Statistics

Variable Mean SD Min Max

Product pipeline 1.764 1.184 0 5.029
In-licensing (deflated, Mil. $; stock) 239.443 633.850 0 5,184.333
Internal R&D (deflated, Mil. $; stock) 1,345.112 3,195.205 0.473 28,756.440
Industry promotion (deflated, thousands $) 795,625 747,352.8 0 3,271,951
Trademarks (stock) 11.590 34.003 0 426
Expected market size (deflated, thousands $) 2,158.068 1,556.527 0 10,217.840
Competitors 1,308.882 578.575 201 2,626
Firm size (hundreds) 13.841 26.717 0.001 122
Scientific publications (stock) 450.178 1,232.055 0 11,440
North America 0.849 0.359 0 1
Europe 0.116 0.320 0 1
Other 0.035 0.184 0 1
Number of ATCs 6.781 5.782 1 16
% Licensed compound (Phase 1) 0.029 0.076 0 1
% Licensed compound (Phase 2) 0.055 0.129 0 1
% Licensed compound (Phase 3) 0.056 0.139 0 1
Main therapeutic areas

ATC A 0.112 0.316 0 1
ATC B 0.023 0.151 0 1
ATC C 0.095 0.294 0 1
ATC D 0.066 0.249 0 1
ATC G 0.050 0.217 0 1
ATC H 0.005 0.072 0 1
ATC J 0.102 0.302 0 1
ATC K 0.009 0.095 0 1
ATC L 0.043 0.203 0 1
ATC M 0.031 0.174 0 1
ATC N 0.145 0.352 0 1
ATC P 0.001 0.036 0 1
ATC R 0.061 0.240 0 1
ATC S 0.030 0.171 0 1
ATC T 0.009 0.095 0 1
ATC V 0.013 0.114 0 1

N = 767.

those being developed for each firm in our sample.5 To account for development uncer-
tainty, compounds are weighted by average probabilities of successfully reaching Food
and Drug Administration (FDA) approval, conditional on their phase of development
(Grabowski, 2002). In this way, we provide greater weight to later-stage drug candidates
(Higgins and Rodriguez, 2006). This is consistent with our objective to compare the
efficiency of internal R&D and in-licensing in obtaining new, marketable products.

4.2 Independent Variables

4.2.1 Internal R&D Investments
We compute internal R&D investments using data from Compustat and Deloitte Re-
Cap. R&D data from Compustat include expenditures in R&D that could be performed

5. To deal with observations equal to zero (10% of our sample), we compute our pipeline variable as
log(1 + x). We also tried Poisson’s estimation for count data models. Our results remain robust.
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internally or externally.6 In order to isolate internal R&D, we use licensing data from
Deloitte Recap and subtract it from the Compustat data. The resulting difference is our
proxy for purely internal R&D expenditures. Finally, since developed knowledge can
become obsolete over time, we use a 15% depreciation rate to compute an internal R&D
stock variable (Hall, 1993).

4.2.3 In-licensing Investments (external R&D)
We use Deloitte ReCap data to collect licensing payments. Our in-licensing variable
is based on the sum of milestones and upfront payments.7 As with the internal R&D
variable, we build the stock of licensing investment using a 15% depreciation rate (Hall,
1993). In the case of missing values, we imputed the payments based on the average
investment for agreements with similar characteristics, such as the same year of signing,
stage at signing, disease, and type of technology.8 Because the stock of licensing expen-
ditures also captures a firm’s licensing experience, we also use this variable to evaluate
the extent to which such experience may affect the degree of complementarity between
the internal generation and external acquisition of technologies.

