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Abstract

I study how realized idiosyncratic jumps play a role in pricing individual 

stocks. I find that stocks with high variances associated with positive idiosyn-

cratic jumps tend to have low subsequent returns. To explain the negative pre-

mium, I show that positive idiosyncratic jump variances are important predictors 

for future skewness. Thus, my finding is consistent with investors’ preference for 

unusually large gains over short horizons. I demonstrate the economic signif-

icance of my results by highlighting the superior performance of a strategy based 

on variances associated with positive idiosyncratic jumps compared to strategies 

based on other variance measures.
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1 Introduction

Merton (1976) asserts that jumps in individual stock prices reflect important new in-

formation that is usually firm-specific. Therefore, the presumed assumption is that they

represent “idiosyncratic” risk, which can be diversified away and hence should not carry a

premium. Similar assumptions of no premium for general idiosyncratic risk are widely im-

posed in many asset pricing studies, although empirical studies document that idiosyncratic

risk matters.1 In this paper, I study how the uncertainties associated with realized idiosyn-

cratic jumps play a role in pricing individual stocks. This study is motivated by previous

studies, which suggests that investors’ reactions to extreme gains or losses are significantly

different from those to normal innovations in various financial markets.2 Separating the

effects of signed jump risks in individual stock returns is important because it allows me to

address investors’ asymmetric responses to unusually different market events, as well as to

examine the nonlinearity of the idiosyncratic risk effect. The aim of this paper is to provide

a better understanding of idiosyncratic jumps, which has substantial implications for not

only asset pricing but also for portfolio and risk management.

I establish an inference framework in which idiosyncratic variances can be decomposed

into idiosyncratic diffusive and jump components with different signs, and I suggest ap-

proaches to separately estimate their associated premiums. I distinguish the impact of these

components by capturing their contributions in explaining the cross-section of stock returns

and examine how variances associated with positive and negative idiosyncratic jumps affect

the results. I measure idiosyncratic risk every month by summing the squared daily return

1See Goyal and Santa-Clara (2003) and the references therein for earlier work on the pricing of idiosyn-
cratic risk in aggregate stock market returns, as well as in the cross-section of stock returns.

2See Patton and Sheppard (2015) highlight the importance of separating upside and downside volatilities
using stock return data and consider their implications for the dynamics of equity markets.
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residuals.3 This measure facilitates the linear decomposition of idiosyncratic risk into various

components. For the main analyses, I decompose the idiosyncratic risk measure into three

components: idiosyncratic diffusive variance (IDVAR), idiosyncratic positive jump variance

(IPJVAR), and idiosyncratic negative jump variance (INJVAR). Similarly, I call the total

idiosyncratic risk measure before this decomposition idiosyncratic variance (IVAR). I use

these decomposed variance measures to identify the most important idiosyncratic variance

component that explains individual stock returns in subsequent months.

The main results indicate that only idiosyncratic positive jump variances (i.e.,IPJVAR)

are cross-sectionally priced and associated with significantly negative risk premiums in subse-

quent months. By contrast, idiosyncratic diffusive variances (i.e.,IDVAR) and idiosyncratic

negative jump variances (i.e.,INJVAR) are not consistently priced. These results are robust

to the inclusion of control variables, such as firm size, book-to-market ratios, momentum,

and liquidity measures, which have been documented in the literature as variables affecting

expected stock returns. Essentially, one can expect lower returns from individual stocks

with higher variances associated with positive idiosyncratic jumps, whereas the other types

of idiosyncratic variances do not play significant roles in explaining expected stock returns.

To demonstrate the economic significance of the findings, I discuss the implications for

portfolio strategies that are constructed based on the results. Because I find that stocks

with higher IPJVARs tend to be associated with significantly lower subsequent returns than

stocks with lower IPJVARs, I consider a strategy that takes a short (long) position on

stocks with higher (lower) IPJVARs. I call this the IPJVAR-sorted portfolio strategy. I

also consider similar portfolio strategies for the other variance measures (INJVAR, IDVAR,

3For this estimation, I adopt the approach applied in Schwert (1989) and Paye (2012). This estimation
approach is also related to many studies on realized volatility that take the sum of squared intraday returns
for daily volatility estimation (e.g., Andersen et al. (2001a)).
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and IVAR). I implement these four strategies and compare their relative performance. I

find that the IPJVAR-sorted portfolio outperforms the other portfolios. The Sharpe ratio of

the IPJVAR-sorted portfolio is the highest among the four portfolios and much higher than

that of the next best strategy (INJVAR-sorted portfolio). The cumulative excess return of

the IPJVAR-sorted portfolio is more than 100% higher than that of the INJVAR-sorted or

the IVAR-sorted portfolios. On average, the IPJVAR-sorted portfolio offers more than 2%

higher annual returns than the INJVAR-sorted or IVAR-sorted portfolios. The IPJVAR-

sorted portfolio generates the greatest CAPM alpha as well as other multifactor alphas.

Given the previous studies suggesting that nonnormal market conditions (which tend

to be related to jumps) may generate the negative relation I find, I perform a horse race

test using skewness, coskewness, illiquidity measures, and maximum returns. I find that the

maximum daily return effects of Bali et al. (2011) are closely related to positive idiosyncratic

jumps. Using the jump data, I distinguish maximum daily returns for each stock realized

in months without and with positive idiosyncratic jumps and show that the maximum daily

return effects are mainly driven by positive idiosyncratic jumps.

I also examine how variances associated with positive idiosyncratic jumps are related to

future skewness, which has been used as a proxy for lottery-type payoffs in the literature.

This examination is motivated by the fact that investors gain unusually large returns over a

short horizon when positive jumps occur. I conjecture investors can revise their expectations

for lottery-type payoffs (i.e., greater skewness) in light of the high variances associated with

positive realized jumps. Since positive jumps with low variances are regarded as pure outliers,

their reoccurrences are not expected to be highly likely when positive jump variances are

low. Therefore, it is important to consider the positive jump variance component in the

prediction for lottery-type payoffs. My empirical analyses show that the skewness tends to
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be significantly higher for stocks with higher positive idiosyncratic jump variances realized

in the previous month. Overall, the findings are consistent with Barberis and Huang (2008),

who predict lower expected returns for stocks with skewed payoffs.

I perform multiple robustness checks. The results hold with respect to not only the

standard Fama-French three-factor model but also the CAPM, the four-factor model with the

momentum factor, the Fama-French five-factor model, the q-factor model of Hou et al. (2015),

and the no-factor model. I also conduct various subsample analyses by splitting samples into

two or three groups depending on the fraction of zero returns, illiquidity, sample periods or

the business cycle (e.g., expansion vs. recession periods) and continue to find similar results.4

The regression analyses with control variables, such as size and illiquidity measures, further

indicate that the evidence cannot be explained by differences in the characteristics of stocks.5

Market jumps do not play a role in generating the results. In general, no particular common

return (or jump) component drives the results.

This study is related to studies that separate jump risks from volatility risks to examine

their association with stock returns. Bollerslev et al. (2016) investigate how individual equity

prices respond to continuous and jumpy market prices by using decomposed betas and find

that betas that are associated with discontinuous and overnight returns entail significant risk

premiums, whereas the continuous beta does not. Kelly and Jiang (2014) use a cross-section

of crash events for individual firms to identify a common component of left-tail risks and

show its strong predictive power for stock returns. Jiang and Yao (2013) find that size and

liquidity anomalies and the value effect to a large extent are driven by jumps. Bollerslev

4I also confirm that the results are robust to outlier effects by winsorizing data and using log-transformed
variance data.

5The results show that the expected skewness tends to be higher for stocks with lower prices and sizes.
These results also suggest that the findings are inconsistent with risk-based explanations because smaller-
sized stocks traded at lower prices are considered riskier, but the results show that they tend to offer
unexpectedly lower average returns in the subsequent month than do other stocks.
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et al. (2020) study the weekly return predictability of the signed jump variation computed

using the difference between the up and down semivariances. I contribute to this literature

by focusing on the effects of idiosyncratic jump variances on subsequent stock returns.

A few recent studies focus on idiosyncratic jumps. Yan (2011) shows that expected stock

returns are negatively related to average jump sizes and finds that neither idiosyncratic nor

systematic jumps explain all of the return predictability of jump sizes. Using both option and

stock data, Bégin et al. (2019) find that the contribution of idiosyncratic risk to the equity

risk premium arises exclusively from jump risk and report that the idiosyncratic jump risk

premium is positive.6 Kapadia and Zekhnini (2019) also find that idiosyncratic jumps are a

key determinant of mean stock returns.7 The key difference between these studies and mine is

that I separate the variances of positive and negative idiosyncratic jumps that are realized in

stock markets and identify that the negative relation between realized idiosyncratic variances

and subsequent returns stems mainly from positive idiosyncratic jumps. To my knowledge,

this paper is the first to demonstrate the importance of separating signed jump variances in

studying how idiosyncratic risks are priced in the cross-section of stock returns.

This study is also related to the skewness literature because the presence of positive

jumps is a sufficient condition for the increased skewness of stock return distributions. For

6Using option market data makes their sample period much shorter and the number of included stocks
much smaller than mine: their sample includes 260 firms from 1996 to 2015, while my sample includes more
than 3,300 firms from 1963 to 2016. Another important difference is that they did not separately consider
positive and negative jumps. Moreover, their estimation method imposes no arbitrage and the condition
that the cap-weighted cross-sectional average of both idiosyncratic premiums is zero, whereas my inference
method has no such conditions imposed and can allow more flexible market conditions with potential limits
to arbitrage.

7The main difference between theirs and mine mainly derives from their usage of option market data.
Among others, they show the positive mean returns of a trading strategy that buys (sells) stocks in the top
(bottom) quintile of jump probability predicted out-of-sample using information on option prices available
from 1996. However, my results are based on realized jumps from stock markets and are not inconsistent
with their Tables 2 and 4, where they show that positive jumps realized in stock markets tend to lead to low
subsequent returns over the next 30 days.
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example, using the approach of Bakshi et al. (2003) based on option data, Conrad et al. (2012)

document that more ex ante positively (negatively) skewed returns yield subsequent lower

(higher) returns. Boyer et al. (2010) find that expected idiosyncratic skewness and returns

are negatively correlated. Amaya et al. (2015) find that realized skewness based on high-

frequency data captures jumps in returns and has a negative relation with subsequent returns.

I contribute to this literature by resolving the empirical challenge of separating signed jump

effects from usual volatility effects and by showing the significant role of idiosyncratic jump

variances in cross-sectional asset pricing. Moreover, skewness has been used as an empirical

proxy for lottery-type returns (Barberis and Huang, 2008; Kumar, 2009). My study refines

the understanding of lottery prediction by presenting the significance of realized variances

associated with positive idiosyncratic jumps in stock markets.

The remainder of this paper is organized as follows. After explaining the data and

inference methods for the impact of idiosyncratic jump variances in Section 2, I present the

main results in Section 3. In Section 4, I discuss the relation of the finding with maximum

return effects as well as the pricing channels. After multiple robustness checks in Section 5,

I conclude in Section 6.

2 Inference methods and data

In this section, I explain how I distinguish idiosyncratic jumps for the variance decompo-

sition and discuss an inference framework used to identify the impact of idiosyncratic jump

risk in a cross-section of stock returns. Using the sample, I estimate decomposed variance

measures and describe their distributional properties.
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2.1. Estimating idiosyncratic diffusive and jump variances

To consider the impact of separate idiosyncratic risks attributable to diffusive and jump

components on subsequent stock returns, I must first estimate the decomposed idiosyncratic

variances. To construct the estimators, I apply the approach adopted in Schwert (1989) and

Paye (2012) to daily return residuals after identifying signed idiosyncratic jumps. Specifically,

I estimate the variances by taking the sum of the squared return residuals from different

components. Unlike the usual standard deviation measure, this definition facilitates the

linear decomposition of idiosyncratic risk.

I begin by considering the estimation of total idiosyncratic variance (IVAR). Following

Ang et al. (2009), I employ the idea of using return residuals from the Fama and French

(1993) three-factor models.8 I capture the overall idiosyncratic risk for stock i on day d

through daily return residuals εi,d, which are expressed in the following formula:

εi,d = ri,d − αi − βMKT
i MKTd − βSMB

i SMBd − βHML
i HMLd, (1)

where ri,d is the daily realization of excess return for stock i and day d. MKTd, SMBd,

and HMLd are risk premiums associated with the market, size, and value factor portfolios,

respectively, on day d.9 After obtaining daily return residuals εi,d from the regression in

equation (1) estimated using daily stock and factor return data during the past month, I

categorize these daily return residuals into different groups by applying the jump tests pro-

posed by Lee and Mykland (2008). The IDVAR is estimated using the sum of the squared

8Although I use the three-factor model as an example, a similar approach can be applied using other
factor models. I perform robustness checks and confirm that the empirical results are robust to the factor
model specifications in Section 5.