Note that due to the log-log transformation necessary to estimate the Translog
production function (2), we use the log(1 + x) transformation for inputs and output with
zero values, which may affect our estimates. We will therefore focus our conclusions on
the qualitative and statistical significance of our results rather than their magnitude.9

4.3 Instrumental Variables for Internal and External R&D

As noted earlier, internal R&D (Ri) and in-licensing (Re) are correlated with unobserved
productivity factors affecting both inputs and output of innovation. Our R&D opti-
mization model (not reported) suggests that variables affecting the expected value of
an innovation should only affect the production of innovation through these variables’
effects on the levels of internal and external R&D investments.10 We, therefore, use vari-
ables that should affect the profitability of marketed drugs, such as potential size of the

6. In-licensing upfront fees and milestones are expensed when incurred as R&D expenditures (FAS 2R.12).
The following examples from public filings explain the underlying accounting principles: (1) ABBOTT 2010
10-K SEC filing (p. 51) states: “Internal research and development costs are expensed as incurred. Clinical trial
costs incurred by third parties are expensed as the contracted work is performed. Where contingent milestone
payments are due to third parties under research and development arrangements, the milestone payment
obligations are expensed when the milestone results are achieved.” (2) BIOMARIN 2010 10-K SEC filings
(p. 43) states: “Research and development expenses include expenses associated with contract research and
development provided by third parties . . . Amounts due under such arrangements may be either fixed fee or
fee for service, and may include upfront payments, monthly payments and payments upon the completion
of milestones or receipt of deliverables.” (3) MERCK 2010 10-K SEC filings (p. 115) states: “Research and
development is expensed as incurred. Upfront and milestone payments due to third parties in connection
with research and development collaborations prior to regulatory approval are expensed as incurred.”

7. We are not able to include royalties in our in-licensing measure because they are included in the income
statement as part of operating expenses or as cost of sales and are not explicitly available in a consistent way
in either public documents or Deloitte ReCap. Given this limitation, we acknowledge that our in-licensing
measure is downward biased and most likely provides a lower bound of the in-licensing effect on innovative
output.

8. Only 9% of data had missing values for this variable. To check the robustness of our results to the
imputation method, we re-estimated the model without the imputed values, and the results were unchanged.

9. We test the sensitivity of the results to the log(1 + x) substitutions in several ways. As noted earlier,
we estimated a Poisson count data model with fixed effects to deal with firms with zero pipeline products
in a given year. We also experimented adding two dummy variables equal to one for observations with no
internal or external R&D stocks, as controls. All these robustness analyses indicate that our main results are
qualitatively robust.

10. The formal optimization model is available in the online Appendix.
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market, number of competitors, industry resources devoted to promotion, and strength
of a firm’s complementary assets. As shown in the empirical results section, the above
instruments appear to have sufficient explanatory power and exploit different sources
of variation, as indicated by the tests for instrument validity reported in the tables.

First, we use potential product market size as an instrument for internal and
external R&D investments, because it reflects exogenous drivers of the future demand
of the firm. In the case of successful approval and commercialization, each firm is able to
service the potential market and gain the associated revenues. The larger the expected
size of the market, the higher will be the overall R&D effort (both internal and external
investments) to develop a final product (Acemoglu and Linn, 2004). Pharmaprojects
includes estimates of the potential product market size for drugs in development. We
compute the expected market size for pipeline products by summing the estimated
values of each firm’s drugs in each year.

Second, we use the number of competitors to proxy for the incentive to be innova-
tive and productive. Although the effect on incentives for product innovation is ex ante
ambiguous, the number of competitors does affect market prices and demand elasticity
(Vives, 2008). This variable reflects the number of firms with at least one product sold in
the main therapeutic area (ATC) of the focal company.11 The data were collected from
IMS MIDASTM.

Third, we employ detailing expenditures at the industry level, obtained from IMS
MIDASTM, to capture the impact of industry resources devoted to promotion on the
incentive to innovate. Our Industry Promotion variable includes detailing investments
defined as promotion activities directed toward physicians and hospitals, journal ad-
vertising, and direct-mail and is computed based on the primary ATC of the focal firm.

Finally, we also use the stock of a firm’s trademarks to proxy for that firm’s brand
capital (Fosfuri et al., 2008) and strength of downstream complementary assets, im-
portant drivers of the appropriability of returns from innovation (Teece, 1986). This
instrument should be correlated with both internal and external R&D investments, be-
cause it enhances the appropriability of both types of investments. We collect data on
active trademarks from the Unites States Patent and Trademark Office (USPTO) and use
them to build a stock variable.

Our identification strategy is based on the assumption that the employed instru-
ments are uncorrelated with the unobserved factors affecting the productivity of a firm’s
innovative activity. In other words, the chosen instrumental variables should affect the
decision to invest in internal and external R&D, but should not independently affect the
innovative output of the firm. This can be defended using arguments from economic
theory. First, as argued above, economic models based on first principles suggest factors
affecting the expected value of an innovation should affect resources devoted to internal
and external R&D but should not independently affect the productivity of those activi-
ties. Second, our therapeutic category-level instruments are not a choice variable for the
firm.

Our instruments based on the trademarks owned by our focal firms, however, may
raise endogeneity concerns. Therefore, to further support our identification strategy,

11. ATC stands for Anatomical Therapeutic Chemical as defined by the World Health Organization
(http://www.whocc.no/). These therapeutic classes are: A: alimentary tract and metabolism; B, blood and
blood forming organs; C, cardiovascular system; D, dermatologicals; G, genitourinary system and sex hor-
mones; H, systemic hormonal preparations, excl. sex hormones and insulins; J, anti-infectives for systemic
use; L, antineoplastic and immunomodulating agents; M, musculoskeletal system; N, nervous system; P,
antiparasitic products, insecticides, and repellents; and R, respiratory system.
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we estimated the C-statistic (also known as “generalized method of moments (GMM)
distance” or “difference-in-Sargan” statistic) (Hayashi, 2000). The C-statistic allows for
a test of validity of a subset of instruments, and it is defined as the difference between
the Sargan-Hansen statistic of the equation with the set of instruments assumed to be
valid (under both the null and the alternative hypothesis) and the same statistic of the
equation with all instruments.12 As shown in our empirical tables, we support the null
hypothesis that the set of instruments, which includes trademarks, its square term, and
its interactions are valid. That said, it is important to remark that identification in our
model is achieved through assumptions based on economic reasoning.

4.4 Complementarity Drivers and Other Control Variables

One theoretical argument related to absorptive capacity suggests that the firm’s cumu-
lated investment in basic research is complementary to in-licensing. Data pertaining
to analysis of this argument are typically unavailable using secondary sources. From
an empirical point of view, a way around this problem is to identify the type of R&D
conducted by each firm. Indeed, the complementarity between commonly observed
measures of R&D (which includes applied R&D activities) should increase the more a
firm conducts relatively basic research activities.

Consistent with this idea, Cassiman and Veugelers (2006) suggest that the extent
to which a firm relies on more “basic” know-how affects the strength of the comple-
mentarity between internal and external innovation strategies. Therefore, in order to
measure a focal firm’s type of R&D we use their cumulative number of scientific pub-
lications, according to data provided by the Web of Science. A strong scientific publi-
cations record indicates that a firm’s technology is based on advances in science. As
a measure of absorptive capacity, which reflects a firm’s ability to effectively integrate
external technology, we follow Arora and Gambardella (1994) and utilize two alterna-
tive measures as a robustness check: the cumulative number of patents granted each
year to the focal firm (available from the USPTO) and the cumulative stock of internal
R&D.

To measure the potential for economies of scope across different scientific fields,
we use the total number of therapeutic areas covered by the drugs in the pipeline
of the focal firm each year, which we label, “number of ATCs”. Firms that operate
in different ATCs may develop capabilities unique to a specific therapeutic area and
exploit possible economies of scope. Moreover, innovations in the pipeline can often be
used in multiple therapeutic areas, thereby increasing their application possibilities. For
example, Topamax R© was originally approved as an anti-epileptic but was subsequently
used for obesity and peripheral pain.