9βMKT
i , βSMB

i , and βHML
i are factor loadings of stock i for the market, size, and value factors, respectively.

Following the literature on idiosyncratic volatility, these beta estimates are obtained every month as in Ang
et al. (2009).
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return residuals from the diffusive component only. Similarly, the IPJVAR (INJVAR) is es-

timated using the sum of the squared residuals from the positive (negative) jump component

only.

Formally, I write the following estimators for IDVAR, IPJVAR, and INJVAR for stock i

and month m:

̂IDV ARi,m =
∑

i,Dd⊂Mm

ε̂2df,i,d =
∑

i,Dd⊂Mm

ε2i,dI(|Ti,d| < τ),

̂IPJV ARi,m =
∑

i,Dd⊂Mm

ε̂2pj,i,d =
∑

i,Dd⊂Mm

ε2i,dI(|Ti,d| > τ)× I(εi,d > 0), and

̂INJV ARi,m =
∑

i,Dd⊂Mm

ε̂2nj,i,d =
∑

i,Dd⊂Mm

ε2i,dI(|Ti,d| > τ)× I(εi,d < 0), (2)

where εi,d is the return residual of stock i on day d from the regression in equation (1). I(x)

is an indicator function that equals 1 if x is true. Ti,d is the idiosyncratic jump test statistic,

whose formal definition is Ti,d ≡ εi,d
σ̂εi,d

, where σ̂2
εi,d
≡ 1

K−2

∑d−1
c=d−K+2 |εi,c||εi,c−1|, and window

size K can be selected for several months.10 The parameter τ is the rejection criterion, which

is based on a standard normal distribution.11

To support the empirical analyses using daily data, I perform simulation studies un-

der general assumptions of jump diffusion models.12 I confirm that jump detection power

continues to be higher than 95% using daily data even when there are jumps in stochastic

10Following Lee and Mykland (2008), the test uses jump-robust volatility estimators based on bipower
variation. Since daily data are much less subject to market microstructure noise compared to ultra-high
frequency data, I do not expect such noise to contaminate the results.

11I perform normality tests according to the asymptotic distribution of jump test statistics under the null
hypothesis of no idiosyncratic jumps. I use a 5% significance level for the two-sided tests. The jump test
indicates the idiosyncratic jump arrivals when the absolute value of test statistic is greater than 1.96. I use
a rejection criterion based on a standard normal distribution instead of an extreme value distribution, such
as a Gumbel distribution, to mitigate small sample problems because of a lack of jump data.

12The jump detection test of Lee and Mykland (2008) is developed under the assumption that asset prices
follow a jump diffusion model.
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volatility. The precision of jump variance estimators mainly depends on the detection power

of individual jump tests. In other words, given the high jump detection power, the proposed

jump variance estimators based on daily data perform well. Their estimation error does

not significantly depend on the actual jump sizes given a fixed sampling frequency. As I

examine the impact of large-sized infrequent rare jumps, it is legitimate to use this jump

identification approach and make inferences about the (functions of) jump sizes. Detailed

simulation results are reported in Appendix A.

2.2 Separating the impact of decomposed idiosyncratic variances

For the actual tests, I set the return horizon to one month to be consistent with the liter-

ature on idiosyncratic risk. Then, I examine the relation between the decomposed idiosyn-

cratic variances and the subsequent month’s stock return using a series of Fama-MacBeth

cross-sectional regressions expressed as follows:

ri,m = c+γdfIDV ARi,m−1 +γpjIPJV ARi,m−1 +γnjINJV ARi,m−1 +λ′ββi,m+λ′zzi,m−1 +ei,m,

(3)

where ri,m =
∫
t∈Mm

(d logSi,t − rtdt) is stock i’s excess return over the risk-free rate rt in

month m and Mm ∈ [0, T ] denotes the time interval for month m:

Mm = {s|s belongs to month m}. βi,m is a vector of k factor loadings for stock i over month

m.13 zi,m−1 is a vector of firm characteristics for stock i observed over month m − 1, and

ei,m is an error term with E(ei,m) = 0. IDV ARi,m−1, IPJV ARi,m−1, and INJV ARi,m−1 are

the idiosyncratic diffusive variance, idiosyncratic positive jump variance, and idiosyncratic

negative jump variance for stock i for month m− 1, respectively.

13As in Ang et al. (2009), I control for exposures to risk factors by including contemporaneous factor
loadings estimated over the current month.
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2.3 Data

I perform the empirical analyses using U.S. individual stock return data from the CRSP

common stock universe from July 1963 to December 2016. Table 1 reports the descriptive

statistics of IDVAR, IPJVAR, and INJVAR, along with the other control variables. The

summary statistics for returns in Table 1 are consistent with those of the previous study, such

as Hou and Loh (2016), using similar data from different sample periods. Notably, IPJVAR

has a standard deviation nearly seven times greater than that of IDVAR and four times

greater than that of INJVAR. Figure 1 shows the time series patterns of decomposed variance

measures. Specifically, I create quintile portfolios sorted according to each idiosyncratic

variance measure and present their monthly averages. Compared to the other variance

measures, IPJVAR shows the greatest variation over time. The cross-sectional difference

appears much greater for the highest quintile portfolios with the greatest idiosyncratic risk

than for the other portfolios.

Table 2 reports the summary statistics for detected jumps, in particular, the cross-

sectional distribution of positive and negative idiosyncratic jumps in terms of their frequen-

cies and sizes. I find positive idiosyncratic jumps are detected slightly more frequently than

negative idiosyncratic jumps. Both absolute jump size magnitudes and standard deviations

of positive jumps are again slightly greater than those of negative jumps. These results are

consistent with the evidence of positively skewed distributions for individual stock returns.

Additional details on the sample selection criteria and other related descriptions of the data

are provided in Appendix B.
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3 Main results

In this section, I perform analyses using decomposed idiosyncratic variances and report

the results of monthly Fama-MacBeth cross-sectional regressions. I use the full unbalanced

panel data for the main inference. The dependent variable is multiplied by 100 for a better

exposition of the results. For each estimation, the number of observations may differ slightly

because of the data availability of the variables examined. The following discussion is based

on the results for a one-month holding period. I also obtain consistent results for longer

horizons up to one year.

3.1 Separate impact of decomposed idiosyncratic variances

Column (1) of Table 3 shows that the average coefficient on IVOL (idiosyncratic volatility

estimated using the typical standard deviation) is -10.643 and statistically significant at 5%,

confirming previous evidence of a negative relationship between idiosyncratic volatility and

subsequent returns. Note that I use the sum of the squared return residuals from different

components instead of the standard deviation when calculating the risk measures. To ensure

that the results are not affected by the transformation, I confirm similar results for the total

idiosyncratic variance measure (IVAR) in column (2). I next examine whether idiosyncratic

risk in the absence of jumps (measured by IDVAR) is priced. The results in column (3) shows

that the average coefficient on IDVAR is insignificant, which indicates that idiosyncratic risk

is not priced when there is no jump. I find this result insightful because it suggests that

diffusive firm-specific risks are indeed well diversified away during normal times without

extreme price movements, as has been assumed in many classical asset pricing studies. In

fact, this finding is fairly consistent and robust in my study.
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Columns (4) and (5) in Table 3 present results that show how idiosyncratic risk is priced

in the presence of jumps. In column (4), the average coefficient on IPJVAR is -16.384

and is statistically significant at the 1% level. Compared to the coefficient on the total

idiosyncratic variance IVAR in column (2), this coefficient has an absolute magnitude that

is approximately 2.5 times greater (-6.698 vs. -16.384). A comparison of the results in

columns (3) and (4) demonstrates that idiosyncratic risks are priced in the presence of

positive jumps and that the negative premium associated with idiosyncratic risk occurs only

through positive jumps. I add INJVAR to the model considered in column (4) to assess

whether uncertainties associated with negative jumps play a role in explaining the evidence,

and find that the coefficient for INJVAR is positive and insignificant. Even after adding

INJVAR to the model, the negative coefficient for IPJVAR remains significant.14 The main

takeaway from Table 3 is that positive jumps play a critical role in a significant relation

between idiosyncratic risk and negative premiums in the subsequent months.

These results are confirmed after controlling for the individual stocks’ exposure to sys-

tematic factors (factor loadings) and other firm characteristics, such as size, book-to-market

ratio, momentum, and one-month lagged returns. The coefficients on factor loadings are

insignificant, whereas the firm size, book-to-market, and momentum characteristics mostly

have strong significance. These results are consistent with the findings of Daniel and Tit-

man (1997) that firm-level characteristics rather than the covariance structure of returns

explain the cross-sectional variation in stock returns. The momentum measure is based on

Jegadeesh and Titman (1993), whereas the one-month lagged returns are included based on

Huang et al. (2009) to capture the one-month return reversal effect. All control variables

14The results indicate that if a firm moves from the 50th percentile (0.0015) to the 75th percentile (0.0178)
of the cross-sectional IPJVAR distribution (holding its other characteristics constant), the decrease in ex-
pected returns is approximately 35 bps (= −21.126 × (0.0178 − 0.0015)) per month, which is economically
significant.
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are observable during month m − 1 and known at the beginning of month m. Regression

coefficients for these controls are reported in Table 3. However, in the subsequent tables, to

conserve space, we do not report them because the results are similar. Overall, I conclude

that the main findings are robust to different estimation procedures and samples.

3.2 Economic significance of the findings

The findings presented in the previous subsection have many important implications

for not only asset pricing but also portfolio and risk management applications. In this

subsection, I demonstrate the economic significance of the findings by highlighting portfolio

implications with examples. Motivated by the evidence, I suppose that investors can enhance

their portfolio performance by incorporating a sorted portfolio strategy. The strategy is

proposed to generate a positive return spread from the negative premium. Stocks are sorted

every month according to the IPJVAR level. Five quintile portfolios are constructed based on

stock rankings. Given the quintile portfolios, investors can implement a strategy that takes

short (long) positions on the quintile portfolio with the highest (lowest) IPJVARs. Because I

find evidence for a negative premium during the subsequent month, these portfolios are held

for one month after the construction and are rebalanced every month. I call this strategy

the IPJVAR-sorted portfolio.

To compare the relative impact of idiosyncratic positive jump variance on equity portfolio

performance to the impact of the other idiosyncratic variances, I also consider strategies for

other idiosyncratic variance measures. Instead of sorting stocks according to the IPJVAR

level, I construct quintile portfolios by sorting stocks every month according to the levels

of INJVAR, IDVAR, and IVAR. Then, short-long strategies are created using the quintile

portfolios with the highest and lowest idiosyncratic variance measures. I call those strategies
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the INJVAR-sorted portfolio, the IDVAR-sorted portfolio, and the IVAR-sorted portfolio.

I analyze the relative performance of the four different strategies from 1964 to 2016. I com-

pute both equal-weighted and value-weighted averages of the returns to the individual stocks

held in each portfolio. The performance of the four strategies is presented in Table 4. The

performance of the IPJVAR-sorted portfolio is the best. Using the equal-weighting scheme,

the IPJVAR-sorted portfolio provides the highest annualized mean returns of 4.2% compared

to 1.92%, -0.22%, and 1.56% for the INJVAR-sorted, IDVAR-sorted, and IVAR-sorted port-

folios, respectively. The standard deviation of the IPJVAR-sorted portfolio (11.36%) is

comparable to that of the INJVAR-sorted portfolio (10.32%). The standard deviations of

IDVAR-sorted and IVAR-sorted portfolios are much higher than those of the IPJVAR-sorted

and INJVAR-sorted portfolios. Using the annualized mean returns and standard deviations,

the Sharpe ratios are reported in Table 4 as a performance measure. The IPJVAR-sorted

portfolio has the highest Sharpe ratio of 0.37, which is much higher than the Sharpe ratio

of the INJV AR-sorted portfolio, the next best strategy. Importantly, the IPJVAR-sorted

portfolio performs much better than the IV AR-sorted portfolio in terms of the Sharpe ratio

(i.e., 0.37 for IPJVAR vs. 0.08 for IVAR).15

I report other performance evaluation measures such as CAPM alphas as well as Fama-

French 3-factor, 5-factor, 6-factor plus momentum, and q-factor alphas. The portfolio alpha

measures indicate that the IPJVAR-sorted portfolio outperforms the other portfolios. Table

4 also shows that the results based on value-weighted average returns are similar to those

15Returns to the IVAR-sorted portfolio differ slightly from returns to similar portfolios sorted by the id-
iosyncratic volatility reported in Ang et al. (2006) for three reasons. First, my sample period ends in 2016,
whereas their sample period ends in 2000. Second, I use a slightly different definition of idiosyncratic risk,
which is the sum of the squared return residuals for my straightforward linear decomposition of idiosyncratic
risk, instead of their idiosyncratic volatility estimator, which is the standard deviation of daily return resid-
uals. For a fair comparison, we present the performance of the IVAR-sorted portfolio to better illustrate the
relative performance. Last, my samples are expected to be different because I require at least one year of
observations for each sample firm to satisfy the conditions for idiosyncratic jump tests.
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based on equal-weighted average returns.