Among other exogenous variables, we include firm size, which is measured by the
total number of firm employees (obtained from Compustat) and intended to control for
size-related factors that might drive differences in innovative performance. To control for
possible differences in uncertainty between in-licensed and internally developed drugs,
we include the percentage of licensed compounds (gathered from Pharmaprojects) that a
firm has at each phase of the clinical development process. Indeed, firms that license new
compounds may face a higher probability of success because they pay for a compound

12. The C-statistic was implemented using the orthog option of the Stata command xtivreg2. The null
hypothesis is that both the set of valid instruments and the additional set of “suspected instruments” are
valid. The C-statistic is distributed as chi-squared with the number of instruments tested as degree of freedom.
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that has already gone through part of the earliest and more uncertain stages of the
development process.13

Finally, to control for technological opportunities and other unobserved factors
associated with the main technological field of the focal firm, we identify the primary
ATC as the therapeutic are with the highest level of annual sales. We include a set of
dummy variables that equal one for the main therapeutic area of the focal firm (based
on the primary ATC) and zero otherwise. Given our definition of primary ATC, the
ATC dummy variables vary over time. We also include specifications with year and firm
fixed-effects. The latter are included to control for firm heterogeneity. In models without
firm-fixed effects, we also include 4-digit SIC-code and geographic location dummies
(e.g., North America, Europe, and other).

5. Results

5.1 Estimating the Degree of Complementarity/Substitutability

We start by estimating the coefficients of the Translog production function (equation (2))
and then estimate the degree of complementarity and its distribution across key firm
characteristics. To facilitate estimation and interpretation of the coefficients, we adopt a
log-log form of the Translog. This transformation makes the model linear with respect to
the natural logarithm of our main independent variables. We then estimate the degree
of complementarity by taking the derivative with respect to the logarithm of internal
R&D and in-licensing (external R&D) as defined by equation (5).

The estimates of the Translog are reported in Table III. We use three different
estimation methods: a benchmark panel data fixed-effects model with instrumental
variables estimated with GMM (columns 1–4), a panel random effects model (column 5),
and a panel fixed effects model (column 6). The magnitude and significance of the cross-
partial derivative d2n

d Ri d Re
(equation (5)) associated with the models are also reported in

Table III. The cross-partials are evaluated at the mean and median values of the variables
included in equation (5).

Overall, these results suggest that internal R&D and in-licensing expenditures are
neither complements nor substitutes. In particular, the estimated cross-partials presented
in Table III are not significantly different from zero across estimation methods.14

One possible explanation may reside on the specificity of the drug discovery pro-
cess. Pharmaceutical firms rely on external technologies in all development stages, and
licensed drugs may be used to either substitute an existing stream of research or to
complement it. In-licensing is one way to access new knowledge, and new knowledge
boosts innovation. However, in-licensing may have two opposite mechanisms. On one
hand, external knowledge can fill gaps in internal capabilities. On the other hand, ex-
ternal knowledge can complement internal knowledge by integrating the two sources
of knowledge. These results may not be significant because the complementarity effect

13. Pisano (1997) finds evidence of the existence of a market for lemons in the external technology market.
If true, this would suggest that firms would not achieve any reductions in risk and the expectations for success
of those products would be less than internally developed molecules. However, Arora et al. (2009) find the
opposite to be true. They find that compounds licensed during preclinical trials are as likely to succeed as
internal compounds of the licensor. Danzon et al. (2005) also find that products developed in an alliance tend
to have a higher probability of success.

14. Table AI in the online Appendix replicates the estimates of our benchmark model (column 4, Table III)
and compares them to results obtained using different combinations of instrumental variables. Our results are
robust to these alternative specifications.
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experienced by some firms may be offset by the negative effect experienced by others.
Importantly, it follows that studying complementarity without understanding its drivers
and the distribution across firms’ characteristics may generate misleading results.