I also compare the relative performance of the strategies in terms of cumulative excess

returns, and present the results in Figure 2. This graph illustrates the better performance

of the IPJVAR-sorted portfolio. The graph also shows that the IPJVAR-sorted portfolio

outperforms the other three portfolios throughout the entire sample period and the subsam-

ple periods. Furthermore, that portfolio’s cumulative return is more than 100% higher than

those of the INJVAR-sorted and IVAR-sorted portfolios, both of which have a similar perfor-

mance at the end of the investment horizon. The IDVAR-sorted portfolio has a cumulative

return very close to zero (although slightly negative), which highlights that idiosyncratic

diffusive risks are not priced in the market. The results based on cumulative returns are

consistent with the results in Table 4 based on Sharpe ratios and cross-sectional regression

analyses. Overall, the portfolio analyses emphasize the economic significance of the findings

and their substantial implications.

4 Pricing channel for positive jump variance

In this section, I compare the main finding with the evidence of well-established pricing

factors that are related to nonnormal market conditions and the “maximum return effect” of

Bali et al. (2011). Then, I provide evidence to support my explanation for the main finding

based on investors’ skewness preference.

4.1 Nonnormal market conditions

Motivated by the previous studies suggesting that nonnormal market conditions may

generate a negative relation between lagged volatility and subsequent stock returns, I first
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check whether and how the main results are affected by variables related to jumps. First,

I consider skewness measures because the third moments of return distributions can be

related to realized jumps in returns.16 In column (2) of Table 5, I confirm the evidence that

skewness is negatively related to subsequent stock returns. However, IPJVAR continues

to be statistically significant, and its negative relationship with subsequent returns remains

similar. Therefore, skewness cannot explain stock return variations captured by idiosyncratic

positive jump variances, indicating that realized variances associated with positive tails of

return distributions influence subsequent returns differently from the skewness measure.17

Next, I consider coskewness, which has been considered a determinant of the cross-

section of stock returns in previous studies. This measure may be assumed to be related

to the effect of priced jump risk on stock returns because jumps may directly influence the

magnitude of coskewness. Following Chabi-Yo and Yang (2010), I measure month m − 1

coskewness using the coefficient from the regression of squared daily individual stock returns

on market returns. The results reported in column (3) of Table 5 confirm that coskewness

has a significant negative relation with subsequent stock returns.18 However, the significantly

negative association of IPJVAR with subsequent stock returns remains similar. Hence, this

systematic return asymmetry does not explain the impact of the positive idiosyncratic jump

16Amaya et al. (2015) find a negative relationship between realized total skewness and future stock returns.
Conrad et al. (2012) show the negative relationship between ex ante skewness (obtained from option market
data) and subsequent stock returns. I use daily return data from month m− 1 to calculate the month m− 1
ex post skewness to match the monthly frequency for the regression test. I choose ex post skewness from
month m− 1 because the goal is to gauge whether the jump variance measure delivers different information,
even if both measures are calculated using data generated from the same underlying return process. If both
measures contain similar information, proving the distinctive role of idiosyncratic jumps would be more
difficult in the presence of my skewness measure than in that of any other skewness measures.

17I consider the expected idiosyncratic skewness of Boyer et al. (2010) but find it to be insignificant in
column (7) of Table 5 in the presence of the decomposed idiosyncratic variances in the regression.

18The main results are not changed when using an alternative estimation method for coskewness with the
coefficient of the regression of daily individual stock returns on squared market returns, as in Harvey and
Siddique (2000). Subsection 5.3 presents the robustness of the results to the asset pricing model specifications,
which includes this coskewness measure of Harvey and Siddique (2000) as a higher market moment factor.
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variances.

I next test whether the results may be related to illiquidity in the corresponding individual

stock markets. When liquidity in a market dries up, the market cannot absorb immediate

transactions without generating large price changes. Therefore, in theory, more jumps are

expected in less liquid markets. I use both Amihud measures and zero returns as proxies

for illiquidity.19 The coefficients for both proxies in columns (4) and (5) are significant.

Importantly, this illiquidity effect does not change the finding of the negative relation between

IPJVAR and stock returns in subsequent months.

Another jump-related variable I consider is the maximum daily return during the previ-

ous month. Bali et al. (2011) study the significance of maximum daily returns in explaining

a cross-section of stock returns. Column (6) of Table 5 shows a significantly negative relation

between the maximum returns over the past month and subsequent stock returns, confirming

their finding. They show that adding the maximum daily return to the regression reverses

the negative relation between idiosyncratic volatility and expected returns. However, I find

that given the decomposed idiosyncratic risk measures, adding maximum returns does not

reverse the sign of the coefficients for IPJVAR, although its significance disappears. This

result is not surprising due to a multicollinearity problem from the well-known mechanical

correlation between maximum returns and idiosyncratic risk measures. With existing vari-

ables considered in the literature thus far, it is difficult to identify how the maximum effects

are related to idiosyncratic jumps.

19Following Amihud (2002), I compute the Amihud measure as the month m− 1 average of daily absolute
stock returns divided by the daily dollar trading volume. Following Han and Lesmond (2011), the zero
returns variable is the fraction of trading days in month m− 1 with a zero return. Other liquidity measures
are derived from quote data, such as bid-ask spreads. Because employing them for the analyses significantly
reduces the sample period, I exclude them from the analyses to maintain the sample period, as maintaining
a long sample period is a main reason I use daily data instead of high-frequency data.
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4.2 Maximum return effects through positive jumps

In this subsection, I distinguish the role of positive idiosyncratic jumps in the maximum

return’s ability to predict subsequent returns. In essence, I incorporate the jump data in

identifying the source of maximum effects. Note that the maximum daily return data are

realized returns from either jump or nonjump components of asset pricing models. In other

words, in a month with no jumps, the maximum daily returns are mainly generated from

the nonjump components. However, in the presence of jumps in a month, they are likely to

result from the (positive) jump component.

To separate the role of jumps in the maximum return effects, I decompose the maximum

returns for stock i in month m into those realized without and with positive jumps as follows:

Max returni,m = Max returni,m × (1− IPJi,m) + Max returni,m × IPJi,m, (4)

where Max returni,m × (1 − IPJi,m) is the maximum return for stock i in month m real-

ized without positive idiosyncratic jumps and Max returni,m × IPJi,m is that with posi-

tive idiosyncratic jumps. Before further analyses, I first check the relation between maxi-

mum returns and those returns with positive idiosyncratic jumps (i.e., Max returni,m and

Max returni,m×IPJi,m) and find an exceptionally high contemporaneous correlation (greater

than 90%) between the two.20 I also check the R2s, which represent how much variations

in maximum daily returns can be explained by those with or without positive idiosyncratic

jumps. With jumps (i.e., using Max returni,m×IPJi,m), the (adjusted) R2 is 81.5%, while it

is 0.82% without jumps (i.e., using Max returni,m× (1− IPJi,m)). Thus, the initial analyses

about maximum returns in relation to jumps suggest that the majority of maximum return

20The correlation between Max returni,m and Max returni,m × (1− IPJi,m) is approximately 9%.
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effects are realized through positive idiosyncratic jumps. Using these separated maximum

returns, I perform additional regression analyses to examine how maximum daily returns

affects the cross-section of subsequent stock returns.

Table 6 shows the estimation results. In column (1), we confirm that stocks with greater

maximum daily returns tend to earn significantly lower subsequent stock returns. Using

only the maximum returns without positive jumps, however, I show in column (2) that

the maximum return effects no longer exist. The results in column (3) indicate that the

maximum return effects remain valid only when maximum returns are realized with the

presence of positive jumps. The significance of maximum returns without positive jumps

is not consistent, as seen in columns (4)-(6). Overall, the results in this section enhance

the understanding of maximum return effects on subsequent returns by demonstrating that

positive jumps (not mere maximum returns without jumps) are the main source of maximum

return effects.

4.3 Skewness prediction with positive idiosyncratic jumps

In this subsection, I study a pricing channel for the main finding. For a potential ex-

planation, I consider the fact that investors can gain unusually large positive returns when

positive idiosyncratic jumps occur in asset prices. I conjecture that investors revise their

expectation for such unusual gains in light of high variances associated with positive realized

jumps. Specifically, I examine how high positive jump variances (along with their arrivals)

are related to the lottery-type events considered in Barberis and Huang (2008).21

Barberis and Huang (2008) study the asset pricing implication of cumulative prospect

theory and build a model in which skewness-loving investors bid up the prices of skewed

21Brunnermeier et al. (2007) and Boyer et al. (2010) also produce similar conclusions and predict lower
expected returns for stocks with greater idiosyncratic skewness.
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securities, leading to low expected returns. They use skewness as a proxy measure for lottery

events. To support the explanation for the finding, I test and confirm my hypothesis that

positive idiosyncratic jump arrivals and their variances help to predict (positive) skewness

in the subsequent month. I use the following regression model to predict the subsequent

month’s skewness in the cross-section:

Skewnessi,m = θ0 + θ1IPJi,m−1 + θpjIPJV ARi,m−1 + δ′xXi,m−1 + ei,m, (5)

where IPJV ARi,m−1 is the idiosyncratic positive jump variance for stock i for month m− 1

and IPJi,m−1 is a positive idiosyncratic jump indicator for stock i in monthm−1, which is one

if there is at least one positive jump in month m−1 (i.e., IPJi,m−1 = I[
∫
t∈Mm−1

dJ
(+)
i,t > 0]).22

I focus on studying how positive idiosyncratic jump variances (i.e., IPJVAR) realized

in month m − 1 (along with other variance measures) affect the skewness prediction in the

subsequent month m.23 I add the jump arrival indicators IPJi,m−1 to examine whether

they matter for skewness prediction. I also include other independent variables that can

potentially affect skewness prediction. I select variables employed in prior skewness research,

such as Chen et al. (2001) and Boyer et al. (2010). The selected variables include the lagged

realized return, stock turnover (volume/shares outstanding), size (log market capitalization),

the Amihud measure for illiquidity, stock price, and book-to-market ratio (B/M), all of which

are based on observations from month m− 1.

In order to capture lottery-type events, it is worthwhile to differentiate the return asym-

22I also consider a negative idiosyncratic jump indicator INJi,m−1 for stock i and month m− 1, which is

one if there is at least one negative jump in month m− 1 (i.e., INJi,m−1 = I[
∫
t∈Mm−1

dJ
(−)
i,t > 0]).

23For the empirical analyses, I use the estimates for decomposed variances and realized jumps using daily
data in month m − 1. To be consistent with the main regression method, I estimate both coefficients and
standard errors for this cross-sectional regression using the Fama-MacBeth procedure.
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metry generated by normal returns from that generated by extreme positive returns (i.e.,

positive jumps), both of which can be captured by typical skewness measures. To distinguish

the two, I consider an additional dependent variable, which is skewness observed only when

there are positive jumps. I use this variable because positive jumps share similar properties

with lottery-type returns, such as representing large positive returns with low probabilities.

Table 7 reports the estimation results. In all specifications, I find that the key variable

IPJVAR is an important predictor for future skewness, showing that stocks with higher

IPJVARs tend to exhibit significantly higher skewness in subsequent months. This finding

is robust to the inclusion of all other predictors under consideration. The coefficients for

positive idiosyncratic jump indicator (IPJ ) is also consistently positive, which suggests that

positive jump arrivals are also important skewness predictors. Diffusive variance effects

become insignificant and the magnitudes of negative jump variance effects become weaker

once the subsequent skewness measures captures the presence of positive idiosyncratic jumps.

Important observations were obtained from including other independent variables as well.

I find that the lagged return over the previous month is another significant variable. How-

ever, its associated coefficients are significantly negative, suggesting that stocks with higher

lagged monthly returns tend to have lower skewness in the subsequent month. This obser-

vation is consistent with the intuition that large returns with low variances from the past

can be considered outliers and are less expected to occur again in the future. This result

emphasizes the important role of positive jump variances. I find that coefficients for the size

variable are significantly negative, indicating that greater skewness is expected for relatively

smaller-sized stocks. Another notable variable is stock price. If investors prefer lottery-type

returns, they are typically expected to look for low-priced stocks. Consistent with the typi-

cal characteristics of lotteries, I find that greater skewness is expected for stocks with lower
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stock prices.24 Book-to-market ratios are included to determine whether being a growth or

value firm is related to a skewness prediction. I find these ratios positively affect skewness

in subsequent months.25

4.4 Discussion

The evidence shown in the previous subsection is consistent with Barberis and Huang

(2008), whose model predicts lower expected returns for individual stocks that are likely to

exhibit lottery-type returns with greater skewness. They suggest a heterogeneous-holdings

equilibrium with different groups of investors. One group of investors takes large undiversified

positions in stocks with greater skewness, making it more likely that their wealth distribution

will be positively skewed because they find it desirable. Accordingly, for stocks with greater

skewness, these investors are willing to pay higher prices, ultimately accepting lower returns.