The results presented in Table III improve upon the existing literature in several
ways. Our use of in-licensing investments provides more direct evidence on the marginal
productivity of the financial resources invested in innovation. The extant literature more
commonly uses a stock of external deals as a measure of external R&D or self-reported
discrete measures of whether a firm acquires technology in the market in cross-sectional
settings. Finally, and more substantively, our results indicate that internal R&D and in-
licensing do not, on average, have a significant joint effect on the production of new drugs.
However, there are significant differences in the estimated degree of complementarity
across firms. In what follows, we will focus on a set of firm-level drivers that may explain
differences across subgroups of firms.

5.2 Firm-level Drivers of Complementarity

To identify the impact of potential drivers of complementarity, we first present a graph-
ical analysis of the cross partial derivative (equation (5)) obtained using our benchmark
GMM instrumental variable method with fixed effects. The objective of this analysis is
to understand whether firms that perform better than others across the four different
drivers experience a different level of complementarity among the two types of invest-
ments. Figure 1 reports the values of the degree of complementarity captured by the
cross-partial over the range of our measures of absorptive capacity (scientific publica-
tions), economies of scope (number of therapeutic categories, or ATC), and licensing
experience (stock of in-licensing investments) using our benchmark and full sample
estimates presented in Table III, column 4.

In all of the three graphs, the sign and magnitude of the joint effect vary with
changes in the levels of the drivers. Overall, the cross-partial derivative (equation (5))
exhibits a positive trend in all cases, thus confirming that a higher level of complemen-
tarity is associated with higher levels of drivers.15

These findings confirm the complexity of the relationship between internal and
external R&D investments; they also suggest that most previous studies on complemen-
tarity have not been able to ascertain whether a more composite relationship exists than
can be revealed by the estimated average effect. A clear conclusion on whether two

15. In what follows we provide examples of firms from the distribution plotted in Figure 1(a–c). That is,
firms characterized by either small or low estimated cross-partials (complementarity indices) as a function of
each driver. These include a variety of pharmaceutical and biotech companies of different sizes, and we take
a cross-sectional perspective for descriptive purposes. Among firms in both the top quartiles of the scientific
publications and cross-partial distributions (with positive complementarity) we find firms such as Eli Lilly,
Bristol-Myers Squibb, and Genzyme. Among firms in both the bottom quartiles of the scientific publications
and cross-partial distributions (with negative complementarity) we find Enzon, Mylan Laboratories, and
AstraZeneca, among others. Among firms in both the top quartiles of therapeutic category (ATCs) and cross-
partial distributions (with positive complementarity) we find firms such as Eli Lilly, GlaxoSmithKline, and
Watson Pharmaceuticals. Among firms in both the bottom quartiles of the therapeutic category (ATCs) and
cross-partial distributions (with negative complementarity) we find Repligen and Alcon, among others. Finally,
among firms in both the top quartiles of licensing experience and cross-partial distributions (with positive
complementarity) we find firms such as Elan, Bristol-Myers Squibb, and Abbott. Among firms in both the
bottom quartiles of the licensing experience and cross-partial distributions (with negative complementarity)
we find Enzon, Repligen, and Mylan Labs. Not surprisingly, firms with either low or high values of all drivers
tend to have the lowest or the highest level of the cross-partial measuring complementarity, such as Enzon
(with bottom 1% and negative value of the cross-partial) or Ely-Lilly (with top 1% and positive value of the
cross-partial).
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FIGURE 1. DISTRIBUTION OF COMPLEMENTARITY ACROSS DRIVERS (FULL SAM-
PLE ESTIMATION)

This figure provides graphical representations of the estimated cross-partial derivative d2n
d Ri d Re

(Equation (5)) as a function of each examined driver of complementarity evaluated at each sample
point, for example, for each firm in our sample. Estimates are based on results from our benchmark
regression (Model 4, Table III).
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Table V.
Tests on Mean Complementarity ( d2n

d Ri d Re
) Differences by Group

of Firms

Panel Confidence Panel Confidence Panel Confidence
RE Interval FE Interval GMM FE Interval