If there are many such investors in the markets, the corresponding stock prices will be

pushed up, which can explain my main findings.26 When Barberis and Huang (2008) consider

the effect of fat tails in individual stock return distributions, they address that investors’

estimates about lottery events derive from the physical return distribution. Realized positive

jump variance data provide legitimate input for such estimates because they are identified

in this study as important predictors for future skewness in stock markets.

Skewness measures are often used to capture unusually large gains in stock markets.

Empirical challenges recognized in Boyer et al. (2010) are that ex ante skewness is difficult

24Kumar (2009) considers three stock characteristics to identify stocks that may be perceived as lotteries:
stock-specific or idiosyncratic volatility, idiosyncratic skewness, and stock prices.

25I do not consider the cross effects from other firms because my robustness checks in Subsection 5.5
indicate that these negatively priced idiosyncratic jumps do not exhibit significant commonality in their
arrivals.

26I can also relate my findings with Brunnermeier et al. (2007) and Boyer et al. (2010), who predict lower
expected returns for stocks with greater expected idiosyncratic skewness.
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to measure when studying the impact of skewness and that separating its effect from usual

volatility effects is difficult. Notably, my approach used in this paper allows me to resolve the

measurement difficulty by incorporating positive idiosyncratic jumps when making inferences

about idiosyncratic skewness. I also resolve the second challenge of separating volatility

effects by using jump/nonjump return data, ultimately demonstrating the exclusive role of

positive idiosyncratic jump variances in cross-sectional asset pricing.

Lastly, stocks with a greater skewness are not necessarily expected to offer higher average

stock returns in subsequent periods. The evidence generally suggests that this type of stock

tends to show high volatility generated from both signed returns and to exhibit extremely

negative returns, which can negatively affect average stock returns over subsequent periods.

Therefore, the results in this section are not inconsistent with lower subsequent (average)

returns for stocks with higher realized variances associated with positive idiosyncratic jumps.

5 Robustness tests

In this section, I check whether the main finding is robust to microstructure effects,

outliers, sample period selection, estimation approaches, asset pricing model specifications,

and missed jump factors, among others.27

5.1 Microstructure effects and outliers

In estimating the jump variances, there can be potential concerns due to biases that arise

from market microstructure effects or outliers. In this subsection, I first perform subsample

27Additional robustness checks are included in Appendix C. The robustness checks in this section are
based on regression methods that are also used in the main analyses. As an alternative approach, sorting
analyses can be used, and the overall results are consistent.
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analyses to check how zero returns affect the results. I create two subsamples based on

the median level (14%) of the fraction of trading days in month m − 1 with zero returns.

The results are reported in columns (2) and (3) of Table 8 after reporting in column (1)

the full sample results shown in Table 3. The coefficient signs of IPJVAR continue to be

negative and significant at the 5% level. The coefficient magnitudes tend to be greater for

the subsample with more zero returns. The coefficient signs for INJVAR are inconsistent

and change depending on the fraction of zero returns in the data. In addition, I perform

subsample analyses with the Amihud illiquidity measure for any concerns related to illiquidity

in the markets. I create two subsamples based on the median level (10%) of the Amihud

measure. I continue to find that the main results are robust regardless of the level of illiquidity

in the stock markets. The results are in columns (4) and (5).28

To remove the effect of a bid-ask bounce, I perform the test by skipping a month between

measuring jump variances and predicting returns. I continue to find that the main results are

robust, as shown in column (6). I mitigate the concern about outlier effects by winsorizing the

independent variables, as well as by taking logs of the variances. I winsorize all independent

variables at the levels of 1% and 99% and rerun the regressions. I continue to find that the

results are robust in columns (7) and (8).

5.2 Sample periods and business cycles

In this subsection, I discuss robustness checks conducted with several subsamples accord-

ing to business cycles and sample periods. The results are in Table 9. First, I report the

results for the entire sample period in column (1), confirming the robustness of the results

28I also perform double sorting analyses using the fraction of trading days with zero returns and the
Amihud illiquidity measure and confirm that the alphas of double-sorted portfolios are all significant at the
1% level.
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to the controls including jump-related variables. Next, I split the sample period depend-

ing on the business cycle. Using the NBER’s U.S. business cycle expansion and contraction

records, I generate a subsample called “Expansion” (“Recession”) for the period of expansion

(recession) starting from the trough (peak) and ending at the peak (trough) of a business

cycle. Columns (2) and (3) present the results depending on the business cycle. Overall, I

confirm the prior results that regardless of the business cycle. I notice that the magnitude of

the coefficient for IPJVAR is greater for the “Recession” sample than for the “Expansion”

sample, which can be interpreted as investors’ stronger preference for stocks with larger pos-

itive jump variances, during a recession than during an expansion, thus creating a greater

negative premium.

I next test whether the results are robust to the sample period selection. For the “First”

(“Second”) sample, I use data during the first (second) half of the sample period from 1963

to 1990 (1991 to 2016) and report the results in column (4) (column (5)). I find that the

overall results are consistent. The magnitude of the coefficient for IPJVAR for the “First”

sample is more than four times greater than that for the “Second” sample, although the

statistical significance is similar. I examine a time trend of the finding by further splitting

the sample period according to the years of observations: 1963 to 1979, 1980 to 1999, and

2000 to 2016. The results are presented in columns (6)-(8). The coefficient magnitude (-

30.993) for IPJVAR for the sample from 1963 to 1979 is approximately twice as large as

that (-16.230) for the sample from 1980 to 1999 and more than six times larger than that

(-4.547) for the sample from 2000 to 2016. The decreasing coefficient magnitudes can be

linked to the finding of Han and Kumar (2013), which indicates that retail investors tend to

hold individual stocks with lottery features.29

29This explanation is consistent with evidence of a steady increase in the proportion of U.S. public equities
managed by institutions over the past six decades and the gradual shift in their holdings from larger to smaller
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5.3 Asset pricing model specification

In the main analyses, I follow previous studies to assume that the Fama-French three-

factor model captures systematic risk and that the daily return residuals are a realization

of idiosyncratic risk. One may question the robustness of the results to the specific choice

of the factor model specification. In this subsection, I examine whether the findings hold

regardless of how the factor model is specified. Overall, I prove that the results hold with

respect to not only the Fama-French three-factor model used in the main analyses but also

other models, such as the CAPM, the q-factor models of Hou et al. (2015), the four-factor

model including the momentum factor, and the five-factor model of Fama and French (2015),

as well as the no-factor model. I also consider the four- and five-factor models with higher

market moments to incorporate the systematic nonlinear factor, which may be missed in

linear factor models.30

The results are in Table 10. The regression for the results in column (1) does not include

a systematic factor. Because no assumptions are imposed on the factor structure, I can

at least avoid concerns about model misspecifications in this no-factor model. I continue

to find a significantly negative coefficient for IPJVAR. Unlike the main result, I find a

significantly positive coefficient for INJVAR, indicating that negative jump variances are

positively related to subsequent stock returns.31 Columns (2)-(5) present the results with

respect to the CAPM, the q-factor model, the four-factor model including the momentum

factor, and the five-factor model. In the regression for the results in columns (6)-(7), I include

stocks over time. See additional details in Blume and Keim (2012).
30Fama-French factor returns are obtained from Ken French’s online data library, while the q-factor returns

are obtained directly from the author of Hou et al. (2015).
31This result in column (1) for the no-factor model is consistent with evidence of an overall negative

relation between the signed jump variations and subsequent stock returns documented in Bollerslev et al.
(2020). They calculate a jump variation measure using intraday return data without filtering out systematic
factor return components.
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the coskewness factor of Harvey and Siddique (2000), which I did not consider in the main

analyses. I also consider factor models with short-term reversals or the first five principal

components.32 Overall, I continue to find the results are robust to the model specification.

5.4 Missed market jumps

The decomposed idiosyncratic variance measures may include market jumps because I

do not explicitly incorporate them in the factor models. However, this approach may raise

the question of whether there exists a systematic market jump component that is missed in

the model but that influences the results. I perform a test to rule out such a possibility.

To facilitate this test, I create a market jump indicator that is set to one on a day when

a jump exists in the overall market portfolio and zero otherwise. To empirically detect jump

arrivals in the overall market portfolio, I apply jump detection tests to the daily market

return series during the sample period and identify their arrivals. The daily market returns

are calculated by taking the average of the return data for all individual stocks in the sample.

Panel A of Table 11 presents the summary statistics of the realized market jumps. I find

that the total number of positive (negative) market jumps during the sample period is 646

(805). The average numbers of positive (negative) jumps per year, month, and day are

approximately 11.49 (14.32), 0.95 (1.19), and 0.047 (0.059), respectively.33

Here, I note that market jumps become identifiable only when a sufficient number of

individual stock jumps exist in a day because the market return is essentially the average

of individual component stock returns. Hence, if there is a positive idiosyncratic jump in a

32To save space, the estimation results based on principal components and short-term reversal factors are
not reported, because they essentially provide similar results.

33Notably, unlike in idiosyncratic jumps, the number of positive market jumps is lower than the number
of negative market jumps. Additionally, the absolute magnitudes of positive market jump sizes tend to
be smaller than those of negative market jump sizes, which is different from the properties observed for
idiosyncratic jumps.
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stock and its arrival coincides with a market jump arrival on the same day, one can presume

that the positive idiosyncratic jump is associated with the market jump and further speculate

that such an association is related to the findings. In this subsection, I check this possibility

by examining whether part of the IPJVAR variable related to market jumps is indeed the

priced component in the previous regression analyses.

To test the aforementioned hypothesis, I decompose the variable IPJVAR into two com-

ponents: one attributable to those positive jumps whose arrivals coincide with market jump

arrivals and the other attributable to positive jumps whose arrivals do not coincide with mar-

ket jump arrivals.34 Using these further decomposed IPJVARs, along with other variables,

I again run the cross-sectional regression to identify the components that remain important

and significant for pricing. Column (2) of Table 12 reports the estimation results from this

test. The table shows that the coefficient for IPJV ARM related to market jumps is insignif-

icant, whereas the coefficient for IPJV ARNM unrelated to market jumps is significant and

negative. These results confirm that market jumps are not the main channel for the main

finding.

34Formally, these further decomposed IPJVAR estimators for stock i in month m are expressed as follows:

̂IPJV AR
M

i,m =
∑

i,Dd⊂Mm

ε2i,dI(Ti,d > τ)× I(Tmarket,d > τ), and

̂IPJV AR
NM

i,m =
∑

i,Dd⊂Mm

ε2i,dI(Ti,d > τ)× I(Tmarket,d < τ), (6)

where ̂IPJV AR
M

( ̂IPJV AR
NM

) is based on positive idiosyncratic jumps whose arrivals (do not) coincide
with market jump arrivals and Tmarket,d is the jump test statistic applied to market returns on day d. All
other notations are the same as those denoted in Section 2.
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5.5 Common idiosyncratic jumps

In this subsection, I examine whether the evidence is driven by individual stock jumps

that occur simultaneously with other stock-specific jumps, which I call “common idiosyn-

cratic jumps.” I consider these common jumps separately because they are different from

the market jumps in the previous subsection but could be regarded as a missing systematic

jump factor that could influence the pricing of the idiosyncratic jumps.

Given the unbalanced panel data, the total number of stocks available each day in the

sample is expected to change over time. Therefore, I measure commonality with the per-

centage of common jumps instead of the raw number of common jumps per day. By taking

the ratio of the number of stocks experiencing positive (negative) jumps to the total number

of stocks each day, I compute the percentage of positive (negative) common jumps per day

as a measure of commonality of positive (negative) jumps. Panel B of Table 11 shows the

distributional statistics for the percentage of common positive jumps per day. I find that

the commonality of these positive idiosyncratic jumps is far from system-wide and not even

close to the market level.35 Based on the empirical distribution of the percentage of common

jumps, I set thresholds for the commonality measure.

To separate the impact of common and uncommon jump components, I decompose IPJ-

VAR into two parts: one due to positive idiosyncratic jumps whose arrivals coincide with

common jump arrivals (i.e., IPJV ARC) and the other due to those whose arrivals do not

coincide with common jump arrivals (i.e., IPJV ARU).36 With the further decomposed IPJ-

35Additionally, the significance level used for two-sided jump tests is set at 5%, which means that for
the positive jump detection, approximately 2.5% of spurious jumps may exist because of the false positives
resulting from type I errors.

36Formally, these further decomposed IPJVARs for stock i in month m can be expressed as follows:

̂IPJV AR
C

i,m =
∑

i,Dd⊂Mm

ε2i,dI(Ti,d > τ)× I(

∑Kd

i=1 I(Ti,d > τ)

Kd
> ω), and
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VARs, I test whether the common (or uncommon) jump component is associated with the

negative risk premium. Columns (3)-(5) of Table 12 report the test results. In the regression

for the results in column (3), the threshold ω for commonality is set at 20% to indicate

common jump arrivals.37 The results show that only the coefficient for IPJV ARU remains

statistically significant and negative. Using other values of the ω threshold, I continue to

observe similar results in columns (4)-(5). Thus, the pricing channel for my finding is mainly

through the uncommon idiosyncratic jump components of IPJVARs.

6 Conclusion

Motivated by investors’ different reactions to extreme gains or losses over short horizons

from those to normal innovations in financial markets, I examine how uncertainties asso-

ciated with realized idiosyncratic jumps play a role in explaining the cross-section of stock

returns. Evidence of the distinctive role of idiosyncratic jumps, with different signs, is sparse

in the literature. I set up a general inference framework in which idiosyncratic variances can

be decomposed into diffusive and signed jump components and suggest approaches for sepa-

rating their associated premiums. Using stock market data, I provide evidence that positive

idiosyncratic jump variances exclusively drive the negative relation between idiosyncratic

volatility and subsequent stock returns.

The results indicate that only positive jump variances are consistently associated with

̂IPJV AR
U

i,m =
∑

i,Dd⊂Mm

ε2i,dI(Ti,d > τ)× I(

∑Kd

i=1 I(Ti,d > τ)

Kd
< ω), (7)

where Kd is the total number of stocks available on day d, and ω is a chosen threshold of commonality for
defining common jump arrivals. All other notations are the same as those denoted in Section 2.

37In other words, the common jump arrival indicator becomes one when more than 20% of the sample
stocks experience positive idiosyncratic jumps simultaneously in a day.
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negative premiums. Idiosyncratic diffusive risks are not priced, suggesting that they are well

diversified away during normal times with no jumps, as assumed in traditional asset pricing

models. Unlike negative market jumps that typically require positive risk premiums, nega-

tive idiosyncratic jumps do not show a consistent pricing pattern. My findings imply that

investors can enhance their portfolio performance by incorporating the negative premium.

I demonstrate this implication by considering strategies with a positive return spread from

taking short (long) positions on stocks with higher (lower) idiosyncratic positive jump vari-

ances. The strategy based on idiosyncratic positive jump variances outperforms the others.

I perform a horse race test using various jump-related variables and discover that the

maximum daily return effects are closely related to the finding. Using idiosyncratic jump

data, I show that the maximum daily return effects are mainly driven by positive idiosyncratic

jumps. The findings are consistent with theoretical models for pricing individual stocks that

tend to exhibit skewed payoffs. To demonstrate the role of the positive jump variances in

setting investors’ expectations, I show that positive jumps with high realized variances are

significant predictors for future skewness. This evidence suggests that some investors take

positions in stocks with high positive jump variances, ultimately willing to accept lower

returns.

Given the findings and related implications, one may question why these low returns

are not arbitraged away by investors who would exploit investment opportunities. One can

answer this question based on the results in the skewness prediction analysis that the chances

of observing unusually large positive idiosyncratic jumps tend to be higher for relatively

smaller-sized stocks with lower prices, for which greater limits to arbitrage, such as higher

transaction costs, exist. I leave this interesting issue for future research with more detailed

analyses using trading data.
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Figure 1 : Time series plots of decomposed idiosyncratic risk measures
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Figure 1 : Time series plots of decomposed idiosyncratic risk measures, continued
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This figure displays the time series of averaged decomposed idiosyncratic risk measures (IDVAR, IPJVAR, and INJVAR) for

quintile portfolios, which are created every month by sorting stocks according to each decomposed idiosyncratic risk measure.

The decomposed idiosyncratic risk measures are calculated using daily return residuals from the Fama-French three-factor model,

and the monthly averages of the three risk measures are plotted for each of the quintile portfolios during the sample period

from 1964 to 2016. The top, middle, and bottom panels show the results for the IDVAR-sorted portfolios, the IPJVAR-sorted

portfolios, and the INJVAR-sorted portfolios, respectively.
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Figure 2 : Relative performance of decomposed idiosyncratic risk-sorted portfolios
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To demonstrate the economic implications of the empirical findings, this figure illustrates the performance of short-long portfolios

in terms of cumulative excess returns. Considering the significant negative risk premium identified mainly for idiosyncratic

positive jump variance, the IPJVAR-sorted short-long portfolio is created by sorting stocks according to the level of IPJVAR

every month and taking short positions on stocks in the highest quintile portfolios and long positions on stocks in the lowest

quintile portfolios. For comparison, I also consider similar short-long portfolios for other idiosyncratic risk measures of IVAR,

IDVAR, and INJVAR. Because the number of stocks changes over time, the number of stocks in these extreme quintile portfolios

changes over time as well. I follow their performance during the sample period from 1964 to 2016. The portfolios are rebalanced

every month. The line with point markers represents the cumulative returns for the IPJVAR-sorted portfolios, and the dashed,

dotted, and solid lines represent the cumulative returns for the INJVAR-sorted, IDVAR-sorted, and IVAR-sorted portfolios,

respectively.
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Table 3: Pricing decomposed idiosyncratic variances†

Variable (1) (2) (3) (4) (5)
IVOL -10.643**

(-2.461)
IVAR -6.698***

(-2.926)
IDVAR -5.050 2.638 2.277

(-0.604) (0.330) (0.286)
IPJVAR -16.384*** -21.126***

(-5.748) (-3.613)
INJVAR 5.769

(1.083)
βMKT -0.028 -0.038 -0.042 -0.039 -0.043

(-0.552) (-0.741) (-0.819) (-0.765) (-0.833)
βSMB -0.036* -0.036 -0.038* -0.036* -0.035

(-1.720) (-1.607) (-1.813) (-1.687) (-1.611)
βHML 0.036 0.047* 0.041* 0.042 0.043*

(1.539) (1.804) (1.657) (1.647) (1.708)
Size -0.030*** -0.029*** -0.025** -0.027** -0.026**

(-3.115) (-2.636) (-2.407) (-2.577) (-2.546)
B/M 0.396*** 0.400*** 0.406*** 0.400*** 0.402***

(7.846) (7.867) (8.004) (7.867) (7.888)
Momentum 0.406*** 0.417*** 0.419*** 0.405*** 0.411***

(4.140) (4.079) (4.422) (4.249) (4.287)
Lagged return 0.050 0.069 0.095 -0.011 0.031

(0.202) (0.262) (0.368) (-0.044) (0.124)
Constant 0.666*** 0.547** 0.495** 0.510** 0.502**

(3.480) (2.438) (2.311) (2.394) (2.357)
Observations 1700013 1697355 1697355 1697355 1697355

R-squared 0.043 0.040 0.043 0.046 0.048
† This table provides the results of the asset pricing tests of whether idiosyn-

cratic jump risks are cross-sectionally priced in U.S. equity markets. I run the
traditional Fama-MacBeth regression:

ri,m = cm+γdIDV ARi,m−1+γpjIPJV ARi,m−1+γnjINJV ARi,m−1+λ′ββi,m+λ′zzi,m+ei,m,

where ri,m is stock i’s excess return in month m, IDV ARi,m−1, IPJV ARi,m−1

and INJV ARi,m−1 are decomposed idiosyncratic risk measures computed us-
ing daily return residuals during the previous month m−1, and zi,m is a vector
of control variables for firm i and month m. The main variables of interest are
IDVAR, IPJVAR, and INJVAR. Columns (1) and (2) present the estimation
results of the regressions without separating the idiosyncratic risk measures.
IVOL (IVAR) denotes the idiosyncratic risk measured using the standard devi-
ation of the return residuals (sum of squared return residuals). Columns (3)-(5)
show the results using the decomposed risk measures. All of the results are after
controlling for factor loadings and the usual firm characteristics, such as size,
book-to-market ratios (B/M), momentum, and lagged variables. Numbers in
parentheses are test statistics for the coefficient estimates. ***, **, * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 4: Implication for decomposed variance sorted portfolios †

IPJVAR-sort INJVAR-sort IDVAR-sort IVAR-sort
Panel A: Using equal-weighted quintile portfolios

Mean (%) 0.35*** 0.16* -0.011787 0.13
(2.663) (1.387) (-0.050) (0.599)

CAPM alpha (%) 0.34*** 0.14 0.003 0.138
(2.563) (1.210) (0.012) (0.624)

FF 3-factor alpha (%) 0.31** 0.13 -0.087 0.07
(2.329) (1.092) (-0.364) (0.313)

FF 5-factor alpha (%) 0.33** 0.14 -0.059 0.094
(2.380) (1.106) (-0.237) (0.404)

FF 6-factor alpha (%) 0.35** 0.16 -0.036 0.129
(2.546) (1.302) (-0.143) (0.550)

q-factor alpha (%) 0.34** 0.162 -0.058 0.13
(2.289) (1.214) (-0.217) (0.526)

Annualized mean return (%) 4.2 1.92 -0.22 1.56
Annualized standard deviation (%) 11.36 10.32 20.71 19.29

Annualized Sharpe ratio 0.37 0.19 -0.01 0.08
Panel B: Using value-weighted quintile portfolios

Mean (%) 0.37*** 0.26** 0.15 0.32*
(2.603) (2.002) (0.601) (1.406)

CAPM alpha (%) 0.355** 0.232* 0.15 0.314
(2.458) (1.775) (0.593) (1.357)

FF 3-factor alpha (%) 0.319** 0.208 0.051 0.238
(2.183) (1.569) (0.200) (1.018)

FF 5-factor alpha (%) 0.345** 0.229* 0.096 0.282
(2.290) (1.680) (0.365) (1.166)

FF 6-factor alpha (%) 0.371** 0.257* 0.117 0.314
(2.421) (1.857) (0.437) (1.278)

q-factor alpha (%) 0.37** 0.00275* 0.114 0.341
(2.269) (1.861) (0.401) (1.311)

Annualized mean return (%) 4.44 3.12 1.8 3.84
Annualized standard deviation (%) 12.54 11.36 21.93 20.13

Annualized Sharpe ratio 0.35 0.27 0.08 0.19

† This table compares the relative performance of four different short-long portfolio strategies using
extreme quintile portfolios sorted on decomposed idiosyncratic risk measures (IPJVAR, INJVAR,
and IDVAR) and the total idiosyncratic risk measure (IVAR). I create the IPJVAR-sorted short-
long portfolio by sorting stocks according to the level of IPJVAR every month and taking short
(long) positions on stocks in the highest (lowest) quintile portfolios. Because the number of
stocks changes over time in my unbalanced panel data, the number of stocks included in these
extreme quintile portfolios changes as well. I also consider similar short-long portfolios for other
idiosyncratic risk measures such as INJVAR, IDVAR, and IVAR. These portfolios are rebalanced
every month during the sample period from 1964 to 2016. The time series of subsequent month
returns for each portfolio are obtained for comparison. As performance measures, I present their
monthly mean returns, CAPM alphas, Fama French 3-factor alphas, FF 5-factor alphas, FF 6-
factor + momentum alphas, and q-factor alphas. Annualized returns, standard deviations, as
well as their Sharpe ratios are also reported. Panel A uses equal-weighted portfolios, while Panel
B uses value-weighted portfolios. I use size (log market capitalization) for the value weighting
scheme. Numbers in parentheses are test statistics for the parameter estimates. ***, **, * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 5: Effects of nonnormal market conditions†

Variable (1) (2) (3) (4) (5) (6) (7)
IDVAR 2.277 3.099 3.106 -0.346 1.204 14.370* -6.656

(0.286) (0.392) (0.391) (-0.043) (0.158) (1.960) (-1.005)
IPJVAR -21.126*** -19.095*** -19.956*** -21.302*** -22.371*** -4.163 -13.650***

(-3.613) (-3.285) (-4.243) (-3.404) (-3.707) (-0.678) (-5.807)
INJVAR 5.769 2.877 4.822 -0.993 7.634 4.565 -1.292

(1.083) (0.539) (1.016) (-0.180) (1.456) (0.905) (-0.385)
Lagged return 0.031

(0.124)
Skewness -0.053**

(-2.488)
Coskewness -0.529**

(-2.491)
Amihud measure 0.043***

(2.721)
Zero returns 0.806**

(2.252)
Max return -6.775***

(-5.245)
Expected idiosyncratic skewness 0.198

( 1.632)
Constant 0.502** 0.521** 0.510** 0.481** 0.400* 0.723*** 0.405*

(2.357) (2.425) (2.375) (2.296) (1.885) (3.673) (1.946)
Observations 1697355 1692871 1698064 1587042 1698064 1698064 1352624