Scientific ≤25% 0.006 0.0039 0.0004
publications ≥75% − 0.002 0.0006 0.018

Difference − 0.008 [−0.01, −0.006] − 0.003 [−0.004, −0.002] 0.018*** [0.009, 0.026]
Number of ATC ≤25% − 0.0105 − 0.009 − 0.008

≥75% − 0.004 0.004 0.0005
Difference 0.004*** [0.002, 0.01] 0.005*** [0.011, 0.017] 0.009*** [0.007, 0.01]

Licensing ≤25% − 0.035 0.041 − 0.138
experience ≥75% − 0.004 0.002 − 0.026

Difference 0.029*** [0.019, 0.038] − 0.039 [−0.054, −0.024] 0.111*** [0.056, 0.167]

Notes: The table contains estimates of the average cross-partial dn2
d Ri d Re

(equation (5)) evaluated within subsamples of firms split based on observed

values of the examined drivers. A positive mean difference suggests that firms above the top quartile of the distribution of the examined driver
experience higher level of complementarity between internal and external R&D.
***, **, * indicate that the difference is > 0 at the 0.01, 0.05, and 0.1 confidence levels, respectively. We also report 95% confidence intervals for the
difference between cross-partials.

activities are either complementary or substitute may be noninformative, because the
joint effect changes across different ranges of value of key firm characteristics.

As a robustness measure, we present estimates in Table IV of the Translog produc-
tion function (equation (2)) using our benchmark GMM method with firm-fixed effects
within subsamples of firms characterized by either low (bottom 25%) or high (top 25%)
levels of the distribution of the examined driver. We include the split-sample regression
using the Panel Random Effect and Panel Fixed Effect methods in Table AII and AIII of
the online Appendix, respectively.

For an analysis of the significance of the differences across groups, we present tests
for mean complementarity differences across groups of firms defined using bottom
and top quartiles of the distributions of the examined drivers for our split-sample
estimations. A positive difference implies a higher degree of complementarity for the
group of firms above the top quartile. These tests are shown in Table V.

Overall, our results confirm our expectations. We find that firms with strong sci-
entific capabilities are characterized, on average, by a higher level of the cross-partial
derivative capturing the degree of complementarity.16 The results confirm that firms with
broader experience across therapeutic areas are characterized, on average, by a stronger
complementarity relationship between internal R&D and in-licensing. This finding sug-
gests that these firms may be using knowledge developed in different fields additively
in the innovative process, supporting the view espoused by Henderson and Cockburn
(1996). Finally, results show that complementarity increases for firms that have a larger
stock of prior licensing investments. This suggests that firms with greater levels of ex-
perience in licensing agreement formation facilitate the management and integration of
external technologies.

6. Conclusion

Our goal has been to offer a deeper understanding of the exact nature of the relationship
between internal R&D and in-licensing (external R&D). Although the extant literature

16. The result is supported in our benchmark estimation (Panel GMM fixed effect). We also report in
Table AIV in the online Appendix the same tests using the stock of internal R&D and the stock of patents as
alternative measures of absorptive capacity. The results are confirmed with our patent measure.
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remains unclear about the relationship between these two strategies, our primary focus
is to understand how the joint effect of two activities varies across several different
drivers. Excluding the research by Cassiman and Veugelers (2006), there is a lack of
empirical work examining the conditions under which internal R&D and in-licensing
are either complements or substitutes.

We analyze possible determinants of this relationship by splitting our sample
based on five potential drivers. Our mean tests confirm that complementarity appears
to increase when associated with higher levels of select drivers. In other words, firms
with higher absorptive capacity, those with alliance experience, and those that enjoy
economies-of-scope are characterized by stronger complementarity. These results are
confirmed by our graphical analysis and tests of hypotheses, which support a positive
relation between complementarity and their drivers. Existing theories offer theoretical
support of our results and provide insights for further theoretical work on the comple-
mentarity between innovative activities.