R-squared 0.048 0.045 0.046 0.051 0.049 0.047 0.042
† This table reports the results of tests examining whether the main results are robust to other nonnormal market conditions

that tend to be related to jumps. To examine the individual impact of each jump-related variable on the results, I include
each variable one-by-one in addition to other control variables such as factor loadings, size, book-to-market ratios (B/M), and
momentum considered in Table 3. Specifically, I run the Fama-MacBeth regression:

ri,m = cm + γdIDV ARi,m−1 + γpjIPJV ARi,m−1 + γnjINJV ARi,m−1 + λ′ββi,m + λ′zzi,m + ei,m,

where ri,m is stock i’s excess return in month m, and IDV ARi,m−1, IPJV ARi,m−1 and INJV ARi,m−1 are decomposed
idiosyncratic risk measures computed using daily return residuals during the previous month m − 1. I consider various jump-
related variables, such as skewness, coskewness, maximum daily return, the Amihud illiquidity measure, fraction of trading days
with a zero return, and expected idiosyncratic skewness of Boyer et al. (2010). I use the expected idiosyncratic skewness data
available online at Brian Boyer’s website. The main variables of interest are IDVAR, IPJVAR, and INJVAR, which are computed
based on the jumps reported in Table 2. For comparison, I first report in column (1) the results obtained in Table 3. Then,
in columns (2)-(6), I report regression results in the presence of each jump-related variable. Numbers in parentheses are test
statistics for the coefficient estimates. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 6: Maximum return effects with and without positive jumps†

Variables (1) (2) (3) (4) (5) (6)
Max return -6.741***

(-5.139)
Max return without jumps 0.026 -5.374** -1.014 -0.443

(0.025) (-2.493) (-0.797) (-0.474)
Max return with jumps -4.322*** -6.329***

(-5.698) (-4.958)
IPJVAR -19.820*** -15.290***

(-4.591) (-3.318)
IDVAR -1.897

(-0.243)
INJVAR -7.914

(-1.588)
Lagged return 0.178 0.325 0.202 0.159 0.23 0.242

(0.698) (1.202) (0.767) (0.624) (0.88) (0.978)
Skewness 0.016 -0.129*** -0.028 0.007 -0.075*** -0.074***

(0.585) (-4.566) (-1.227) (0.265) (-3.258) (-3.416)
Coskewness -0.415** -0.539*** -0.462** -0.428** -0.574*** -0.448**

(-1.990) (-2.753) (-2.238) (-2.078) (-2.752) (-2.178)
Amihud measure 0.040*** 0.033** 0.037** 0.039*** 0.038*** 0.037***

(2.774) (2.324) (2.533) (2.79) (2.648) (2.877)
Zero returns 0.815** 0.652* 0.738* 0.808** 0.707* 0.655*

(2.196) (1.695) (1.875) (2.213) (1.856) (1.865)
Constant 0.623*** 0.358* 0.482** 0.586*** 0.404* 0.415**

(3.165) (1.68) (2.308) (3.021) (1.93) (2.072)
Observations 1588761 1588761 1586441 1586441 1586441 1586441

R-squared 0.055 0.051 0.052 0.057 0.055 0.062
† This table shows that the maximum daily return’s ability to predict subsequent returns is mainly driven

by positive idiosyncratic jumps. I separate maximum return data into those realized without and with
positive idiosyncratic jumps as follows:

Max returni,m = Max returni,m × IPJi,m + Max returni,m × (1− IPJi,m),

where Max returni,m × (1 − IPJi,m) is the maximum return for stock i in month m realized without
jumps and Max returni,m × IPJi,m is that with positive idiosyncratic jumps. The presence of positive

idiosyncratic jumps for stock i in month m is captured by IPJi,m = I[
∫
t∈Mm

dJ
(+)
i,t > 0]. I report the

estimation results for the Fama-MacBeth regression where its dependent variable ri,m is stock i’s excess
return in month m and separated maximum daily return are used to show the role of positive idiosyncratic
jumps. IDVAR, IPJVAR and INJVAR are included to present the results when maximum daily returns
do not include positive idiosyncratic jumps. For further robustness checks, I also consider various control
variables including lagged return, skewness, coskewness, the Amihud illiquidity measure, and the fraction
of trading days with a zero return. For comparison, I first report in column (1) the maximum return
effect without separation. In columns (2) and (3), I report results which separate the maximum return
effects without and with jumps. The results in columns (4)-(6) shows the inconsistent effects of maximum
returns in the absence of positive idiosyncratic jumps. Numbers in parentheses are test statistics for
the coefficient estimates. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table 7: Skewness prediction with decomposed
variances†

Skewness Skewness Skewness Skewness
Raw Raw with jumps with jumps

Variable (1) (2) (3) (4)
IPJ 0.010*** 0.017*** 0.027*** 0.030***

(3.339) (5.92) (9.421) (9.195)
IPJVAR 2.197*** 1.913*** 1.787*** 1.676***

(4.534) (4.705) (5.816) (5.516)
INJVAR -0.856*** -0.122 -0.309 -0.025

(-2.872) (-0.337) (-1.283) (-0.078)
IDVAR 4.414*** 4.316*** 1.335*** 1.279***

(11.884) (11.684) (4.511) (4.374)
Lagged return -0.355*** -0.355*** -0.262*** -0.262***

(-18.725) (-18.667) (-18.386) (-18.390)
Turnover 0.029*** 0.029*** 0.007** 0.007**

(4.794) (4.717) (2.086) (2.08)
Size -0.023*** -0.023*** -0.032*** -0.032***

(-10.385) (-10.309) (-20.047) (-19.978)
Amihud -0.002*** -0.002*** -0.001*** -0.001***

(-5.284) (-5.276) (-4.034) (-4.039)
Price -0.001*** -0.001*** -0.0004*** -0.0004***

(-6.048) (-6.054) (-6.392) (-6.403)
B/M 0.006*** 0.006*** 0.002* 0.002*

(2.945) (2.945) (1.957) (1.947)
INJ -0.015*** -0.006***

(-5.005) (-2.661)
Constant 0.321*** 0.324*** 0.404*** 0.406***

(19.364) (19.536) (32.274) (32.475)
Observations 1643276 1643276 1643276 1643276

R-squared 0.025 0.025 0.024 0.025
† This table shows the results of skewness prediction with realized vari-

ances associated with positive idiosyncratic jumps. I use a cross-
sectional regression model as follows:

Skewnessi,m = θ0+θ1IPJi,m−1+θpjIPJV ARi,m−1+δ′xXi,m−1+ei,m,

where the main variable IPJV ARi,m−1 is included. To test
the jump arrivals matter for skewness prediction, I also include
IPJi,m(INJi,m), a positive (negative) idiosyncratic jump indicator
for stock i in month m, which is one if there is at least one positive

(neative) jump in month m (i.e., IPJi,m = I[
∫
t∈Mm

dJ
(+)
i,t > 0] and

INJi,m = I[
∫
t∈Mm

dJ
(−)
i,t > 0], respectively). Xi,m−1 is a vector of

potential skewness predictors known in the previous month m − 1.
Variables included are INJVAR, IDVAR, lagged return, turnover,
size, the Amihud measure, and book-to-market ratio (B/M), all of
which are based on observations from month m− 1. To demonstrate
positive jump effects within skewness measure, I consider an addi-
tional dependent variable, that is skewness only when there are posi-

tive idiosyncratic jumps (i.e., Skewnessi,m × I[
∫
t∈Mm

dJ
(+)
i,t > 0] in

columns (3) and (4)). Numbers in parentheses are test statistics for
the coefficient estimates. ***, **, and * denote statistical significance
at the 1%, 5%, and 10% levels, respectively.
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Table 10: Robustness to asset pricing model selection†

Factor model selection No factor CAPM q-Factor FF3+Momentum FF-5 FF-4+coskew FF-5+coskew
Variable (1) (2) (3) (4) (5) (6) (7)
IDVAR 0.345 -2.303 -3.465 2.536 -2.892 2.584 -4.906

(-0.037) (-0.260) (-0.456) (0.241) (-0.309) (0.22) (-0.424)
IPJVAR -20.196*** -15.272*** -22.052*** -21.009*** -13.140*** -24.455*** -22.050**

(-8.002) (-2.919) (-9.566) (-3.603) (-3.310) (-3.095) (-2.421)
INJVAR 11.796*** -8.346 13.957*** -2.581 -3.179 -0.633 3.336

(2.635) (-1.328) (3.525) (-0.342) (-0.434) (-0.070) (0.224)
Lagged return 0.081 0.17 0.226 0.187 0.228 0.144 0.198

(0.292) (0.642) (0.882) (0.721) (0.878) (0.546) (0.768)
Skewness -0.052** -0.056** 0.070*** -0.060*** -0.043* -0.062** -0.066***

(-2.298) (-2.429) (3.314) (-2.615) (-1.758) (-2.497) (-2.712)
Coskewness -0.081 -0.461* 0.065 -0.458 -0.637** -0.571* -0.620**

(-0.334) (-1.846) (0.331) (-1.493) (-2.452) (-1.830) (-2.437)
Amihud measure 0.036*** 0.040*** 0.037*** 0.035*** 0.040*** 0.035*** 0.032**

(2.829) (3.103) (2.7743) (2.591) (3.089) (2.654) (2.248)
Zero returns 0.631 0.620* 0.615 0.56 0.569 0.532 0.651*

(1.636) (1.762) (1.605) (1.586) (1.573) (1.477) (1.869)
βMKT -0.018 -0.023 -0.016 -0.023 -0.018

(-0.347) (-0.434) (-0.306) (-0.435) (-0.342)
βSMB(βME) -0.020 -0.023 -0.027 -0.024 -0.021

(-1.039) (-1.135) (-1.314) (-1.175) (-0.986)
βHML(βIA) 0.041** 0.047* 0.039 0.048* 0.043*

(2.254) (1.786) (1.55) (1.807) (1.675)
βMOM (βROE) 0.037* -0.016 -0.017

(1.674) (-0.370) (-0.395)
βRMW 0.057*** 0.052***

(2.848) (2.629)
βCMA 0.03 0.037*

(1.436) (1.825)
βco−skew 0.125 0.16

(1.218) (1.344)
Constant 0.304 0.383* 0.352 0.404** 0.420** 0.408** 0.405**

(1.44) (1.937) (1.732) (2.027) (2.127) (2.049) (2.041)
Observations 1532934 1532934 1517825 1532934 1532934 1532934 1532934

R-squared 0.059 0.062 0.062 0.069 0.071 0.071 0.072
† This table provides the results of the robustness tests using asset pricing models other than Fama-French three-factor models used

in the main analysis. Column (1) reports the results using total volatility, which is based on the no-factor model. Columns (2)-(5)
present the results using decomposed idiosyncratic variance measures with respect to the CAPM, the q-Factor model of Hou et al.
(2015), the Fama-French three-factor model with a momentum factor, and the Fama and French (2015) five-factor model. Columns
(6) and (7) present the results using decomposed idiosyncratic variance measures with respect to the models with market coskewness,
which is estimated following Harvey and Siddique (2000). To save space, I do not report the coefficients for the control variables of
firm characteristics, such as firm size, book-to-market ratios (B/M), and momentum. Numbers in parentheses are test statistics for
the coefficient estimates. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

49



T
ab

le
11

:
S
u
m

m
a
ry

st
a
ti

st
ic

s
fo

r
m

a
rk

e
t

a
n
d

co
m

m
o
n

ju
m

p
s†

P
a
n

el
A

:
S

u
m

m
a
ry

st
a
ti

st
ic

s
fo

r
m

a
rk

et
in

d
ex

ju
m

p
s

T
o
ta

l
n
u

m
b

er
o
f

ju
m

p
s

P
er

d
a
y

P
er

m
o
n
th

P
er

y
ea

r
P

o
si

ti
v
e

in
d

ex
ju

m
p

6
4
6

0
.0

4
7
9

0
.9

5
8
0

1
1
.4

9
3
8

N
eg

a
ti

v
e

in
d

ex
ju

m
p

8
0
5

0
.0

5
9
7

1
.1

9
3
6

1
4
.3

2
2
8

M
ea

n
S

td
1
st

p
ct

l
5
th

p
ct

l
1
0
th

p
ct

l
2
5
th

p
ct

l
5
0
th

p
ct

l
7
5
th

p
ct

l
9
0
th

p
ct

l
9
5
th

p
ct

l
9
9
th

p
ct

l
P

o
si

ti
v
e

in
d

ex
ju

m
p

si
ze

0
.0

1
7
2

0
.0

1
0
6

0
.0

0
5
5

0
.0

0
6
9

0
.0

0
8
3

0
.0

1
0
8

0
.0

1
4
6

0
.0

2
0
2

0
.0

2
7
2

0
.0

3
7
5

0
.0

6
2
0

N
eg

a
ti

v
e

in
d

ex
ju

m
p

si
ze

-0
.0

1
8
1

0
.0

1
1
2

-0
.0

6
8
2

-0
.0

3
7
2

-0
.0

2
9
3

-0
.0

2
0
6

-0
.0

1
5
1

-0
.0

1
1
7

-0
.0

0
9
0

-0
.0

0
7
9

-0
.0

0
6
2

P
a
n

el
B

:
S

u
m

m
a
ry

st
a
ti

st
ic

s
fo

r
co

m
m

o
n

ju
m

p
s

V
a
ri

a
b

le
s

p
er

d
a
y

M
ea

n
S

td
ev

1
st

p
ct

l
5
th

p
ct

l
1
0
th

p
ct

l
2
5
th

p
ct

l
5
0
th

p
ct

l
7
5
th

p
ct

l
9
0
th

p
ct

l
9
5
th

p
ct

l
9
9
th

p
ct

l
N

u
m

b
er

o
f

st
o
ck

s
3
3
0
8
.5

1
3
7
1
.1

9
1

7
1
2

1
3
9
2

2
2
4
1

3
6
2
8

4
0
1
2

5
2
6
1

5
7
3
1

6
1
1
9

N
u

m
b

er
o
f

p
o
si

ti
v
e

co
ju

m
p

s
1
9
3
.2

0
8
1

1
0
4
.9

2
8
3

0
3
8

6
6

1
1
6

1
8
8

2
5
6

3
2
2

3
7
0

4
9
1

P
er

ce
n
ta

g
e

o
f

p
o
si

ti
v
e

co
ju

m
p

s
0
.0

5
7
5

0
.0

2
0
8

0
.0

0
0
7

0
.0

2
7
9

0
.0

3
4
9

0
.0

4
5
3

0
.0

5
6
4

0
.0

6
8
1

0
.0

8
1
0

0
.0

9
1
8

0
.1

1
7
9

N
u

m
b

er
o
f

n
eg

a
ti

v
e

co
ju

m
p

s
1
7
3
.8

2
2
4

9
6
.6

7
9
6

0
3
3

5
7

1
0
4

1
6
9

2
2
9

2
8
9

3
3
4

4
5
3

P
er

ce
n
ta

g
e

o
f

n
eg

a
ti

v
e

co
ju

m
p

s
0
.0

5
1
8

0
.0

2
0
2

0
0
.0

2
3
9

0
.0

3
0
8

0
.0

4
0
0

0
.0

5
0
2

0
.0

6
1
3

0
.0

7
4
0

0
.0

8
5
2

0
.1

1
4
5

†
T

h
is

ta
b

le
p

re
se

n
ts

su
m

m
a
ry

st
a
ti

st
ic

s
fo

r
m

a
rk

et
a
n

d
co

m
m

o
n

id
io

sy
n

cr
a
ti

c
ju

m
p

s,
w

h
ic

h
a
re

u
se

d
to

fu
rt

h
er

d
ec

o
m

p
o
se

th
e

n
eg

a
ti

v
e

ri
sk

p
re

m
iu

m
a
ss

o
ci

a
te

d
w

it
h

p
o
si

ti
v
e

id
io

sy
n

cr
a
ti

c
ju

m
p

ri
sk

.
F

o
r

co
n

si
st

en
cy

I
d

et
ec

t
m

a
rk

et
ju

m
p

s
b
y

a
p

p
ly

in
g

ju
m

p
d
et

ec
ti

o
n

te
st

s
o
n

d
a
il
y

m
a
rk

et
re

tu
rn

s
th

a
t

a
re

ca
lc

u
la

te
d

b
a
se

d
o
n

th
e

re
tu

rn
d

a
ta

fo
r

a
ll

in
d

iv
id

u
a
l

st
o
ck

s
in

th
e

sa
m

p
le

.
In

P
a
n

el
A

,
I

li
st

th
e

to
ta

l
n
u

m
b

er
o
f

m
a
rk

et
ju

m
p

s
a
lo

n
g

w
it

h
th

e
a
v
er

a
g
e

ju
m

p
in

te
n

si
ti

es
(f

re
q
u

en
ci

es
)

p
er

d
a
y,

p
er

m
o
n
th

,
a
n

d
p

er
y
ea

r.
D

is
tr

ib
u

ti
o
n

a
l

st
a
ti

st
ic

s,
su

ch
a
s

th
e

m
ea

n
s,

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s,
a
n

d
p

er
ce

n
ti

le
s

fo
r

b
o
th

p
o
si

ti
v
e

a
n

d
n

eg
a
ti

v
e

m
a
rk

et
ju

m
p

si
ze

s,
a
re

a
ls

o
re

p
o
rt

ed
.

O
n

ly
n

o
n

ze
ro

ju
m

p
si

ze
s

a
re

co
n

si
d

er
ed

fo
r

th
e

d
is

tr
ib

u
ti

o
n

o
f

m
a
rk

et
ju

m
p

si
ze

s.
In

P
a
n

el
B

,
I

sh
o
w

th
e

re
le

v
a
n
t

st
a
ti

st
ic

s
fo

r
ca

lc
u

la
ti

n
g

co
m

m
o
n

id
io

sy
n

cr
a
ti

c
ju

m
p

s,
w

h
ic

h
a
re

d
efi

n
ed

a
s

a
s

id
io

sy
n

cr
a
ti

c
ju

m
p

s
th

a
t

a
ri

se
si

m
u

lt
a
n

eo
u

sl
y

w
it

h
o
th

er
st

o
ck

-s
p

ec
ifi

c
ju

m
p

s
o
n

a
d

a
y.

B
ec

a
u

se
th

e
p

a
n

el
d

a
ta

a
re

u
n
b

a
la

n
ce

d
,

th
e

n
u

m
b

er
o
f

st
o
ck

s
ea

ch
d

a
y

ch
a
n

g
es

o
v
er

ti
m

e.
B

ec
a
u

se
o
f

th
es

e
ch

a
n

g
es

,
th

e
th

re
sh

o
ld

to
d

et
er

m
in

e
th

e
co

m
m

o
n

a
li
ty

o
f

id
io

sy
n

cr
a
ti

c
ju

m
p

a
rr

iv
a
ls

in
m

y
a
n

a
ly

si
s

is
n

o
t

b
a
se

d
o
n

th
e

n
u

m
b

er
o
f

id
io

sy
n

cr
a
ti

c
ju

m
p

s
in

a
d

a
y

b
u

t
o
n

th
e

p
er

ce
n
ta

g
e

o
f

th
o
se

ju
m

p
s

(i
.e

.,
th

e
ra

ti
o

o
f

th
e

n
u

m
b

er
o
f

st
o
ck

s
th

a
t

ex
p

er
ie

n
ce

id
io

sy
n

cr
a
ti

c
ju

m
p

s
re

la
ti

v
e

to
th

e
to

ta
l

n
u

m
b

er
o
f

st
o
ck

s
a
v
a
il
a
b

le
in

a
g
iv

en
d

a
y
).

D
is

tr
ib

u
ti

o
n

a
l

st
a
ti

st
ic

s,
su

ch
a
s

th
e

m
ea

n
s,

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s,
a
n

d
p

er
ce

n
ti

le
s,

a
re

re
p

o
rt

ed
in

P
a
n

el
B

fo
r

th
e

n
u

m
b

er
o
f

st
o
ck

s
p

er
d

a
y,

n
u

m
b

er
o
f

p
o
si

ti
v
e

o
r

n
eg

a
ti

v
e

co
m

m
o
n

id
io

sy
n

cr
a
ti

c
ju

m
p

s
p

er
d

a
y,

a
n

d
p

er
ce

n
ta

g
e

o
f

p
o
si

ti
v
e

a
n

d
n

eg
a
ti

v
e

co
m

m
o
n

id
io

sy
n

cr
a
ti

c
ju

m
p

s
p

er
d

a
y.

50



Table 12: Robustness to market and common jumps†

Common Jump Definition No split Market COM >20% COM >15% COM >10%
Variables (1) (2) (3) (4) (5)
IDVAR -1.761 -1.677 -1.758 -1.800 -1.759

(-0.224) (-0.214) (-0.224) (-0.229) (-0.223)
IPJVAR -17.459***

(-3.611)
IPJV ARC(IPJV ARM ) -12.672 -0.343 -1.461 -3.259

(-0.951) (-1.119) (-1.181) (-0.886)
IPJV ARU (IPJV ARNM ) -18.673*** -17.438*** -17.289*** -17.505***

(-3.881) (-3.607) (-3.579) (-3.618)
INJVAR -6.078 -5.268 -6.080 -6.154 -5.843

(-1.159) (-1.010) (-1.159) (-1.174) (-1.117)
Lagged Return 0.235 0.216 0.235 0.236 0.233

(0.948) (0.869) (0.949) (0.953) (0.942)
Skewness -0.072*** -0.071*** -0.073*** -0.073*** -0.074***

(-3.349) (-3.286) (-3.356) (-3.371) (-3.461)
Coskewness -0.447** -0.563** -0.431** -0.430** -0.402*

(-2.178) (-2.512) (-2.084) (-2.108) (-1.920)
Amihud measure 0.037*** 0.037*** 0.037*** 0.037*** 0.037***

(2.851) (2.862) (2.851) (2.850) (2.839)
Zero returns 0.649* 0.636* 0.646* 0.649* 0.653*

(1.845) (1.811) (1.838) (1.846) (1.856)
Constant 0.411** 0.414** 0.412** 0.411** 0.410**

(2.043) (2.058) (2.047) (2.043) (2.038)
Observations 1586441 1586441 1586441 1586441 1586441

R-squared 0.061 0.062 0.061 0.061 0.061
† This table provides the results of testing whether idiosyncratic jumps arriving with market jumps or

common idiosyncratic jumps are important in explaining the cross-section of stock returns. I measure

the commonality of idiosyncratic jumps by COM =
∑Kd

i=1 I(Ti,d>τ)

Kd
where Kd is the total number of

stocks available on day d, Ti,d is the idiosyncratic jump test statistic for stock i on day d, and τ is the
threshold for jump detection test. Using COM , I further decompose IPJV AR into two components:
one attributable to common jump arrivals (IPJV ARC) and the other attributable to uncommon jump
arrivals (IPJV ARU ). Then, I run the Fama-MacBeth regression:

ri,m = cm + γdIDV ARi,m−1 + γcpjIPJV AR
C
i,m−1 + γupjIPJV AR

U
i,m−1 + γnjINJV ARi,m−1

+λ′ββi,m + λ′zzi,m + ei,m,

where ri,m is stock i’s excess return in month m, and IDV ARi,m−1, IPJV ARCi,m−1, IPJV ARUi,m−1
and INJV ARi,m−1 are idiosyncratic variance measures computed using daily return residuals over the
previous month m−1. Based on market jump arrivals, I perform similar analyses and list the results in
column (2). For this exercise, I run the regression using decomposed IPJV ARs into two components
(IPJV ARM and IPJV ARNM ) attributable to market and nonmarket jump arrivals. Numbers in
parentheses are test statistics for the coefficient estimates. ***, **, and * denote statistical significance
at the 1%, 5%, and 10% levels, respectively.
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Appendix A. Finite sample performance of jump variance estima-

tors

In this appendix, I discuss a Monte Carlo simulation study that examine the finite sample

performance of the jump variance estimators. Lee and Mykland (2008) show that jump tests

identify jump arrivals well in finite samples, mostly based on intraday data. Since this study

aims to cover more cross-sectional data over much longer time horizons by using daily stock

market data, I check whether daily samples can also be applied to provide useful results on

the impact of large daily realized jumps.

There are two specific goals. The first is to show how accurately the jump tests can detect

jump arrivals using daily data. Showing this accuracy is important because the performance

of jump variance estimators depends on the power of jump detection upon daily arrivals and

affects the key results. After showing the jump test performance in detecting daily jumps

under various model specifications, I report estimation errors that can potentially result

from using the jump variance estimators. The overall simulation results demonstrate that

the jump variance estimators based on daily data perform well, as expected, in estimating

variances associated with jump components in the model under general market conditions.

Considering that elevated volatility levels can also generate large returns and may lead

to misclassification, I design this study with four different scenarios for volatilities. The first

scenario is the simplest possible benchmark case where volatility is set to be constant over

time. In the second, I consider the case with stochastic volatility that follows a typical mean

reverting process. The third and fourth cases consider elevated volatility to the first and

second cases by incorporating 30% jumps in (both constant and stochastic) volatility at the

time of price jumps. I study the last two cases to address the misclassification issue.
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Table A.1: Finite sample performance of jump variance estimators†

Price jump sizes 0.1σi,t− 0.25σi,t− 0.5σi,t− 1σi,t− 3σi,t− 5σi,t− 7σi,t−
Panel A: Power of jump test at daily level

Constant volatility 0.3280 0.7638 0.9734 0.9848 0.9897 0.9908 0.9915
Stochastic volatility 0.3292 0.7666 0.9737 0.9841 0.9905 0.9886 0.9912

Constant volatility with jumps 0.3488 0.7398 0.9680 0.9859 0.9887 0.9903 0.9904
Stochastic volatility with jumps 0.3538 0.7474 0.9674 0.9841 0.9893 0.9886 0.9914

Panel B: MSEs of jump variance estimator
Constant volatility 0.00035 0.00042 0.00067 0.00068 0.00070 0.00071 0.00071
Stochastic volatility 0.00049 0.00053 0.00087 0.00092 0.00091 0.00091 0.00090

Constant volatility with jumps 0.00050 0.00051 0.00087 0.00092 0.00092 0.00092 0.00090
Stochastic volatility with jumps 0.0007 0.0007 0.0011 0.0012 0.0012 0.0012 0.0012
† This table presents the finite sample performance of jump variance estimators based on daily data. Panel A

shows the power of jump tests based on daily data, while Panel B shows the mean squared errors made from
applying the jump variance estimators to the 10,000 simulated series. Price jump sizes are set at various levels
depending on the volatility levels at testing times. Volatility jump sizes are set at 30%. See Appendix A for
additional details of the selected models and parameter values.