As is the case with all work, our study is subject to several limitations. First, we
only analyze one dimension of innovative performance, the introduction of new drugs.
In line with the contribution of Arora and Gambardella (1994), for example, one could
claim that absorptive capacity, in particular a firm’s scientific capability, will allow the
technology buyer to be more discerning in the external technology that they select and
will have a higher threshold value for each external R&D project. In other words, the
mix of internal and external R&D may affect the expected value of an innovation, which
we do not observe. To the extent that we are neglecting a potentially positive effect of the
mix of internal and external R&D on the profitability of new drugs, our analysis can be
considered as providing estimates of complementarity that are downward biased. This
may contribute to explain why, on average, we do not find complementarity. In order to
more fully analyze the marginal returns from internal and external R&D we would need
data on the profitability associated with each drug, a task we leave for future work.

A second limitation relates to our identification strategy. Although the use of
panel data and instrumental variable methods may increase our confidence on a causal
interpretation of our results, we still achieve identification based on a specific set of
economic assumptions, which could be violated and are not testable.

A third limitation of our study relates to our industry setting and the generaliza-
tion of our results to other industries, because innovation factors are often determined
by industrial dynamics. The R&D process in the pharmaceutical industry is character-
ized by long development cycles, high costs, and significant levels of uncertainty, which
may affect the extent to which a firm relies on different innovative strategies. Industries
that present a different innovative process might experience a different relationship. Al-
though our results are not generalizable, our methodology can be replicated in different
industry settings.

A fourth limitation lies in the definition and treatment of uncertainty associated
with the drug development process. Recent research presents contrasting results about
the possibility of success correlated to internally developed or externally acquired com-
pounds. For example, Guedj (2005) shows that alliance projects are 21% more likely to
move from Phase I to Phase II, whereas codeveloped compounds are less successful in
later stages (Phase II, Phase III, and FDA approval) than internal projects. Conversely,
Arora et al. (2009) suggest that asymmetric information and market imperfections in-
crease costs, and the expected value of the licensed compound increases as a result.
They show that the probability of success for a licensed compound is higher than
for an internally developed one. We attempt to deal with the uncertainty related to
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in-licensing investments by controlling for the percentage of in-licensed compounds in
each phase. We also weight the firm’s research pipeline by the average probability of
success associated with each development stage to account for process development
uncertainty.

A fifth limitation is methodological in nature. As already noted, although our
Translog approximation to the true innovation production function is an improvement
over the use other functional forms such the Cobb-Douglas, the Translog has some
limitations and our results should be interpreted with caution.

Finally, while our results help us to understand the relation among innovative
factors, we do not directly test whether there might be an optimal balance between R&D
strategies, as suggested by other scholars. For example, Rothaermel et al. (2006) suggest
that by performing some activities of the value chain internally and some externally, a
firm is able to exploit external technology and adopt a flexible strategy to introduce new
products. Knowing whether internal development and in-licensing are complements or
substitutes might help build a feasible equilibrium between these two strategies. This
would allow for a more complete understanding of the proposed outsourcing move
by companies such as GlaxoSmithKline (Knowles and Higgins, 2011). Ultimately, this
knowledge also allows for a deeper understanding of the feasibility of more radical
views of the innovative process, such as the S&D model proposed by Morgan Stanley
(2010).

Supporting Information

Additional Supporting Information may be found in the online version of this article at
the publisher’s web site:

Online Appendix
Table AI. Panel GMM Estimation Using Subsets of Instruments
Table AII. Split Sample Regressions Using Random Effect Model
Table AIII. Split Sample Regressions Using Fixed Effect Model
Table AIV. GMM Panel Estimates of the Translog Innovation Production Function
Table SI. CES-Translog Estimation. Dependent Variable Ln(1 + pipeline)
Table SII. Specification Test Results Using CES-Translog Production Function
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