I generate daily return data over give years using the Euler-Maruyama scheme, which is

widely used to simulate data from the following models:

d logSi,t = µi,tdt+ σi,tdWi,t + Yi,tdJi,t, (8)

where the stochastic volatility model is specified as the following square root processes:

dσ2
i,t = κ(θ − σ2

i,t)dt+ ωσi,tdBi,t + Y σ
i,tdJi,t. (9)

The terms dWi,t and dBi,t are standard Brownian motion processes. dJi,t denotes the jump

arrival indicator for price and volatility at time t. Price jump sizes of Yi,t are selected relative

to the volatility level σi,t− immediately before jump time t. When Iassume that the volatility

is stochastic, jump sizes are also time-varying and are set at 5σi,t−, 3σi,t−, 1σi,t−, 0.5σi,t−, and

0.25σi,t−. Volatility jump sizes of Y σ
i,t are set at 30% of the volatility level prior to jump time

t. I ignore the drift term in this simulation by setting µi,t = 0 for simplicity, assuming that

the magnitudes of drift terms compared to those of diffusion and jump terms are negligible.

I use the following parameters for the volatility process: κ = 0.0162, θ = 0.8465, and
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ω = 0.47. I discard the first five hundred observations to avoid starting value effects every

time I generate a time series of daily data. I simulate 10,000 paths of the log price process

and compute daily returns, which are used for jump tests with the 1% significance levels.

Then, I apply jump variance estimators in each simulation.

I report simulation results in Table A. As shown in Panel A, the jump test performs well

in detecting large jumps (whose sizes are greater than contemporaneous volatility levels)

at daily levels. Even when there are 30% jumps in stochastic volatility, the probability of

detecting daily jumps is greater than 98% when I aim to identify jumps with relatively large

magnitudes. Panel B shows the mean squared error of jump variance estimators based on

daily jump data. Note that the estimation error levels do not grow as jump sizes grow but

rather stabilize once large jumps are detected.

Appendix B. Stock and jump data description

I collect U.S. individual stock return data from the CRSP common stock (share codes

of 10 or 11) universe from July 1963 to December 2016. Sample firms are required to have

nonmissing size and nonnegative book-to-market equity. I remove penny stocks from the

main analyses. To reduce the small sample bias, I require at least 10 daily stock returns

per month. The results are robust to alternative choices in this requirement. Because I

detect jump arrivals using the “nonparametric” jump test, the detection results are robust

to the specification of the residual return generating process. However, those results may be

sensitive to the window sizes used for jump tests, as is typical of nonparametric approaches.

This window should include a sufficient number of observations to properly estimate the

jump-robust idiosyncratic volatility. Hence, I require sample firms to have survived for at
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least one year. For the main presentation of the results, I set the window size for jump tests

to be 6 months. In the end, the estimates of IVAR, INJVAR, and IPJVAR start in January

1964, and month m − 1 estimates of IVAR, INJVAR, and IPJVAR are matched to month

m returns from February 1964 to December 2016.

The inference method to separate the impact of decomposed idiosyncratic variances is

based on a framework that allows for various risk factors. The cross section of individual

stock prices is denoted by Si,t with i = 1.., n, where n is the total number of stocks. The

instantaneous logarithmic return for the ith individual stock at time t can be described as

follows:

d logSi,t = µi,tdt+
K∑
k=1

βki,tσ
k
t dWk,t + σ̃i,tdWi,t + Y

(+)
i,t dJ

(+)
i,t + Y

(−)
i,t dJ

(−)
i,t , (10)

where µi,t represents the instantaneous drift, and
∑K

k=1 β
k
i,tσ

k
t dWk,t represents the sum of

the terms associated with K systematic factors and βki,t which is the k-th factor loading

of the i-th stock at time t, and dWk,t is a Brownian motion capturing shocks to the k-

th systematic factor, scaled by its volatility σkt .σ̃i,tdWi,t is an idiosyncratic diffusion term,

where σ̃i,t is the idiosyncratic diffusive volatility and dWi,t is a Brownian motion capturing

idiosyncratic diffusive shocks. For all k’s, Wk,t and Wi,t are orthogonal to each other, but Wi,t

and Wj,t for two different stocks i and j, where i 6= j can be correlated. The last two terms

reflect idiosyncratic jumps of the i-th individual stock. Y
(+)
i,t (Y

(−)
i,t ) indicates the positive

(negative) idiosyncratic jump size at time t. dJ
(+)
i,t (dJ

(−)
i,t ) indicates the positive (negative)

idiosyncratic jump arrival at time t with stochastic jump intensities ν
(+)
i,t (ν

(−)
i,t ). dJi,t and

dJj,t for two different stocks i and j with i 6= j can be correlated.38

38To be consistent with the idiosyncratic volatility literature, I do not specifically model the market jump
components. However, accommodating market jumps or other general factor models with higher market
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The daily return residual εi,d for stock i and day d is expected to include the daily

realization of idiosyncratic diffusive component σ̃i,tdWi,t, as well as both positive and negative

idiosyncratic jump components, Y
(+)
i,t dJ

(+)
i,t and Y

(−)
i,t dJ

(−)
i,t . These daily residuals mainly

capturing diffusive, positive and negative jump components are denoted by εdf,i,d, εpj,i,d, and

εnj,i,d, respectively. Then, the return residual for stock i and day d are expressed as follows:

εi,d = εdf,i,d + εpj,i,d + εnj,i,d, (11)

where

εdf,i,d ≈
∫
t∈Dd

σ̃i,tdWi,t, εpj,i,d ≈
∫
t∈Dd

Y
(+)
i,t dJ

(+)
i,t , and εnj,i,d ≈

∫
t∈Dd

Y
(−)
i,t dJ

(−)
i,t ,

with Dd ∈ [0, T ] denoting the time interval for day d: Dd = {s|s belongs to day d}. In

practice, the aforementioned decomposition must be approximated using statistical tests as

described in Subsection 2.1.

Most jump tests are not suitable for this study because they are not designed to ex-

tract signed jumps within a time interval (for this study, this time interval is one month).

Therefore, I do not perform robustness checks to test whether the results are sensitive to the

choice of jump tests. One exception is the test proposed by Andersen et al. (2007), which is

designed with a similar mathematical structure to that of the Lee and Mykland (2008) test.

The results are expected to be similar because of the similar structure of the test statistics.

Although the detection power of the jump test may increase as I increase the frequency

of observations up to intraday levels, the benefit of using daily instead of intraday data in

this study is substantial. The application of daily data allows me to cover a much longer

moments is straightforward and does not affect the overall conclusion, as shown in Section 5.
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sample period beginning in the 1960s. A much larger number of stocks can be included in

the sample, enabling greater cross-sectional variation. Such large cross-sectional variation is

critical for this analyses but cannot be captured using high-frequency intraday data because

of data limitations. Additionally, the focus of this study is not the impact of very small-

sized (intraday) idiosyncratic jumps but that of relatively large-sized jumps compared to the

prevailing volatility levels.

The average raw return of the sample stocks is 1.17% per month. The average monthly

idiosyncratic volatility estimated using the typical standard deviation calculation is 2.66%.

The average idiosyncratic diffusive, positive, and negative jump variances are 0.0092, 0.0084,

and 0.0053, respectively. The average betas for market, size, and value factors are 0.91, 0.71,

and 0.18, respectively. The average size, B/M ratio (computed based on Fama and French

(2006)), momentum (return to a buy and hold strategy from month m − 12 to m − 2),

and lagged return (the month m − 1 return) are $1.795 billion, 0.763, 15.07%, and 1.53%,

respectively. The average skewness is 0.239, indicating that individual stock returns are on

average positively skewed. The average coskewness is 0.0051, indicating that market returns

on average tend to move positively with individual stock return variance. The average

maximum daily return is 7.01%. The Amihud measure is 4.118 on average, whereas the zero

return variable, which is the fraction of trading days with a zero return in month m− 1, has

an average of 20.11%.

Positive (negative) jump intensities are computed as the number of positive (negative)

jumps relative to the total number of observations available for each firm. The cross-sectional

averages of positive and negative idiosyncratic jump intensities are 0.055 and 0.050, respec-

tively, indicating that positive idiosyncratic jumps are detected slightly more frequently than

negative idiosyncratic jumps. Notably, the type I error rate for the positive (negative) jump

57



test is 2.5% because I set the significance level at 5% for the two-sided idiosyncratic jump

tests. Idiosyncratic jump sizes are the return residuals when idiosyncratic jump arrivals

occur, assuming the magnitudes of return residuals attributable to the jump component

dominate the magnitudes of the return residuals due to the diffusion component. The cross-

sectional averages of the positive (negative) jump size mean, standard deviation, and median

are 7.87% (-6.98%), 4.64% (3.30%), and 6.68% (-6.18%), respectively.

Appendix C. Additional robustness checks: window size selection

For additional robustness checks, Table C.1 reports the estimation results using the entire

sample but with various window sizes for jump tests to assess whether the results are affected

by the window size selection. For these sensitivity analyses, I select window sizes of 20, 40,

60, 80, 120, and 240 daily data points. The sizes are approximately equivalent to one, two,

three, four, six, and 12 months. Column (5) show the original results. The other columns

show the same results, thus the main finding is robust to window size selection.
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Table C.1: Robustness to window size selection for jump tests†

Window size K 20 40 60 80 120 240
Variable (1) (2) (3) (4) (5) (6)
IDVAR -5.563 -7.122 -4.559 -5.345 -1.761 -0.841

(-0.896) (-0.924) (-0.553) (-0.637) (-0.224) (-0.134)

IPJVAR -12.760*** -19.726*** -18.183*** -20.261*** -17.459*** -9.033*
(-4.407) (-3.934) (-3.713) (-3.343) (-3.611) (-1.777)

INJVAR -9.628** -1.48 -4.485 -0.325 -6.078 -17.732**
(-2.055) (-0.300) (-0.800) (-0.048) (-1.159) (-2.135)

Lagged return 0.258 0.246 0.243 0.256 0.235 0.268
(1.024) (0.985) (0.973) (1.028) (0.948) (1.054)

Skewness -0.077*** -0.065*** -0.069*** -0.066*** -0.072*** -0.083***
(-3.408) (-2.918) (-3.196) (-3.023) (-3.349) (-3.880)

Coskewness -0.501** -0.510** -0.506** -0.458** -0.447** -0.478**
(-2.387) (-2.468) (-2.466) (-2.209) (-2.178) (-2.290)

Amihud measure 0.039*** 0.038*** 0.037*** 0.038*** 0.037*** 0.038***
(2.85) (2.86) (2.833) (2.9) (2.851) (2.807)

Zero returns 0.738** 0.722** 0.708** 0.685* 0.649* 0.617*
(1.978) (2.004) (1.979) (1.936) (1.845) (1.723)

Constant 0.419** 0.423** 0.425** 0.422** 0.411** 0.415**
(2.054) (2.086) (2.107) (2.098) (2.043) (2.038)

Observations 1586441 1586441 1586441 1586441 1586441 1586441
R-squared 0.059 0.061 0.061 0.061 0.061 0.06

† This table provides the results to show that the overall results are robust to window size selection
for idiosyncratic jump tests. I present the results using K = 20, 40, 60, 80, 120, and 240 for this
sensitivity analysis. With each selection, I run the following Fama-MacBeth regression:

ri,m = cm+γdIDV ARi,m−1 +γpjIPJV ARi,m−1 +γnjINJV ARi,m−1 +λ′ββi,m+λ′zzi,m+ ei,m,

where ri,m is stock i’s excess return in month m and IDV ARi,m−1, IPJV ARi,m−1, and
INJV ARi,m−1 are decomposed idiosyncratic risk measures computed using the daily return resid-
uals during the previous month m−1. All of the results are after controlling for factor loadings and
the usual firm characteristics, as well as month m− 1 jump-related variables, such as skewness and
liquidity measures considered in Table 5. zi,m is a vector of those control variables. To save space,
I do not report the coefficients for the first set of control variables considered in Table 3 but report
the other coefficients. Numbers in parentheses are test statistics for the coefficient estimates. ***,
**, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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